1
|
Undheim K. Bond Formation at C8 in the Nucleoside and Nucleotide Purine Scaffold: An Informative Selection. Molecules 2024; 29:1815. [PMID: 38675636 PMCID: PMC11054916 DOI: 10.3390/molecules29081815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
This paper presents methods for the introduction and exchange of substituents in a nucleobase and its nucleosides and nucleotides with emphasis on the C8-position in the purine skeleton. The nucleobase is open for electrophilic and nucleophilic chemistry. The nucleophilic chemistry consists mainly of displacement reactions when the C8-substituent is a good leaving group such as a halogen atom. The heteroatom in amines, sulfides, or oxides is a good nucleophile. Halides are good reaction partners. Metal-promoted cross-coupling reactions are important for carbylations. Direct oxidative metalation reactions using sterically hindered metal amides offer chemo- and regio-selectivity besides functional tolerance and simplicity. The carbon site is highly nucleophilic after metalation and adds electrophiles resulting in chemical bond formation. Conditions for metal-assisted reactions are described for nucleobases and their glycosides.
Collapse
Affiliation(s)
- Kjell Undheim
- Department of Chemistry, University of Oslo, 0315 Oslo, Norway
| |
Collapse
|
2
|
Qi W, Zhai D, Song D, Liu C, Yang J, Sun L, Li Y, Li X, Deng W. Optimized synthesis of anti-COVID-19 drugs aided by retrosynthesis software. RSC Med Chem 2023; 14:1254-1259. [PMID: 37484565 PMCID: PMC10357945 DOI: 10.1039/d2md00444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/21/2023] [Indexed: 07/25/2023] Open
Abstract
Considering the millions of COVID-19 patients worldwide, a global critical challenge of low-cost and efficient anti-COVID-19 drug production has emerged. Favipiravir is one of the potential anti-COVID-19 drugs, but its original synthetic route with 7 harsh steps gives a low product yield (0.8%) and has a high cost ($68 per g). Herein, we demonstrated a low-cost and efficient synthesis route for favipiravir designed using improved retrosynthesis software, which involves only 3 steps under safe and near-ambient air conditions. A yield of 32% and cost of $1.54 per g were achieved by this synthetic route. We also used the same strategy to optimize the synthesis of sabizabulin. We anticipate that these synthetic routes will contribute to the prevention and treatment of COVID-19.
Collapse
Affiliation(s)
- Wentao Qi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Dong Zhai
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Danna Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Chengcheng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Junxia Yang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Lei Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University Suzhou 215123 P. R. China
| | - Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| | - Weiqiao Deng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University Qingdao 266237 P. R. China
| |
Collapse
|
3
|
Shaughnessy KH. Covalent Modification of Nucleobases using Water-Soluble Palladium Catalysts. CHEM REC 2022; 22:e202200190. [PMID: 36074958 DOI: 10.1002/tcr.202200190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Indexed: 12/15/2022]
Abstract
Nucleosides represent one of the key building blocks of biochemistry. There is significant interest in the synthesis of nucleoside-derived materials for applications as probes, biochemical models, and pharmaceuticals. Palladium-catalyzed cross-coupling reactions are effective methods for making covalent modification of carbon and nitrogen sites on nucleobases under mild conditions. Water-soluble catalysts derived from palladium and hydrophilic ligands, such as tris(3-sulfonatophenyl)phosphine trisodium (TPPTS), are efficient catalysts for a range of coupling reactions of unprotected halonucleosides. Over the past two decades, these methods have been extended to direct functionalization of halonucleotides, as well as RNA and DNA oligonucleotides (ONs) containing halogenated bases. These methods can be run under biocompatible conditions, including examples of Suzuki coupling of modified DNA in whole cells and tissue samples. In this account, development of this methodology by our group and others is highlighted along with the extension of these catalyst systems to modification of nucleotides and ONs.
