1
|
Valadez-Vega C, Lugo-Magaña O, Mendoza-Guzmán L, Villagómez-Ibarra JR, Velasco-Azorsa R, Bautista M, Betanzos-Cabrera G, Morales-González JA, Madrigal-Santillán EO. Antioxidant Activity and Anticarcinogenic Effect of Extracts from Bouvardia ternifolia (Cav.) Schltdl. Life (Basel) 2023; 13:2319. [PMID: 38137920 PMCID: PMC10745008 DOI: 10.3390/life13122319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
According to the available ethnobotanical data, the Bouvardia ternifolia plant has long been used in Mexican traditional medicine to relieve the symptoms of inflammation. In the present study, the cytotoxic effect of extracts obtained from the flowers, leaves and stems of B. ternifolia using hexane, ethyl acetate (AcOEt) and methanol (MeOH) was evaluated by applying them to the SiHa and MDA-MB-231 cancer cell lines. An MTT reduction assay was carried out along with = biological activity assessments, and the content of total phenols, tannins, anthocyanins, betalains and saponins was quantified. According to the obtained results, nine extracts exhibited a cytotoxic effect against both the SiHa and MDA lines. The highest cytotoxicity was measured for leaves treated with the AcOEt (ID50 of 75 µg/mL was obtained for MDA and 58.75 µg/mL for SiHa) as well as inhibition on ABTS•+ against DPPH• radical, while MeOH treatment of stems and AcOEt of flowers yielded the most significant antioxidant capacity (90.29% and 90.11% ABTS•+ radical trapping). Moreover, the highest phenolic compound content was measured in the stems (134.971 ± 0.294 mg EAG/g), while tannins were more abundant in the leaves (257.646 mg eq cat/g) and saponins were most prevalent in the flowers (20 ± 0 HU/mg). Screening tests indicated the presence of flavonoids, steroids, terpenes and coumarins, as well as ursolic acid, in all the studied extracts. These results demonstrate the biological potential of B. ternifolia.
Collapse
Affiliation(s)
- Carmen Valadez-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - Olivia Lugo-Magaña
- Preparatoria Número 1, Universidad Autónoma del Estado de Hidalgo, Av. Benito Juárez S/N, Constitución, Pachuca de Soto 42060, Mexico
| | - Lorenzo Mendoza-Guzmán
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - José Roberto Villagómez-Ibarra
- Área Académica de Química, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado del Hidalgo, Ciudad del Conocimiento, Mineral de la Reforma 42184, Mexico;
| | - Raul Velasco-Azorsa
- Área Académica de Biología, Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado del Hidalgo, Ciudad del Conocimiento, Mineral de la Reforma 42184, Mexico;
| | - Mirandeli Bautista
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - Gabriel Betanzos-Cabrera
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, San Agustín Tlaxiaca 42080, Mexico;
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.A.M.-G.); (E.O.M.-S.)
| | - Eduardo Osiris Madrigal-Santillán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Ciudad de México 11340, Mexico; (J.A.M.-G.); (E.O.M.-S.)
| |
Collapse
|
2
|
Cervantes-Jiménez R, Martínez MM, Mercado-Luna A, Chávez-Servín JL, Ruiz BC, Vargas-Madriz ÁF, Roldán-Padrón O, Cabañas MEF, Ferriz-Martínez RA, García-Gasca T. Effect of Induced Mechanical Leaf Damage on the Yield and Content of Bioactive Molecules in Leaves and Seeds of Tepary Beans ( Phaseolus acutifolius). PLANTS (BASEL, SWITZERLAND) 2022; 11:3538. [PMID: 36559649 PMCID: PMC9784140 DOI: 10.3390/plants11243538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Growing interest has recently been shown in Tepary beans (Phaseolus acutifolius) because they contain lectins and protease inhibitors that have been shown to have a specific cytotoxic effect on human cancer cells. Bean lectins offer protection against biotic and abiotic stress factors, so it is possible that mechanical foliar damage may increase lectin production. This study evaluates the effect of mechanical stress (foliar damage) on lectin and protease inhibitor content in Tepary beans. Seed yield was also analyzed, and phenolic content and antioxidant capacity (DPPH and TEAC) were determined in the leaves. An experimental design with random blocks of three treatments (T1: control group, T2: 50% mechanical foliar damage and T3: 80% mechanical foliar damage) was carried out. Mechanical foliar damage increased the amount of lectin binding units (LBUs) fivefold (from 1280 to 6542 LBUs in T3) but did not affect units of enzymatic activity (UEA) against trypsin (from 60.8 to 51 UEA in T3). Results show that controlled mechanical foliar damage could be used to induce overexpression of lectins in the seeds of Tepary beans. Mechanical foliar damage reduced seed production (-14.6%: from 1890 g to 1615 g in T3) and did not significantly increase phenolic compound levels in leaves.
