1
|
Azithromycin Mitigates Cisplatin-Induced Lung Oxidative Stress, Inflammation and Necroptosis by Upregulating SIRT1, PPARγ, and Nrf2/HO-1 Signaling. Pharmaceuticals (Basel) 2022; 16:ph16010052. [PMID: 36678549 PMCID: PMC9861532 DOI: 10.3390/ph16010052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/26/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Acute lung injury (ALI) is one of the adverse effects of the antineoplastic agent cisplatin (CIS). Oxidative stress, inflammation, and necroptosis are linked to the emergence of lung injury in various disorders. This study evaluated the effect of the macrolide antibiotic azithromycin (AZM) on oxidative stress, inflammatory response, and necroptosis in the lungs of CIS-administered rats, pinpointing the involvement of PPARγ, SIRT1, and Nrf2/HO-1 signaling. The rats received AZM for 10 days and a single dose of CIS on the 7th day. CIS provoked bronchial and alveolar injury along with increased levels of ROS, MDA, NO, MPO, NF-κB p65, TNF-α, and IL-1β, and decreased levels of GSH, SOD, GST, and IL-10, denoting oxidative and inflammatory responses. The necroptosis-related proteins RIP1, RIP3, MLKL, and caspase-8 were upregulated in CIS-treated rats. AZM effectively prevented lung tissue injury, ameliorated oxidative stress and NF-κB p65 and pro-inflammatory markers levels, boosted antioxidants and IL-10, and downregulated necroptosis-related proteins in CIS-administered rats. AZM decreased the concentration of Ang II and increased those of Ang (1-7), cytoglobin, PPARγ, SIRT1, Nrf2, and HO-1 in the lungs of CIS-treated rats. In conclusion, AZM attenuated the lung injury provoked by CIS in rats through the suppression of inflammation, oxidative stress, and necroptosis. The protective effect of AZM was associated with the upregulation of Nrf2/HO-1 signaling, cytoglobin, PPARγ, and SIRT1.
Collapse
|
2
|
Pérez-Juárez A, Aguilar-Faisal JL, Posadas-Mondragón A, Santiago-Cruz JA, Barrientos-Alvarado C, Mojica-Villegas MA, Chamorro-Cevallos GA, Morales-González JA. Effect of Spirulina (Formerly Arthrospira) Maxima against Ethanol-Induced Damage in Rat Liver. APPLIED SCIENCES 2022; 12:8626. [DOI: 10.3390/app12178626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2024]
Abstract
Spirulina (formerly Arthrospira) maxima (SP) is a cyanobacterium reported to have great nutritional and pharmacological potential. The objective of this study was to evaluate the protective properties of SP against ethanol-induced toxicity. Male Wistar rats were used in the study and subjected to a 70% partial hepatectomy (PH); they were then divided into five groups. During the experiment, animals in two groups drank an aqueous solution of ethanol (EtOH) (40%, v/v). Additionally, they were administered an SP extract daily at a dose of 200 mg/kg body weight intragastrically. To explore possible mechanisms of action, we examined antioxidant defense enzymes, as well as serum biochemical parameters and histopathological changes in the liver. SP administration normalized elevated glutathione reductase (GR), glutathione (GSH), and superoxide dismutase (SOD) levels, in addition to increased catalase (CAT) and glutathione peroxidase (GPX) enzymes. Alterations in biochemical parameters were observed in the groups with PH treated with EtOH associated with a reduction in cholesterol and albumin levels, while glucose and triglyceride levels increased. The histological study supported the protective activity of SP, reducing apoptosis, necrosis, and congestion in the liver. Our findings demonstrated a protective effect of SP against EtOH that is related to less inflammation, a lesser antioxidant effect, and less free radical scavenging activity.
Collapse
Affiliation(s)
- Angélica Pérez-Juárez
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Araceli Posadas-Mondragón
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - José Angel Santiago-Cruz
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - Cornelio Barrientos-Alvarado
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | - María Angélica Mojica-Villegas
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Germán Alberto Chamorro-Cevallos
- Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| |
Collapse
|
3
|
Radioiodination and biological evaluation of Cimetidine as a new highly selective radiotracer for peptic ulcer disorder detection. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2020-0046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
One of the most famous techniques for stomach ulcer imaging is the nuclear imaging technique. We aim to focus on the synthesis of 125I-cimetidine (125I-cim) as an agent for peptic ulcer imaging. Cimetidine was labeled with Iodine-125 using a different oxidizing agent (Ch-T, NBS). All factors affecting the labeling yield were optimized. The radiochemical yield of 125I-cim was 98 ± 0.22% at optimum conditions. In vitro stability, in vivo biodistribution of 125I-cimetidine was studied in three groups: control group, pretreated group, and ulcer bearing group. In vivo biodistribution studies of 125I-cim revealed high uptake in the stomach ulcer, reaching about 75.4 ± 1.2% ID/g at 15 min post-injection, than pretreated groups compared to the control. The results showed the suitability of using 125I-cimetidine for stomach ulcer imaging.