Collapse
Affiliation(s)
- Kevin H Shaughnessy
- Department of Chemistry & Biochemistry, The University of Alabama, Box 870336, Tuscaloosa, AL 35487-0336, USA
| |
Collapse
|
4
|
Akula HK, Bae S, Pradhan P, Yang L, Zajc B, Lakshman MK. Diversely C8-functionalized adenine nucleosides via their underexplored carboxaldehydes. Chem Commun (Camb) 2022; 58:1744-1747. [PMID: 35029254 DOI: 10.1039/d1cc06686b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potentially versatile N-unprotected 8-formyl derivatives of adenosine and 2'-deoxyadenosine are highly underexploited for C8 modifications of these nucleosides. Only in situ formation of 8-formyladenosine is known and a single application of an N-benzoyl derivative has been reported. On the other hand, 8-formyl-2'-deoxyadenosine and its applications remain unknown. Herein, we report straightforward, scalable syntheses of both N-unprotected 8-formyladenine nucleoside derivatives, and demonstrate broad diversification at the C8 position by hydroxymethylation, azidation, CuAAC ligation, reductive amination, as well as olefination and fluoroolefination with modified Julia and a Horner-Wadsworth-Emmons reagents.
Collapse
Affiliation(s)
- Hari K Akula
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Suyeal Bae
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Padmanava Pradhan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Lijia Yang
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA.
| | - Barbara Zajc
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA. .,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA. .,The PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
5
|
Balasubramaniyam T, Oh KI, Jin HS, Ahn HB, Kim BS, Lee JH. Non-Canonical Helical Structure of Nucleic Acids Containing Base-Modified Nucleotides. Int J Mol Sci 2021; 22:9552. [PMID: 34502459 PMCID: PMC8430589 DOI: 10.3390/ijms22179552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Chemically modified nucleobases are thought to be important for therapeutic purposes as well as diagnosing genetic diseases and have been widely involved in research fields such as molecular biology and biochemical studies. Many artificially modified nucleobases, such as methyl, halogen, and aryl modifications of purines at the C8 position and pyrimidines at the C5 position, are widely studied for their biological functions. DNA containing these modified nucleobases can form non-canonical helical structures such as Z-DNA, G-quadruplex, i-motif, and triplex. This review summarizes the synthesis of chemically modified nucleotides: (i) methylation, bromination, and arylation of purine at the C8 position and (ii) methylation, bromination, and arylation of pyrimidine at the C5 position. Additionally, we introduce the non-canonical structures of nucleic acids containing these modifications.
Collapse
Affiliation(s)
- Thananjeyan Balasubramaniyam
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Kwnag-Im Oh
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Ho-Seong Jin
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
| | - Hye-Bin Ahn
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
| | - Byeong-Seon Kim
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
- Department of Chemistry Education, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| | - Joon-Hwa Lee
- Department of Chemistry, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea; (T.B.); (K.-I.O.); (H.-S.J.); (H.-B.A.)
- The Research Institute of Natural Science, Gyeongsang National University, Jinju 52828, Gyeongnam, Korea
| |
Collapse
|
6
|
Vongsutilers V, Gannett PM. C8-Guanine modifications: effect on Z-DNA formation and its role in cancer. Org Biomol Chem 2018. [DOI: 10.1039/c8ob00030a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Participation of Z DNA in normal and disease related biological processes.
Collapse
Affiliation(s)
- V. Vongsutilers
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Thailand
| | - P. M. Gannett
- College of Pharmacy
- Nova Southeastern University
- Ft. Lauderdale
- USA
| |
Collapse
|
7
|
Abstract
Oligonucleotides carrying a variety of chemical modifications including conjugates are finding increasing applications in therapeutics, diagnostics, functional genomics, proteomics, and as research tools in chemical and molecular biology. The successful synthesis of oligonucleotides primarily depends on the use of appropriately protected nucleoside building blocks including the exocyclic amino groups of the nucleobases, the hydroxyl groups at the 2'-, 3'-, and 5'-positions of the sugar moieties, and the internucleotide phospho-linkage. This unit is a thoroughly revised update of the previously published version and describes the recent development of various protecting groups that facilitate reliable oligonucleotide synthesis. In addition, various protecting groups for the imide/lactam function of thymine/uracil and guanine, respectively, are described to prevent irreversible nucleobase modifications that may occur in the presence of reagents used in oligonucleotide synthesis. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Geeta Meher