Collapse
Affiliation(s)
- Ricardo Cervantes-Jiménez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Marisol Martínez Martínez
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Querétaro, Epigmenio González 500, San Pablo 76130, Querétaro, Mexico
| | - Adán Mercado-Luna
- Facultad de Ingeniería, Campus Amealco, Universidad Autónoma de Querétaro, Carretera Amealco–Temascalcingo km 1, Col. Amealco 76850, Querétaro, Mexico
| | - Jorge Luis Chávez-Servín
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Bárbara Cabello Ruiz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Ángel Félix Vargas-Madriz
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Octavio Roldán-Padrón
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Mónica Eugenia Figueroa Cabañas
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Roberto Augusto Ferriz-Martínez
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| | - Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. de las Ciencias S/N, Juriquilla 76320, Querétaro, Mexico
| |
Collapse
|
3
|
Konozy EHE, Osman MEFM. Plant lectin: A promising future anti-tumor drug. Biochimie 2022; 202:136-145. [PMID: 35952948 DOI: 10.1016/j.biochi.2022.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Since the early discovery of plant lectins at the end of the 19th century, and the finding that they could agglutinate erythrocytes and precipitate glycans from their solutions, many applications and biological roles have been described for these proteins. Later, the observed erythrocytes clumping features were attributed to the lectin-cell surface glycoconjugates recognition. Neoplastic transformation leads to various cellular alterations which impact the growth of the cell and its persistence, among which is the mutation in the outer surface glycosylation signatures. Quite a few lectins have been found to act as excellent biomarkers for cancer diagnosis while some were presented with antiproliferative activity that initiated by lectin binding to the respective glycocalyx receptors. These properties are blocked by the hapten sugar that is competing for the lectin affinity binding site. In vitro investigations of lectin-cancer cell's glycocalyx interactions lead to a series of immunological reactions that result in autophagy or apoptosis of the transformed cells. Mistletoe lectin, an agglutinin purified from the European Viscum album is the first plant lectin employed in the treatment of cancer to enter into the clinical trial phases. The entrapment of lectin in nanoparticles besides other techniques to promote bioavailability and stability have also been recently studied. This review summarizes our up-to-date understanding of the future applications of plant lectins in cancer prognosis and diagnosis. With the provision of many examples of lectins that exhibit anti-neoplastic properties.
Collapse
|
4
|
Kabir SR, Islam J, Ahamed MS, Alam MT. Asparagus racemosus and Geodorum densiflorum lectins induce apoptosis in cancer cells by altering proteins and genes expression. Int J Biol Macromol 2021; 191:646-656. [PMID: 34582909 DOI: 10.1016/j.ijbiomac.2021.09.101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/09/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
A lectin (designated as ARL) was purified first time from the Asparagus racemosus root with the molecular weight of 14.0 kDa containing about 4.8% carbohydrate. ARL showed hemagglutination activity in both mice and human erythrocytes that were inhibited by three complex sugars among the 26 sugars tested. ARL was thermostable that mostly preserved activity at its optimum pH 8.0. Around 48% and 52.5% human colorectal cancer (HCT-116) cells growth was inhibited by 160 μg/ml of ARL and 256 μg/ml of previously purified Geodorum densiflorum rhizome lectin (GDL). Induction of apoptosis in HCT-116 cells was confirmed by Hoechst 33342 staining, caspase inhibitors, but ROS generation was only observed for ARL. The expression level of BAX and p53 genes increased with a decrease of PARP gene expression for both lectins. The expression of FAS and FADD were increased with the decrease of WNT after treatment with GDL. ARL inhibited 68% and 26% of Ehrlich ascites carcinoma cell growth in vivo in mice after treating with 3.0 and 1.5 mg/kg/day doses for five consecutive days. ARL increased the expression level of NFκB and arrested S cell cycle phase in EAC cells, in contrast, G2/M phase was arrested by ARL and GDL in HCT-116.