Collapse
|
4
|
Rašić J, Hudomal-Janićijević S, Stanojević-Ristić Z, Kisić B, Stević S, Vitković L, Mijović M. The effect of morphine on development of ulcer lesions of the rats exposed to indomethacin induced stress. PRAXIS MEDICA 2018. [DOI: 10.5937/pramed1802001r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
5
|
Chen M, Yang T, Meng X, Sun T. Azithromycin attenuates cigarette smoke extract-induced oxidative stress injury in human alveolar epithelial cells. Mol Med Rep 2015; 11:3414-22. [PMID: 25607112 PMCID: PMC4368079 DOI: 10.3892/mmr.2015.3226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 12/12/2014] [Indexed: 12/18/2022] Open
Abstract
Cigarette smoking has been verified to be one of the most important etiological factors causing the development of bronchogenic carcinoma and chronic obstructive pulmonary disease. Azithromycin (AZM) has been demonstrated to have antioxidant capacity. In the present study, whether AZM is able to attenuate cigarette smoke extract (CSE)-induced A549 cell oxidative stress injury was investigated. Cells were incubated with CSE in the presence or absence of AZM. Cell viability was measured using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The expression of vascular endothelial growth factor (VEGF) was analyzed using western blotting and ELISA. The expression of epithelial cell structural proteins, zona occludens (ZO)-1 and occludin was determined using western blotting and immunofluorescence staining. Reactive oxygen species (ROS) production was examined by flow cytometry and fluorescence staining. The results demonstrated that the exposure of A549 cells to CSE decreased cell viability in a dose- and time-dependent manner. AZM significantly attenuated the CSE-induced decreases in the expression of VEGF and epithelial cell structural proteins, including ZO-1 and occludin. CSE also stimulated ROS production in the A549 cell, while AZM significantly reversed the effects of CSE. In addition, the inhibition of ROS by N-acetyl-L-cysteine had similar effects as AZM on the expression of VEGF and epithelial cell structural proteins and also enhanced cell proliferation. In conclusion, AZM attenuated CSE-induced oxidative stress injury in A549 cells and may be a promising therapeutic agent for smoking-associated pulmonary diseases.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Respiratory and Critical Care Medicine, Tianjin Chest Hospital, Tianjin 300000, P.R. China
| | - Tuo Yang
- Department of Respiratory and Critical Care Medicine, Fifth School of Clinical Medicine, Peking University, Beijing Hospital Ministry of Health, Beijing 100730, P.R. China
| | - Xiangiyu Meng
- Department of Respiratory and Critical Care Medicine, Fifth School of Clinical Medicine, Peking University, Beijing Hospital Ministry of Health, Beijing 100730, P.R. China
| | - Tieying Sun
- Department of Respiratory and Critical Care Medicine, Fifth School of Clinical Medicine, Peking University, Beijing Hospital Ministry of Health, Beijing 100730, P.R. China
| |
Collapse
|
6
|
Asmari AA, Arshaduddin M, Elfaki I, Kadasah S, Robayan AA, Asmary SA. Aripiprazole an atypical antipsychotic protects against ethanol induced gastric ulcers in rats. Int J Clin Exp Med 2014; 7:2031-2044. [PMID: 25232384 PMCID: PMC4161544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
The present investigation was undertaken, to study the gastro-protective potential of aripiprazole (ARI) an atypical antipsychotic drug in ethanol induced gastric ulcers in rats. ARI (10, 30, 100 mg/kg) was tested for gastric secretion and antiulcer activity in different groups of male Sprague Dawley rats. Gastric secretion and acidity studies were performed in pylorus ligated rats while indices of gastric ulcers were measured in ethanol (1 ml-100%) induced gastric ulcers. Histological changes and the levels of gastric wall mucus, malondialdehyde (MDA), non-protein sulfhydryls (NP-SH), myeloperoxidase (MPO), and serotonin were used to assess ethanol induced gastric mucosal injuries. Exposure of rats to ethanol resulted in gastric mucosal injury and a high index of ulcer. Pretreatment with ARI significantly (P < 0.001), reduced the gastric lesions induced by ethanol and also resulted in a significant decrease in the gastric secretion, and total acidity in pylorus ligated rats. ARI also significantly attenuated the ethanol induced reduction in the levels of gastric wall mucus, and NP-SH (P < 0.001). The histological changes and the increased MDA and MPO activity were also significantly (P < 0.001) inhibited by ARI. Ethanol induced depletion in the levels of serotonin in the gastric tissue were also significantly restored by pretreatment with ARI (p < 0.001). ARI showed significant antiulcer and gastroprotective activity against ethanol induced gastric ulcers. The gastroprotective effects of ARI may be due to its anti-secretory, antioxidant and anti-inflammatory action and also due to the restoration of the depleted gastric serotonin levels.