- Spring Bank Pharmaceuticals, Inc, Milford, Massachusetts
| | | | | |
Collapse
|
8
|
Gayakhe V, Ardhapure A, Kapdi AR, Sanghvi YS, Serrano JL, García L, Pérez J, García J, Sánchez G, Fischer C, Schulzke C. Water-Soluble Pd–Imidate Complexes: Broadly Applicable Catalysts for the Synthesis of Chemically Modified Nucleosides via Pd-Catalyzed Cross-Coupling. J Org Chem 2016; 81:2713-29. [DOI: 10.1021/acs.joc.5b02475] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Vijay Gayakhe
- Institute of Chemical Technology, Mumbai Nathalal Road, Matunga, Mumbai 400019, India
| | - Ajaykumar Ardhapure
- Institute of Chemical Technology, Mumbai Nathalal Road, Matunga, Mumbai 400019, India
| | - Anant R. Kapdi
- Institute of Chemical Technology, Mumbai Nathalal Road, Matunga, Mumbai 400019, India
| | - Yogesh S. Sanghvi
- Rasayan, Inc. 2802 Crystal Ridge Road, Encinitas, California 92024-6615, United States
| | - Jose Luis Serrano
- Departamento
de Ingeniería
Minera, Geológica y Cartográfica, Universidad Politécnica
de Cartagena, Área de Química Inorgánica, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Luis García
- Departamento
de Ingeniería
Minera, Geológica y Cartográfica, Universidad Politécnica
de Cartagena, Área de Química Inorgánica, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Jose Pérez
- Departamento
de Ingeniería
Minera, Geológica y Cartográfica, Universidad Politécnica
de Cartagena, Área de Química Inorgánica, Regional
Campus of International Excellence “Campus Mare Nostrum”, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain
| | - Joaquím García
- Departamento de Química
Inorgánica, Regional Campus of International Excellence “Campus
Mare Nostrum”, Universidad de Murcia, 30071 Murcia, Spain
| | - Gregorio Sánchez
- Departamento de Química
Inorgánica, Regional Campus of International Excellence “Campus
Mare Nostrum”, Universidad de Murcia, 30071 Murcia, Spain
| | - Christian Fischer
- Ernst-Moritz-Arndt-Universität
Greifswald, Institut für Biochemie, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| | - Carola Schulzke
- Ernst-Moritz-Arndt-Universität
Greifswald, Institut für Biochemie, Felix-Hausdorff-Strasse 4, 17489 Greifswald, Germany
| |
Collapse
|
9
|
Bhilare S, Gayakhe V, Ardhapure AV, Sanghvi YS, Schulzke C, Borozdina Y, Kapdi AR. Novel water-soluble phosphatriazenes: versatile ligands for Suzuki–Miyaura, Sonogashira and Heck reactions of nucleosides. RSC Adv 2016. [DOI: 10.1039/c6ra19039a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Two new water-soluble phosphatriazene as versatile ligands for catalyzing Suzuki–Miyaura reactions of purines and pyrimidines in neat water with the possibility of recycling. Copper-free Sonogashira and Heck reaction were also made possible.
Collapse
Affiliation(s)
- Shatrughn Bhilare
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Vijay Gayakhe
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| | | | | | - Carola Schulzke
- Institute for Biochemie
- Ernst-Moritz-Arndt-Universität Greifswald
- 17489 Greifswald
- Germany
| | - Yulia Borozdina
- Institute for Biochemie
- Ernst-Moritz-Arndt-Universität Greifswald
- 17489 Greifswald
- Germany
| | - Anant R. Kapdi
- Department of Chemistry
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
10
|
Gayakhe V, Sanghvi YS, Fairlamb IJS, Kapdi AR. Catalytic C–H bond functionalisation of purine and pyrimidine nucleosides: a synthetic and mechanistic perspective. Chem Commun (Camb) 2015; 51:11944-60. [DOI: 10.1039/c5cc03416g] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C–H bond functionalisation of heteroarenes, especially nucleosides, has received a lot of attention in the past few years. This review describes the state-of the art in this area with a global aspiration for possibly functionalising purine and pyrimidine moieties in complex biomolecular systems.
Collapse
|
11
|
Ardhapure AV, Sanghvi YS, Kapdi AR, García J, Sanchez G, Lozano P, Serrano JL. Pd–imidate complexes as recyclable catalysts for the synthesis of C5-alkenylated pyrimidine nucleosides via Heck cross-coupling reaction. RSC Adv 2015. [DOI: 10.1039/c5ra01461a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pd–imidate complexes as recyclable catalysts for Heck alkenylation of pyrimidine nucleosides. Pd–imidate complexes have been employed as efficient catalysts for the Heck alkenylation of unprotected 5-iodo-2′-deoxyuridine in acetonitrile.