Collapse
Affiliation(s)
- Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Jahanur Islam
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Selim Ahamed
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Taufiq Alam
- Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
5
|
Hegde P, B R S, Ballal S, Swamy BM, Inamdar SR. Rhizoctonia bataticola lectin induces apoptosis and inhibits metastasis in ovarian cancer cells by interacting with CA 125 antigen differentially expressed on ovarian cells. Glycoconj J 2021; 38:669-688. [PMID: 34748163 DOI: 10.1007/s10719-021-10027-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Abstract
A N-glycan specific lectin from Rhizoctonia bataticola [RBL] was shown to induce growth inhibitory and apoptotic effect in human ovarian, colon and leukemic cells but mitogenic effect on normal PBMCs as reported earlier, revealing its clinical potential. RBL has unique specificity for high mannose tri and tetra antennary N-glycans, expressed in ovarian cancer and also recognizes glycans which are part of CA 125 antigen, a well known ovarian cancer marker. Hence, in the present study diagnostic and therapeutic potential of RBL was investigated using human ovarian epithelial cancer SKOV3 and OVCAR3 cells known for differentially expressing CA 125. RBL binds differentially to human ovarian normal, cyst and cancer tissues. Flow cytometry, western blot analysis of membrane proteins showed the competitive binding of RBL and CA 125 antibody for the same binding sites on SKOV3 and OVCAR3 cells. RBL has strong binding to both SKOV3 and OVCAR3 cells with MFI of 173 and 155 respectively. RBL shows dose and time dependent growth inhibitory effect with IC50 of 2.5 and 8 μg/mL respectively for SKOV3 and OVCAR3 cells. RBL induces reproductive cell death, morphological changes, nuclear degradation and increased release of ROS in SKOV3 and OVCAR3 cells leading to cell death. This is also supported by increase in hypodiploid population, altered MMP leading to apoptosis possibly involving intrinsic pathway. Adhesion, wound healing, invasion and migration assays demonstrated anti-metastasis effect of RBL apart from its growth inhibitory effect. These results show the promising potential of RBL both as a diagnostic and therapeutic agent.
Collapse
Affiliation(s)
- Prajna Hegde
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Sindhura B R
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Suhas Ballal
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Bale M Swamy
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India
| | - Shashikala R Inamdar
- Department of Studies in Biochemistry, Karnatak University, Dharwad-580003, Karnatak, India.
| |
Collapse
|
6
|
Samtiya M, Acharya S, Pandey KK, Aluko RE, Udenigwe CC, Dhewa T. Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods 2021; 10:foods10112696. [PMID: 34828976 PMCID: PMC8621896 DOI: 10.3390/foods10112696] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Edible seeds play a significant role in contributing essential nutritional needs and impart several health benefits to improve the quality of human life. Previous literature evidence has confirmed that edible seed proteins, their enzymatic hydrolysates, and bioactive peptides (BAPs) have proven and potential attributes to ameliorate numerous chronic disorders through the modulation of activities of several molecular markers. Edible seed-derived proteins and peptides have gained much interest from researchers worldwide as ingredients to formulate therapeutic functional foods and nutraceuticals. In this review, four main methods are discussed (enzymatic hydrolysis, gastrointestinal digestion, fermentation, and genetic engineering) that are used for the production of BAPs, including their purification and characterization. This article’s main aim is to provide current knowledge regarding several health-promoting properties of edible seed BAPs in terms of antihypertensive, anti-cancer, antioxidative, anti-inflammatory, and hypoglycemic activities.
