1
|
Sun H, Yao J, Ma B, Knudsen TS, Yuan C. Siderite's green revolution: From tailings to an eco-friendly material for the green economy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169922. [PMID: 38199373 DOI: 10.1016/j.scitotenv.2024.169922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Siderite, extensively mined as a natural iron mineral, is often discarded as tailings due to the low grade of the ore and due to the high cost of current sorting technologies. Yet, this mineral has demonstrated significant potential in several pivotal areas of the environmental remediation. Siderite not only possesses exceptional adsorption, catalytic, and microbial carrier capabilities but also offers an eco-friendly and cost-effective solution for the environmental pollution management. This article consolidates research advancements and achievements over the past few decades concerning siderite's role in pollution control, delving deeply into its various remediation pathways. Initially, the paper contrasts the performance differences between natural and synthetic siderite, followed by a comprehensive overview of siderite's adsorption mechanisms for various inorganic pollutants. Furthermore, this paper analyzes the unique physicochemical attributes of siderite as both, a reductant and the catalyst, with a special emphasis on its use in the preparation of SCR catalysts and in the catalytic advanced oxidation processes for organic pollutants' degradation. This paper also enumerates and discusses the myriad advantages of siderite as a microbial carrier, thereby enhancing our understanding of biogeochemical cycles and pollutant transformations. In essence, this review systematically elucidates the mechanisms and intrinsic physicochemical properties of siderite in pollution control, paving the way for novel strategies to augment siderite's environmental remediation performance.
Collapse
Affiliation(s)
- Haoxiang Sun
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Bo Ma
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Tatjana Solevic Knudsen
- Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11 000, Belgrade, Serbia
| | - Chenyi Yuan
- School of Water Resources and Environment, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| |
Collapse
|
2
|
Cheng T, Du B, Zhou H, Jiang Z, Xie Q, Zhu C. Tungsten modified natural limonite catalyst for efficient low-temperature selective catalytic reduction of NO removal with NH 3: preparation and characterization. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:36294-36310. [PMID: 36547828 DOI: 10.1007/s11356-022-24755-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
With natural limonite as the precursor and an ammonium tungstate hydrate as modification, the W/limonite composite catalysts were synthesized by the impregnation method. Their structures and properties were systematically characterized and analyzed; the denitrification activity and resistance to water and sulfur on catalysts were investigated. The results indicated that the W/limonite composite with W/Fe mass ratio of 9% and calcination temperature of 300 °C had highly catalytic activity, enhanced resistance to sulfur and water. The NO conversion efficiency was maintained over 85% with NO initial concentration of 500 ppm, the gas hourly space velocity (GHSV) of 36,000 h-1, and reaction temperature of 100 °C, while it was greater than 98% with addition of 200 ppm SO2 and 3 vol. % H2O at the reaction temperature of 250 °C. The superior performance was mainly ascribed to the formation of W-OH species and W = O species with wide dispersion on the surface of goethite or in Fe2O3 lattice defects, to generate more acidic hydroxyl groups and more oxygen defects and strong acidity Brønsted for the SCR reaction.
Collapse
Affiliation(s)
- Ting Cheng
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Bo Du
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Huimin Zhou
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Zhaozhong Jiang
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Qiaoqin Xie
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Chengzhu Zhu
- School of Resource and Environmental Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.
- Institute of Atmospheric Environment & Pollution Control, Hefei University of Technology, Hefei, 230009, People's Republic of China.
- Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230009, People's Republic of China.
| |
Collapse
|
3
|
An Investigation into the Adsorption of Ammonium by Zeolite-Magnetite Composites. MINERALS 2022. [DOI: 10.3390/min12020256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The discharging of ammonium from industrial, domestic, and livestock sewage has caused eutrophication of the water environment. The objectives of this study are to synthesize magnetic zeolite (M-Zeo) by an eco-friendly, economical, and easy procedure and to investigate its suitability as an adsorbent to remove ammonium from an aqueous solution. Based on characterization from XRD, BET, and SEM-EDS, Fe3O4 was proved to successfully load on natural zeolite. The effect of pH, temperatures, reacting times, initial ammonium concentrations, and regeneration cycles on ammonium adsorption was examined by batch experiments. The ammonium adsorption process can be best described by the Freundlich isotherm and the maximum adsorptive capacity of 172.41 mg/g was obtained. Kinetic analysis demonstrated that the pseudo-second-order kinetic model gave the best description on the adsorption. The value of pH is a key factor and the maximum adsorption capacity was obtained at pH 8. By using a rapid sodium chloride regeneration method, the regeneration ratio was up to 97.03% after five regeneration cycles, suggesting that M-Zeo can be recycled and magnetically recovered. Thus, the economic-efficient, great ammonium affinity, and excellent regeneration characteristics of M-Zeo had an extensively promising utilization on ammonium treatment from liquid.
Collapse
|
4
|
Zabihi V, Eikani MH, Ardjmand M, Latifi SM, Salehirad A. Selective catalytic reduction of NO by Fe-Mn nanocatalysts: effect of structure type. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39159-39167. [PMID: 33751352 DOI: 10.1007/s11356-021-13119-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
One of the most prominent features of selective catalytic reduction (SCR) of NOx is using a well-structured catalyst to advance the reaction in a desirable condition. At the present work, various crystal structures of Fe-Mn nanocatalysts, FeMn2O4 spinel, FeMnO3 perovskite and Fe2O3 (hematite)/Mn2O3 (bixbyite) nanocatalysts fabricated by co-precipitation method were evaluated for selective catalytic reduction of NO by NH3 (NH3-SCR). The studies specified that the crystal structure type had a high impact on structural properties and thereby the catalytic performance of the samples. The physicochemical characteristics of the nanocatalysts including molar ratio of metals, phase composition, crystallite size, particle size distribution, specific surface area, average pore diameter, pore volume, agglomeration degree, and amount and strength of the acidic site on the catalysts surfaces have been distinguished. From the catalytic activity evaluation, it was identified that the perovskite nanocatalyst had the best performance in NH3-SCR reaction.
Collapse
Affiliation(s)
- Vahid Zabihi
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Eikani
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Mehdi Ardjmand
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Mahdi Latifi
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Alireza Salehirad
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| |
Collapse
|