Collapse
Affiliation(s)
| | | | | | - Joaquín García
- Departamento de Química Inorgánica
- Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia
- Murcia
- Spain
| | - Gregorio Sanchez
- Departamento de Química Inorgánica
- Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia
- Murcia
- Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B eInmunología. Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- Murcia
- Spain
| | - J. Luis Serrano
- Departamento de Ingeniería Minera
- Geológica y Cartográfica. Universidad Politécnica de Cartagena
- Área de Química Inorgánica
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad Politécnica de Cartagena
| |
Collapse
|
12
|
Microwave-assisted synthesis of C-8 aryl and heteroaryl inosines and determination of their inhibitory activities against Plasmodium falciparum purine nucleoside phosphorylase. Eur J Med Chem 2014; 82:459-65. [DOI: 10.1016/j.ejmech.2014.05.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 05/26/2014] [Accepted: 05/31/2014] [Indexed: 01/14/2023]
|
13
|
Train BC, Bilgesü SA, Despeaux EC, Vongsutilers V, Gannett PM. Single C8-Arylguanine modifications render oligonucleotides in the Z-DNA conformation under physiological conditions. Chem Res Toxicol 2014; 27:1176-86. [PMID: 24921151 DOI: 10.1021/tx5000798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Z-DNA is the only DNA conformation that has a left-handed helical twist. Although Z-DNA has been implicated in both carcinogenesis and mutagenesis, its specific biological role remains uncertain. We have demonstrated that the formation of C8-arylguanine DNA adducts, derived from arylhydrazines, shifts the B/Z-DNA equilibrium toward the Z-DNA conformation in d(CG)5 sequences. However, our previous work examined the effect of two adducts in the duplex, and it was unclear whether the two base modifications were working together to cause the equilibrium shift toward the Z-DNA conformation. Here we report the synthesis and characterization of a hairpin oligonucleotide sequence (d(CG)5T4(CG)5) containing only one C8-arylguanine modified base. The unmodified hairpin and the previously studied unmodified double-stranded oligonucleotide were conformationally similar, and each required ∼3 M NaCl to yield a B-/Z-DNA ratio of 1:1. The introduction of a single C8-arylguanine modification significantly reduced the NaCl concentration needed to produce a 1:1 B-/Z-DNA ratio in the hairpin. Further, the addition of MgCl2 and spermine to the C8-arylguanine-modified hairpin shifts the B/Z-DNA equilibrium such that the Z form predominated under physiological conditions. NMR and molecular modeling indicated the conformational effects produced by the C8-arylguanine modification occurred locally at the site of modification while CD data demonstrated that the C8-arylguanine-modified base destabilized the B form. Additionally, our data show that adopting the Z-DNA conformation is preferred over denaturation to the single-stranded form. Finally, the conformational effects of the C8-arylguanine modifications were not additive and the introduction of any such modifications drive Z-DNA formation under physiological conditions, which may provide a novel carcinogenesis mechanism where DNA adducts confer their carcinogenicity through a Z-DNA-mediated mechanism.