Collapse
Affiliation(s)
- Mrinal Samtiya
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
| | - Sovon Acharya
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Kush Kumar Pandey
- Research and Development Unit, Abiocis Bio-Science Pvt. Ltd., Hyderabad 500026, India; (S.A.); (K.K.P.)
| | - Rotimi E. Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Correspondence: (R.E.A.); (T.D.)
| | - Chibuike C. Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Tejpal Dhewa
- Department of Nutrition Biology, School of Interdisciplinary and Applied Sciences, Central University of Haryana, Mahendergarh 123031, India;
- Correspondence: (R.E.A.); (T.D.)
| |
Collapse
|
7
|
Valadez-Vega C, Lugo-Magaña O, Morales-González JA, Delgado-Olivares L, Izquierdo-Vega JA, Sánchez-Gutiérrez M, López-Contreras L, Bautista M, Velázquez-González C. Phytochemical, cytotoxic, and genotoxic evaluation of protein extract of Amaranthus hypochondriacus seeds. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1971771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Carmen Valadez-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, México
| | - Olivia Lugo-Magaña
- Escuela Preparatoria número 1, Universidad Autónoma del Estado de Hidalgo, Pachuca de Soto, México
| | - José A. Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico nacional, México, Plan de San Luis y Díaz Mirón colonia Casco de Santo Tomas, alcaldía Miguel Hidalgo, México City, México
| | - Luis Delgado-Olivares
- Área Académica de Nutrición, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, México
| | - Jeannett A. Izquierdo-Vega
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, México
| | - Manuel Sánchez-Gutiérrez
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, México
| | - Luilli López-Contreras
- Área Académica de Medicina, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, México
| | - Mirandeli Bautista
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, México
| | - Claudia Velázquez-González
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, México
| |
Collapse
|
8
|
Islam SS, Karim MR, Asaduzzaman AKM, Alam AHMK, Mahmud ZH, Kabir SR. Trichosanthes dioica seed lectin inhibits Ehrlich ascites carcinoma cells growth in vivo in mice by inducing G 0 /G 1 cell cycle arrest. J Food Biochem 2021; 45:e13714. [PMID: 33817805 DOI: 10.1111/jfbc.13714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Trichosanthes dioica seed lectin (TDSL), having a molecular mass of 57 ± 2 kDa was purified in an alternative way. For the purification process, the galactose-sepharose-4B affinity column was used. The purified TDSL agglutinated human and mouse erythrocytes at the minimum concentration of 8 μg/ml. d-lactose and d-galactose were the most potent inhibitory sugars as observed. The purified lectin was a glycoprotein having 3.0% of a neutral sugar. The lectin exhibited maximum activity up to 60°C and pH range from 7.0 to 10.0 and stable up to 4.0 M urea as tested. The lectin demonstrated mild toxicity when administered against brine shrimp nauplii, and the LC50 value was calculated to be 84.0 µg/ml. Minimum agglutination of Ehrlich ascites carcinoma (EAC) cells caused by the lectin was found at the protein concentration of 1.56 µg/ml. TDSL inhibited 7, 50.2%, and 60.3% of the EAC cells growth in vivo in mice when administered with 0.75, 1.5, and 3.0 mg kg-1 day-1 (i.p.), respectively, for five consecutive days. After lectin treatment, red blood cell (RBC) and hemoglobin levels were increased significantly toward the normal compared with EAC cells-bearing control and normal mice. The tumor burden reduced to 29.5% and 67% after treatment with 1.5 and 3.0 mg kg-1 day-1 of the lectin. TDSL triggered the cell cycle arrest at the G0 /G1 phase, which was observed using flow cytometry. In conclusion, TDSL can be a candidate for the potent anticancer agents that exerts low toxicity toward brine shrimp nauplii. PRACTICAL APPLICATIONS: A 57 ± 2 kDa lectin (designated TDSL) was purified from Trichosanthes dioica seeds using a galactose-sepharose-4B affinity column. The lectin demonstrated mild toxicity and agglutinated Ehrlich ascites carcinoma (EAC) cells. The lectin inhibited 50.2% and 60.3% of the EAC cell growth in vivo in mice when administered with 1.5 and 3.0 mg kg-1 day-1 (i.p.), respectively, for five consecutive days. The lectin increased RBC and hemoglobin level toward the normal compared with lectin-treated EAC cells-bearing, EAC cells-bearing control and normal mice. The tumor burden reduced to 29.5% and 67% after treatment with 1.5 and 3.0 mg kg-1 day-1 lectin. TDSL triggered the cell cycle arrest at the G0 /G1 phase. The lectin can be a candidate for potent anticancer agents.
