1
|
Guo X, Chen S, Han Y, Hao C, Feng X, Zhang B. Bioleaching performance of vanadium-bearing smelting ash by Acidithiobacillus ferrooxidans for vanadium recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117615. [PMID: 36893541 DOI: 10.1016/j.jenvman.2023.117615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/10/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
The bioleaching process is widely used in the treatment of ores or solid wastes, but little is known about its application in the treatment of vanadium-bearing smelting ash. This study investigated bioleaching of smelting ash with Acidithiobacillus ferrooxidans. The vanadium-bearing smelting ash was first treated with 0.1 M acetate buffer and then leached in the culture of Acidithiobacillus ferrooxidans. Comparison between one-step and two-step leaching process indicated that microbial metabolites could contribute to the bioleaching. The Acidithiobacillus ferrooxidans demonstrated a high vanadium leaching potential, solubilizing 41.9% of vanadium from the smelting ash. The optimal leaching condition was determined, which was 1% pulp density, 10% inoculum volume, an initial pH of 1.8, and 3 Fe2+g/L. The compositional analysis showed that the fraction of reducible, oxidizable, and acid-soluble was transferred into the leaching liquor. Therefore, as the alternative to the chemical/physical process, an efficient bioleaching process was proposed to enhance the recovery of vanadium from the vanadium-bearing smelting ash.
Collapse
Affiliation(s)
- Xiaoxiao Guo
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Siming Chen
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China.
| | - Yawei Han
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Chunbo Hao
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China
| | - Xiujuan Feng
- The School of Mines, China University of Mining and Technology(CUMT);MechanoChemistry Research Institute, China University of Mining and Technology(CUMT), Xuzhou, Jiangsu, 221116, China
| | - Baogang Zhang
- MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, School of Water Resources and Environment, China University of Geosciences Beijing, Beijing, 100083, China.
| |
Collapse
|
2
|
Bakkar A, El-Sayed Seleman MM, Zaky Ahmed MM, Harb S, Goren S, Howsawi E. Recovery of vanadium and nickel from heavy oil fly ash (HOFA): a critical review. RSC Adv 2023; 13:6327-6345. [PMID: 36824230 PMCID: PMC9942696 DOI: 10.1039/d3ra00289f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Heavy oil fly ash "HOFA" is the fly ash generated in power stations using heavy oil as fuel. HOFA is considered a hazardous waste because it contains considerable amounts of heavy metals. However, it contains significant amounts of vanadium "V" and nickel "Ni", which are precious metals for manufacturing processes. This paper presents a critical review of various approaches described in the literature for the recovery of V and Ni from HOFA, including processes of leaching, chemical precipitation, solvent extraction, and ion exchange. The optimum operational parameters and their effects on recovery efficiency are discussed. The digestion mixtures of strong mineral acids used for dissolving all metals present in HOFA are also highlighted. The leaching processes of V and Ni use mainly acidic and alkaline solutions. Bioleaching is a promising environmentally friendly approach for the recovery of V and Ni through using appropriate bacteria and fungi. After leaching, V and Ni compounds are recovered and purified using various techniques, including chemical precipitation, solvent extraction, and ion exchange. In most cases, V and Ni are recovered as thermally decomposable compounds that undergo calcination to produce V2O5 and NiO. Eventually, V and Ni are recovered as pure oxides in most approaches, but pure metals are obtained in exceptional procedures.
Collapse
Affiliation(s)
- Ashraf Bakkar
- Department of Environmental Engineering, College of Engineering at Al-Leith, Um Al-Qura University Al-Lith 28434 Saudi Arabia
| | - Mohamed M. El-Sayed Seleman
- Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez UniversitySuez 43512Egypt
| | - Mohamed M. Zaky Ahmed
- Mechanical Engineering Department, College of Engineering at Al Kharj, Prince Sattam Bin Abdulaziz UniversityAl Kharj 11942Saudi Arabia
| | - Saeed Harb
- Department of Environmental Engineering, College of Engineering at Al-Leith, Um Al-Qura University Al-Lith 28434 Saudi Arabia
| | - Sami Goren
- Department of Environmental Engineering, College of Engineering at Al-Leith, Um Al-Qura University Al-Lith 28434 Saudi Arabia
| | - Eskander Howsawi
- Department of Environmental Engineering, College of Engineering at Al-Leith, Um Al-Qura University Al-Lith 28434 Saudi Arabia
| |
Collapse
|
3
|
Zhang H, Shi J, Chen C, Yang M, Lu J, Zhang B. Heterotrophic Bioleaching of Vanadium from Low-Grade Stone Coal by Aerobic Microbial Consortium. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13375. [PMID: 36293959 PMCID: PMC9603648 DOI: 10.3390/ijerph192013375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Bioleaching is a viable method that assists in increasing the vanadium output in an economical and environmentally friendly manner. Most bioleaching is conducted by pure cultures under autotrophic conditions, which frequently require strong acidity and produce acid wastewater. However, little is known about heterotrophic bioleaching of vanadium by mixed culture. This study investigated the bioleaching of vanadium from low-grade stone coal by heterotrophic microbial consortium. According to the results, vanadium was efficiently extracted by the employed culture, with the vanadium recovery percentage in the biosystem being 7.24 times greater than that in the control group without inoculum. The average vanadium leaching concentration reached 680.7 μg/L in the first three cycles. The kinetic equation indicated that the main leaching process of vanadium was modulated by a diffusion process. Scanning electron microscopy revealed traces of bacterial erosion with fluffy structures on the surface of the treated stone coal. X-ray photoelectron spectroscopy confirmed the reduction of the vanadium content in the stone coal after leaching. Analysis of high-throughput 16S rRNA gene sequencing revealed that the metal-oxidizing bacteria, Acidovorax and Delftia, and the heterotrophic-metal-resistant Pseudomonas, were significantly enriched in the bioleaching system. Our findings advance the understanding of bioleaching by aerobic heterotrophic microbial consortium and offer a promising technique for vanadium extraction from low-grade stone coals.