Collapse
Affiliation(s)
- Brian C Train
- West Virginia University , Basic Pharmaceutical Sciences, P.O. Box 9530, Morgantown, West Virginia 26506, United States
| | | | | | | | | |
Collapse
|
14
|
Sproviero M, Rankin KM, Witham AA, Manderville RA. Utility of 5'-O-2,7-dimethylpixyl for solid-phase synthesis of oligonucleotides containing acid-sensitive 8-aryl-guanine adducts. J Org Chem 2014; 79:692-9. [PMID: 24392939 DOI: 10.1021/jo4024842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
To study the structural and biological impact of 8-aryl-2'-deoxyguanosine adducts, an efficient protocol is required to incorporate them site-specifically into oligonucleotide substrates. Traditional phosphoramidite chemistry using 5'-O-DMT protection can be limiting because 8-aryl-dG adducts suffer from greater rates of acid-catalyzed depurination than dG and are sensitive to the acidic deblock conditions required to remove the DMT group. Herein we show that the 5'-O-2,7-dimethylpixyl (DMPx) protecting group can be used to limit acid exposure and improve DNA synthesis efficiency for DNA substrates containing 8-aryl-dG adducts. Our studies focus on 8-aryl-dG adducts with 8-substituents consisting of furyl ((Fur)dG), phenyl ((Ph)dG), 4-cyanophenyl ((CNPh)dG), and quinolyl ((Q)dG). These adducts differ in ring size and sensitivity to acid-promoted deglycosylation. A kinetic study for adduct hydrolysis in 0.1 M aqueous HCl determined that (Fur)dG was the most acid-sensitive (55.2-fold > dG), while (Q)dG was the most resistant (5.6-fold > dG). The most acid-sensitive (Fur)dG was chosen for optimization of solid-phase DNA synthesis. Our studies show that the 5'-O-DMPx group can provide a 4-fold increase in yield compared to 5'-O-DMT for incorporation of (Fur)dG into DNA substrates critical for determining adduct impact on DNA synthesis and repair.
Collapse
Affiliation(s)
- Michael Sproviero
- Departments of Chemistry and Toxicology, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
15
|
Hervé G, Sartori G, Enderlin G, Mackenzie G, Len C. Palladium-catalyzed Suzuki reaction in aqueous solvents applied to unprotected nucleosides and nucleotides. RSC Adv 2014. [DOI: 10.1039/c3ra47911k] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Nucleoside analogues have attracted much attention due to their potential biological activities.
Collapse
Affiliation(s)
- Gwénaëlle Hervé
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | - Guillaume Sartori
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | - Gérald Enderlin
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| | | | - Christophe Len
- Transformations Intégrées de la Matière Renouvelable
- UTC-ESCOM
- Centre de Recherche Royallieu
- F-60200 Compiègne, France
| |
Collapse
|
16
|
Kapdi A, Gayakhe V, Sanghvi YS, García J, Lozano P, da Silva I, Pérez J, Serrano JL. New water soluble Pd-imidate complexes as highly efficient catalysts for the synthesis of C5-arylated pyrimidine nucleosides. RSC Adv 2014. [DOI: 10.1039/c4ra01326c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recyclable water-soluble Pd complexes were revealed as excellent catalysts for Suzuki–Miyaura cross-coupling of challenging substrates like the antiviral nucleoside analogue 5-iodo-20-deoxyuridine.
Collapse
Affiliation(s)
- Anant Kapdi
- Institute of Chemical Technology
- Mumbai-400019, India
| | - Vijay Gayakhe
- Institute of Chemical Technology
- Mumbai-400019, India
| | | | - Joaquín García
- Departamento de Químic Inorgánica
- Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia
- 30071 Murcia, Spain
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B eInmunología. Facultad de Química
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad de Murcia
- 30071 Murcia, Spain
| | - Ivan da Silva
- ISIS Facility
- Rutherford Appleton Laboratory
- Chilton, Oxfordshire, UK
| | - José Pérez
- Departamento de Ingeniería Minera
- Geológica y Cartográfica. Universidad Politécnica de Cartagena. Área de Química Inorgánica
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad Politécnica de Cartagena
- Cartagena, Spain
| | - J. Luis Serrano
- Departamento de Ingeniería Minera
- Geológica y Cartográfica. Universidad Politécnica de Cartagena. Área de Química Inorgánica
- Regional Campus of International Excellence “Campus Mare Nostrum”
- Universidad Politécnica de Cartagena
- Cartagena, Spain
| |
Collapse
|
17
|