Collapse
Affiliation(s)
- Shaikh Shohidul Islam
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Rezaul Karim
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - A K M Asaduzzaman
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - A H M Khurshid Alam
- Department of Pharmacy, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zahid Hayat Mahmud
- Environmental Microbiology Laboratory, icddr,b,, 68 Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka, 1212, Bangladesh
| | - Syed Rashel Kabir
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi, 6205, Bangladesh
| |
Collapse
|
9
|
Tepary Bean ( Phaseolus acutifolius) Lectins Induce Apoptosis and Cell Arrest in G0/G1 by P53(Ser46) Phosphorylation in Colon Cancer Cells. Molecules 2020; 25:molecules25051021. [PMID: 32106533 PMCID: PMC7179131 DOI: 10.3390/molecules25051021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 11/16/2022] Open
Abstract
A Tepary bean lectin fraction (TBLF) has been studied because it exhibits differential cytotoxic and anticancer effects on colon cancer. The present work focuses on the evaluation of the apoptotic mechanism of action on colon cancer cells. Initially, lethal concentrations (LC50) were obtained for the three studied cell lines (HT-29, RKO and SW-480). HT-29 showed the highest LC50, 10 and 100 times higher than that of RKO and SW-480 cells, respectively. Apoptosis was evaluated by flow cytometry, where HT-29 cells showed the highest levels of early and total apoptosis, caspases activity was confirmed and necrosis was discarded. The effect on cell cycle arrest was shown in the G0/G1 phase. Specific apoptosis-related gene expression was determined, where an increase in p53 and a decrease in Bcl-2 were observed. Expression of p53 gene showed the maximum level at 8 h with an important decrease at 12 and 24 h, also the phosphorylated p53(ser46) increased at 8 h. Our results show that TBLF induces apoptosis in colon cancer cells by p-p53(ser46) involvement. Further studies will focus on studying the specific signal transduction pathway.
Collapse
|
10
|
Islam F, Gopalan V, Lam AK, Kabir SR. Kaempferia rotunda tuberous rhizome lectin induces apoptosis and growth inhibition of colon cancer cells in vitro. Int J Biol Macromol 2019; 141:775-782. [DOI: 10.1016/j.ijbiomac.2019.09.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/24/2019] [Accepted: 09/06/2019] [Indexed: 12/18/2022]
|
11
|
Surya S, Haridas M. A New Galactose-Specific Lectin from Clerodendrum infortunatum.. IRANIAN JOURNAL OF BIOTECHNOLOGY 2018; 16:e1449. [PMID: 31457028 PMCID: PMC6697831 DOI: 10.21859/ijb.1449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/19/2018] [Accepted: 01/17/2018] [Indexed: 01/12/2023]
Abstract
Background The ethno-medical significance of Clerodendrum genus raises the interest towards the characterization of its seed lectin by inexpensive and most effective technique. Objective The focus of this study is the purification, characterization, and evaluation of the antioxidant and antiproliferative potential of a galactose-specific lectin from Clerodendrum infortunatum L. seeds. Materials and Methods The crude extract, homogenized in 6 volumes of the saline containing 10 mM β-mercaptoethanol was subjected to pigment removal by Toyopeal HW-55 column prior to ammonium sulfate fractionation (40-80 %). The crude protein extract was then loaded to the gel filtration column Sephadex G-200 followed by affinity chromatography using activated galactose coupled Sepharose-4B. Results The SDS-PAGE analysis showed a single band of about 30 kDa which further determined by MALDI-TOF analysis. The MALDI-TOF spectra revealed that Clerodendrum infortunatum lectin (CIL) is a homo-tetramer of 120 kDa consisting of four identical subunits of 30 kDa. The haemagglutination inhibition assay was done with purified lectin by many sugars, among which N-acetyl-D-galactosmine (NAG), D-galactose and lactose exhibited high inhibition. NAG showed the highest inhibition amongst the tested sugars, having the minimum inhibitory concentration of about 0.97 mM. The lectin exhibited a moderate antioxidant activity with an IC50 value of 6.1 ± 0.1 mg.mL-1 and induced cell death with IC50 of 82.8 μg.mL-1 against human gastric cancer cell line, AGS, indicated the potential of CIL for clinical and therapeutic applications. Conclusion The present study demonstrated the moderate ability of the CIL to inhibit the growth of human gastric cancer cells, AGS either by causing cytotoxic or anti-proliferative effects. Thus, CIL due to its remarkable properties may be considered as a potential bio-molecule in tumor research and glycobiology.