Collapse
|
4
|
Zhao D, Wang C, Ding Y, Ding M, Cao Y, Chen Z. Will Vanadium-Based Electrode Materials Become the Future Choice for Metal-Ion Batteries? CHEMSUSCHEM 2022; 15:e202200479. [PMID: 35384327 DOI: 10.1002/cssc.202200479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Metal-ion batteries have emerged as promising candidates for energy storage system due to their unlimited resources and competitive price/performance ratio. Vanadium-based compounds have diverse oxidation states rendering various open-frameworks for ions storage. To date, some vanadium-based polyanionic compounds have shown great potential as high-performance electrode materials. However, there has been a growing concern regarding the cost and environmental risk of vanadium. In this Review, all links in the industry chain of vanadium-based electrodes were comprehensively summarized, starting with an analysis of the resources, applications, and price fluctuation of vanadium. The manufacturing processes of the vanadium extraction and recovery technologies were discussed. Moreover, the commercial potentials of some typical electrode materials were critically appraised. Finally, the environmental impact and sustainability of the industry chain were evaluated. This critical Review will provide a clear vision of the prospects and challenges of developing vanadium-based electrode materials.
Collapse
Affiliation(s)
- Dong Zhao
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Chunlei Wang
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Yan Ding
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Mingyue Ding
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuliang Cao
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhongxue Chen
- Key Laboratory of Hydraulic Machinery Transients, Ministry of Education, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
5
|
Durn G, Perković I, Stummeyer J, Ottner F, Mileusnić M. Differences in the behaviour of trace and rare-earth elements in oxidizing and reducing soil environments: Case study of Terra Rossa soils and Cretaceous palaeosols from the Istrian peninsula, Croatia. CHEMOSPHERE 2021; 283:131286. [PMID: 34470733 DOI: 10.1016/j.chemosphere.2021.131286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
This study compares the differences between the distribution of trace elements and rare-earth elements (REEs) formed under reducing and oxidizing soil conditions during pedogenesis on carbonate bedrock. Terra rossa (TR) soils, representing pedogenesis under oxic conditions, and Cretaceous palaeosols (CP), representing pedogenesis under reducing conditions, were sampled on the Istrian peninsula. They were studied by ICP-MS, ICP-OES, XRF, XRD, sequential extraction and statistical analyses. The differences in trace-element behaviour between the TR and CP stem from different redox conditions, but the most remarkable difference was observed in the behaviour of the REEs. Statistical analyses revealed that in TR soils all the REEs showed a very positive correlation, while in CPs the light REEs and heavy REEs showed an internal, very positive correlation. TR soils have almost twice as much REEs as CPs. This difference is pedogenetic, as both materials have a very similar amount of REEs in the residual fraction. While TR soils have the same amount of REEs in fractions other than the residual fraction, CPs have almost no REEs in these fractions. Different REE patterns obtained from sequential extraction, such as a middle-REE enrichment and a positive Ce anomaly in TR soils and light-REE depletion, heavy-REE enrichment, positive Ce and Eu anomalies in CPs, contributed to an understanding of the redox and pedogenetic processes. This study successfully emphasized the influence of different redox conditions on the behaviour of trace and rare-earth elements during pedogenesis on a carbonate bedrock and the ability of the REEs to track pedogenetic processes.