Rankin KM, Sproviero M, Rankin K, Sharma P, Wetmore SD, Manderville RA. C8-heteroaryl-2'-deoxyguanosine adducts as conformational fluorescent probes in the NarI recognition sequence. J Org Chem 2012; 77:10498-508. [PMID: 23171213 DOI: 10.1021/jo302164c] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The optical, redox, and electronic properties of C(8)-heteroaryl-2'-deoxyguanosine (dG) adducts with C(8)-substituents consisting of furyl ((Fur)dG), pyrrolyl ((Pyr)dG), thienyl ((Th)dG), benzofuryl ((Bfur)dG), indolyl ((Ind)dG), and benzothienyl ((Bth)dG) are described. These adducts behave as fluorescent nucleobase probes with emission maxima from 379 to 419 nm and fluorescence quantum yields (Φ(fl)) in the 0.1-0.8 range in water at neutral pH. The probes exhibit quenched fluorescence with increased solvent viscosity and decreased solvent polarity. The (Fur)dG, (Bfur)dG, (Ind)dG, and (Bth)dG derivatives were incorporated into the G(3) position of the 12-mer oligonucleotide 5'-CTCG(1)G(2)CG(3)CCATC-3' that contains the recognition sequence of the NarI Type II restriction endonuclease. This sequence is widely used to study the biological activity (mutagenicity) of C(8)-arylamine-dG adducts with adduct conformation (anti vs syn) playing a critical role in the biological outcome. The modified NarI(X = (Fur)G, (Ind)G, (Bfur)G, or (Bth)G) oligonucleotides were hybridized to the complementary strand containing either C (NarI'(C)) or G (NarI'(G)) opposite the probe. The duplex structures were characterized by UV melting temperature analysis, fluorescence spectroscopy, collisional fluorescence quenching studies, and circular dichroism (CD). The emission of the probes showed sensitivity to the opposing base in the duplex, and suggested the utility of fluorescence spectroscopy to monitor probe conformation.
Collapse
Affiliation(s)
- Katherine M Rankin
- Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
18
|
The conformational effect of para-substituted C8-arylguanine adducts on the B/Z-DNA equilibrium. Biophys Chem 2010; 154:41-8. [PMID: 21255902 DOI: 10.1016/j.bpc.2010.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 12/19/2010] [Accepted: 12/19/2010] [Indexed: 11/20/2022]
Abstract
The B form of DNA exists in equilibrium with the Z form and is mainly affected by sequence, electrostatic interactions, and steric effects. C8-purine substitution shifts the equilibrium toward the Z form though how this interaction overcomes the unfavorable electrostatic interactions and decrease in stacking in the Z form has not been determined. Here, a series of C8-arylguanine derivatives, bearing a para-substituent were prepared and the B/Z equilibrium determined. B/Z ratios were measured by CD and conformational effects of the aryl substitution determined by NMR spectroscopy and molecular modeling. The para-substituent was found to have a significant effect on the B/Z DNA equilibrium caused by altering base-pair stacking of the B form and modifying the hydration/ion shell of the B form. A unique melting temperature versus salt concentration was observed and provides evidence relevant to the mechanism of B/Z conformational interconversion.
Collapse
|
19
|
Omumi A, Beach DG, Baker M, Gabryelski W, Manderville RA. Postsynthetic guanine arylation of DNA by Suzuki-Miyaura cross-coupling. J Am Chem Soc 2010; 133:42-50. [PMID: 21067186 DOI: 10.1021/ja106158b] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Direct radical addition reactions at the C(8)-site of 2'-deoxyguanosine (dG) can afford C(8)-Ar-dG adducts that are produced by carcinogenic arylhydrazines, polycyclic aromatic hydrocarbons, and certain phenolic toxins. Such modified nucleobases are also highly fluorescent for sensing applications and possess useful electron transfer properties. The site-specific synthesis of oligonucleotides containing the C(8)-Ar-G adduct can be problematic. These lesions are sensitive to acids and oxidants that are commonly used in solid-phase DNA synthesis and are too bulky to be accepted as substrates for enzymatic synthesis by DNA polymerases. Using the Suzuki-Miyaura cross-coupling reaction, we have synthesized a number of C(8)-Ar-G-modified oligonucleotides (dimers, trimers, decamers, and a 15-mer) using a range of arylboronic acids. Good to excellent yields were obtained, and the reaction is insensitive to the nature of the bases flanking the convertible 8-Br-G nucleobase, as both pyrimidines and purines are tolerated. The impact of the C(8)-Ar-G lesion was also characterized by electrospray ionization tandem mass spectrometry, UV melting temperature analysis, circular dichroism, and fluorescence spectroscopy. The C(8)-Ar-G-modified oligonucleotides are expected to be useful substrates for diagnostic applications and understanding the biological impact of the C(8)-Ar-G lesion.
Collapse
Affiliation(s)
- Alireza Omumi
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | | | |
Collapse
|