Collapse
Affiliation(s)
- Sukumaran Surya
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| | - Madhathilkovilakathu Haridas
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| |
Collapse
|
12
|
Islam F, Gopalan V, Lam AKY, Kabir SR. Pea lectin inhibits cell growth by inducing apoptosis in SW480 and SW48 cell lines. Int J Biol Macromol 2018; 117:1050-1057. [DOI: 10.1016/j.ijbiomac.2018.06.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/05/2018] [Indexed: 12/23/2022]
|
13
|
Hegde P, Rajakumar SB, Swamy BM, Inamdar SR. A mitogenic lectin from
Rhizoctonia bataticola
arrests growth, inhibits metastasis, and induces apoptosis in human colon epithelial cancer cells. J Cell Biochem 2018; 119:5632-5645. [DOI: 10.1002/jcb.26740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/25/2018] [Indexed: 12/29/2022]
Affiliation(s)
- Prajna Hegde
- Department of Studies in BiochemistryKarnatak UniversityDharwadKarnatakaIndia
| | | | - Bale M. Swamy
- Department of Studies in BiochemistryKarnatak UniversityDharwadKarnatakaIndia
| | | |
Collapse
|
14
|
Orona-Tamayo D, Valverde ME, Paredes-López O. Bioactive peptides from selected latin american food crops – A nutraceutical and molecular approach. Crit Rev Food Sci Nutr 2018; 59:1949-1975. [DOI: 10.1080/10408398.2018.1434480] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Domancar Orona-Tamayo
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - María Elena Valverde
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| | - Octavio Paredes-López
- Centro de Investigación y de Estudios Avanzados de Instituto Politécnico Nacional. Km. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato, Guanajuato, México, CP
| |
Collapse
|
15
|
Cicero AFG, Fogacci F, Colletti A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: a narrative review. Br J Pharmacol 2017; 174:1378-1394. [PMID: 27572703 PMCID: PMC5429326 DOI: 10.1111/bph.13608] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 12/24/2022] Open
Abstract
In the past few years, increasing interest has been directed to bioactive peptides of animal and plant origin: in particular, researchers have focused their attention on their mechanisms of action and potential role in the prevention and treatment of cancer, cardiovascular and infective diseases. We have developed a search strategy to identify these studies in PubMed (January 1980 to May 2016); particularly those papers presenting comprehensive reviews or meta-analyses, plus in vitro and in vivo studies and clinical trials on those bioactive peptides that affect cardiovascular diseases, immunity or cancer, or have antioxidant, anti-inflammatory and antimicrobial effects. In this review we have mostly focused on evidence-based healthy properties of bioactive peptides from different sources. Bioactive peptides derived from fish, milk, meat and plants have demonstrated significant antihypertensive and lipid-lowering activity in clinical trials. Many bioactive peptides show selective cytotoxic activity against a wide range of cancer cell lines in vitro and in vivo, whereas others have immunomodulatory and antimicrobial effects. Furthermore, some peptides exert anti-inflammatory and antioxidant activity, which could aid in the prevention of chronic diseases. However, clinical evidence is at an early stage, and there is a need for solid pharmacokinetic data and for standardized extraction procedures. Further studies on animals and randomized clinical trials are required to confirm these effects, and enable these peptides to be used as preventive or therapeutic treatments. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Arrigo F G Cicero
- Atherosclerosis and Metabolic Diseases Research Center, Medicine and Surgery DeptartmentAlma Mater Studiorum, University of BolognaBolognaItaly
| | - Federica Fogacci
- Atherosclerosis and Metabolic Diseases Research Center, Medicine and Surgery DeptartmentAlma Mater Studiorum, University of BolognaBolognaItaly