Collapse
Affiliation(s)
- Goran Durn
- University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10 000, Zagreb, Croatia
| | - Ivor Perković
- University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10 000, Zagreb, Croatia.
| | - Jens Stummeyer
- Bundesanstalt für Geowissenschaften und Rohstoffe Hannover, Germany
| | - Franz Ottner
- Institute of Applied Geology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Marta Mileusnić
- University of Zagreb, Faculty of Mining, Geology and Petroleum Engineering, Pierottijeva 6, 10 000, Zagreb, Croatia
| |
Collapse
|
6
|
Li J, Zhang B, Yang M, Lin H. Bioleaching of vanadium by Acidithiobacillus ferrooxidans from vanadium-bearing resources: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125843. [PMID: 33865106 DOI: 10.1016/j.jhazmat.2021.125843] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Bioleaching is promising to meet the demand of strategic vanadium both economically and environmentally. Whereas the combination of bioleaching with traditional techniques is of great interest, little is known on bioleaching of vanadium from abundant vanadium-bearing resources utilized/produced in existing processes. This study investigated the bioleaching of vanadium from vanadium-titanium magnetite, steel slag, and clinker, which are common raw mineral and intermediates used in conventional vanadium extraction process. Clinker had greater leachability by Acidithiobacillus ferrooxidans, compared to vanadium-titanium magnetite and steel slag. Pulp density, inoculum volume, initial pH and initial Fe2+ concentration had influencing effects on this bioleaching process. Under optimal condition with 3% pulp density, 10% inoculum volume, initial pH at 1.8, and 3 g/L initial Fe2+ concentration, the bioleaching of clinker achieved the maximum vanadium leaching efficiency of 59.0%. Both X-ray fluorescence and energy dispersive spectroscopy analysis confirmed the reduction of vanadium content in the solid residues after leaching. The results of Community Bureau of Reference sequential extraction suggested that vanadium in acid-soluble and oxidizable phase was more easily leachable. This study is helpful to develop sustainable and practical techniques for vanadium extraction from abundant raw materials and step forward in combining bioleaching with traditional process.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Meng Yang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| |
Collapse
|
7
|
Effects of energy source on bioleaching of vanadium-bearing shale by Acidithiobacillus ferrooxidans. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
8
|
Effects of Single and Mixed Energy Sources on Intracellular Nanoparticles Synthesized by Acidithiobacillus ferrooxidans. MINERALS 2019. [DOI: 10.3390/min9030163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Effective biosynthesis of magnetite nanoparticles using current technology is challenging. We investigated the synthesis of nanoparticles by Acidithiobacillus ferrooxidans grown on ferrous iron, elemental sulphur, and mixtures of both substrates. A comparison of tests with different doping amounts of elemental sulphur in ferrous-containing medium showed that the addition of 0.25 and 0.5 M elemental sulphur to the medium resulted in an increased delay of microbial growth and ferrous iron oxidation. TEM suggested that the ferrous material was an essential energy source for the synthesis of nanoparticles in cells. TEM results indicated that the different ratios of ferrous and sulphur had no significant effect on the morphology of bacteria and the size of nanoparticles. High-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), and X-ray absorption near edge structure (XANES) showed that the nanoparticles were composed of magnetite. For the first time, HRTEM and XANES spectra in-situ characterization was conducted to investigate the nanoparticles that were synthesized by A. ferrooxidans. The findings from this study indicated that the different ratios of ferrous and sulphur had no significant effect on size and shape of nanoparticles synthesized by A. ferrooxidans.
Collapse
|
9
|
Electrochemical Behavior of Ocean Polymetallic Nodules and Low-Grade Nickel Sulfide Ore in Acidithiobacillus Ferrooxidans-Coupled Bio-Leaching. MINERALS 2019. [DOI: 10.3390/min9020070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Efficient extraction of Ni, Co, Cu, and Mn from low-grade and refractory ores is a common technical challenge. The present study proposes an Acidithiobacillus ferrooxidans-coupled leaching of Ni, Cu, Co, and Mn from oceanic polymetallic nodules and low-grade nickel sulfide ore, and focuses on the electrochemical behavior of the ores in simulated bio-leaching solutions. In the dissolution of polymetallic nodules, A. ferrooxidans facilitates the diffusion of H+ and accelerates electron transfer, producing a decrease in charge transfer resistance and promoting the Mn(IV)-preceding reaction. The use of A. ferrooxidans is beneficial for lower impedance of sulfur-nickel ore, faster diffusion rate of product layer, and better transformation of the Fe3+/Fe2+ couple and S0/S2− couple. A. ferrooxidans increases the potential difference between the nodule cathode and sulfide anode, and increases electron liberation from the sulfide ore. This motivates a significant increase in the average extraction rates of Ni, Co, Cu, and Mn in the bacterial solution. The bio-leaching efficiencies of Ni, Co, Cu, and Mn were as high as 95.4%, 97.8%, 92.2% and 97.3%, respectively, representing improvements of 17.1%, 11.5%, 14.3% and 12.9% relative to that of the germ- and Fe(III)-free acidic 9 K basic system.
Collapse
|