1
|
Ren X, Bu X, Tong Z, Dong L, Ma Z, Wang J, Cao M, Qiu S. Influences of plasma treatment parameters on the hydrophobicity of cathode and anode materials from spent lithium-ion batteries. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 184:120-131. [PMID: 38815286 DOI: 10.1016/j.wasman.2024.05.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/15/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
The recycling of spent lithium-ion batteries (LIBs) can not only reduce the potential harm caused by solid waste piles to the local environment but also provide raw materials for manufacturing new batteries. Flotation is an alternative approach to achieve the selective separation of cathode and anode active materials from spent LIBs. However, the presence of organic binder on the surface of hydrophilic lithium transition-metal oxides results in losses of cathode materials in the froth phase. In this study, plasma treatment was utilized to remove organic layers from cathode and anode active materials. Firstly, the correlations between plasma treatment parameters (e.g., input power, air flowrate, and treatment time) were explored and the contact angles of cathode and anode active materials were investigated by the response surface methodology. Secondly, differences in the flotation recoveries of cathode and anode active materials were enhanced with plasma modification prior to flotation, which is consistent with the contact angle measurement. Finally, the plasma-modification mechanisms of hydrophobicity of cathode and anode active materials were discussed according to Fourier Transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses. The proposed method could be a promising tool to enhance the flotation separation efficiency of cathode and anode active materials for the recycling of spent LIBs.
Collapse
Affiliation(s)
- Xibing Ren
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiangning Bu
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China.
| | - Zheng Tong
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Lisha Dong
- Western Australian School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Kalgoorlie, Western Australia 6430, Australia
| | - Zhicheng Ma
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Jincheng Wang
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Mingzheng Cao
- Key Laboratory of Coal Processing and Efficient Utilization (Ministry of Education), School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, China
| | - Song Qiu
- Advanced Materials Division, Suzhou Institute of Nanotech and Nanobionics, Chinese Academy of Science, Suzhou 215123, P. R. China
| |
Collapse
|
2
|
Recovery of Carbon and Cryolite from Spent Carbon Anode Slag Using a Grinding Flotation Process Based on Mineralogical Characteristics. SEPARATIONS 2023. [DOI: 10.3390/separations10030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The aluminum electrolysis industry continually and unavoidably produces hazardous solid waste in the form of carbon anode slag. Carbon anode slag poses a serious environmental pollution risk, and it must be disposed of in a harmless manner. On the other hand, it contains a few valuable resources, as well. In order for the aluminum electrolysis industry to develop in an environmentally friendly and high-quality manner, the harmless disposal of carbon anode slag and its resourceful utilization are of considerable importance. The selective comminution of carbon and cryolite particles in carbon anode slag can be effectively achieved with grinding pretreatment. However, the optimization study of grinding process parameters has yet to be investigated. Therefore, firstly, the mineralogical characteristics and existing mode of carbon anode slag from the perspective of mineralogical properties are analyzed in this study. Then, the effects of grinding time, grinding concentration, and steel ball diameter on the particle size of the ground product (γ−0.074 mm) are investigated using response surface analysis. The results showed that the effect of grinding time was the most significant, followed by grinding concentration and steel ball diameter. In addition, the performance of the multi-stage flotation process for separating the −0.074 mm ground product was analyzed. Cryolite with a purity of 93.12% and a carbon product with an ash content of 10.67% could be simultaneously obtained through multi-stage flotation. It should be pointed out that the deep dissociation and efficient recovery of fine undissociated particles still need to be further explored.
Collapse
|
3
|
Fundamentals and applications of nanobubbles: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|