Collapse
Affiliation(s)
| | | | - Ibrahim Elfaki
- Research Center, Prince Sultan Military Medical CityRiyadh, Saudi Arabia
| | - Saeed Kadasah
- Department of Psychiatry, Prince Sultan Military Medical CityRiyadh, Saudi Arabia
| | | | - Saeed Al Asmary
- Department of Family and Community Medicine, Prince Sultan Military Medical CityRiyadh, Saudi Arabia
| |
Collapse
|
7
|
Carvalho CAD, Fernandes KM, Matta SLP, Silva MBD, Oliveira LLD, Fonseca CC. Evaluation of antiulcerogenic activity of aqueous extract of Brassica oleracea var. capitata (cabbage) on Wistar rat gastric ulceration. ARQUIVOS DE GASTROENTEROLOGIA 2011; 48:276-82. [DOI: 10.1590/s0004-28032011000400011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 05/24/2011] [Indexed: 01/04/2023]
Abstract
CONTEXT: The cabbage (Brassica oleraceae var. capitata) is an herbaceous and leafy plant which belongs to the Brassicaceae family, native to coastal southern and Western Europe. Used in cooking for its nutritional value also has known anti-inflammatory activity. OBJECTIVE We studied the antiulcerogenic activity of aqueous extract of Brassica oleracea var. capitata (AEB) in order to validate ethnobotanical claims regarding the plant use in the gastric disorders. METHOD: Acute gastric ulcers were induced in rats by the oral administration of acetylsalicylic acid. The gastroprotective potential of the AEB (0.250, 0.500 and 1.000 mg.kg-1/body weight) was compared with omeprazole (20 mg.kg-1/body weight). RESULTS: The stomach analysis indicated that treatment with AEB inhibited the gastric damage. The gastroprotective activity as evidenced by its significant inhibition in the formation of ulcers induced by chemical agent with a maximum of 99.44% curation (250 mg.kg-1 body weight) in acetylsalicylic acid-induced ulcers. CONCLUSIONS: The AEB demonstrated good antiulcerogenic activities which justify the inclusion of this plant in the management of gastric disorders. Further experiments are underway to determine which antiulcer mechanisms involved in gastroprotection.
Collapse
|
8
|
Plesko S, Banić M, Plecko V, Anić B, Brkić T, Renata H, Rotkvić I. Effect of azithromycin on acute inflammatory lesions and colonic bacterial load in a murine model of experimental colitis. Dig Dis Sci 2010; 55:2211-8. [PMID: 19924536 DOI: 10.1007/s10620-009-1034-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 10/26/2009] [Indexed: 12/31/2022]
Abstract
BACKGROUND The aim of this study was to investigate the effect of the macrolide antibiotic azithromycin on mucosal changes and colonic bacterial load in a murine model of colitis. METHODS Colitis was induced in CD1 mice using enema of 0.2% solution of dinitrofluorobenzene, combined with skin sensitization. Four experimental groups of animals (N = 10 per group) were treated with 50 mg/kg/day azithromycin (AZ) or metronidazole (MN) perorally, starting 24 h before (AZ-1, MN-1) or 6 h after (AZ+1, MN+1) induction of colitis and for consecutive 5 days. Additional experimental mice group was treated with 10 mg/kg/day methylprednisolone intraperitoneally after induction of experimental colitis in the same manner (MP). Two control groups consisted of healthy animals (C) that received the challenge enema with phosphate-buffered saline (PBS) and animals with experimental colitis (chall) treated with equivolume of PBS perorally. Clinical score (0-5) and histopathologic score (0-30) were used to assess inflammatory changes, and colon washings were used to determine changes in bacterial load. RESULTS The anti-inflammatory effect of azithromycin did not differ from the effect of methylprednisolone, when compared with control group with experimental colitis. Metronidazole did not show a significant anti-inflammatory effect. Number of colonic bacteria did not differ significantly between control and experimental groups of animals. CONCLUSIONS We documented the anti-inflammatory effect of azithromycin in a murine model of acute colitis, suggesting that effects were targeted to oxidative burst and on mucosal/bacterial interface, independent of luminal bacterial load. Further studies should be focused on effect of azithromycin on the role of bacterial biofilm in perpetuation of chronic intestinal inflammation.
Collapse
Affiliation(s)
- Sanja Plesko
- Department for Clinical and Molecular Microbiology, Clinical Hospital Center, Zagreb, Croatia.
| | | | | | | | | | | | | |
Collapse
|