| | - Alessandro Colletti
- Atherosclerosis and Metabolic Diseases Research Center, Medicine and Surgery DeptartmentAlma Mater Studiorum, University of BolognaBolognaItaly
| |
Collapse
|
16
|
Chan YS, Xia L, Ng TB. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells. Int J Biol Macromol 2016; 85:335-45. [DOI: 10.1016/j.ijbiomac.2015.12.094] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 12/31/2022]
|
17
|
Suárez-Martínez SE, Ferriz-Martínez RA, Campos-Vega R, Elton-Puente JE, de la Torre Carbot K, García-Gasca T. Bean seeds: leading nutraceutical source for human health. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1063548] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
18
|
Valadez-Vega C, Morales-González JA, Sumaya-Martínez MT, Delgado-Olivares L, Cruz-Castañeda A, Bautista M, Sánchez-Gutiérrez M, Zuñiga-Pérez C. Cytotoxic and antiproliferative effect of tepary bean lectins on C33-A, MCF-7, SKNSH, and SW480 cell lines. Molecules 2014; 19:9610-27. [PMID: 25004071 PMCID: PMC6271045 DOI: 10.3390/molecules19079610] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/02/2014] [Accepted: 07/02/2014] [Indexed: 02/07/2023] Open
Abstract
For many years, several studies have been employing lectin from vegetables in order to prove its toxic effect on various cell lines. In this work, we analyzed the cytotoxic, antiproliferative, and post-incubatory effect of pure tepary bean lectins on four lines of malignant cells: C33-A; MCF-7; SKNSH, and SW480. The tests were carried out employing MTT and 3[H]-thymidine assays. The results showed that after 24 h of lectin exposure, the cells lines showed a dose-dependent cytotoxic effect, the effect being higher on MCF-7, while C33-A showed the highest resistance. Cell proliferation studies showed that the toxic effect induced by lectins is higher even when lectins are removed, and in fact, the inhibition of proliferation continues after 48 h. Due to the use of two techniques to analyze the cytotoxic and antiproliferative effect, differences were observed in the results, which can be explained by the fact that one technique is based on metabolic reactions, while the other is based on the 3[H]-thymidine incorporated in DNA by cells under division. These results allow concluding that lectins exert a cytotoxic effect after 24 h of exposure, exhibiting a dose-dependent effect. In some cases, the cytotoxic effect is higher even when the lectins are eliminated, however, in other cases, the cells showed a proliferative effect.
Collapse
Affiliation(s)
- Carmen Valadez-Vega
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - José A Morales-González
- Laboratorio Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Unidad Casco de Santo Tomas, México D.F. 11340, Mexico.
| | - María Teresa Sumaya-Martínez
- Secretary of Research and Graduate Studies, Autonomous University of Nayarit, Ciudad de la Cultura "Amado Nervo", Boulevard Tepic-Xalisco S/N. Tepic, Nayarit, 63190 Mexico.
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - Areli Cruz-Castañeda
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - Mirandeli Bautista
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| | - Clara Zuñiga-Pérez
- Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Ex Hacienda la Concepción s/n. Carr. Pachuca-Tilcuautla C.P. 42060 Tilcuautla, Hidalgo, Mexico.
| |
Collapse
|
19
|
Chan YS, Wong JH, Fang EF, Pan W, Ng TB. Isolation of a glucosamine binding leguminous lectin with mitogenic activity towards splenocytes and anti-proliferative activity towards tumor cells. PLoS One 2012; 7:e38961. [PMID: 22720002 PMCID: PMC3375228 DOI: 10.1371/journal.pone.0038961] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Accepted: 05/16/2012] [Indexed: 02/03/2023] Open
Abstract
A dimeric 64-kDa glucosamine-specific lectin was purified from seeds of Phaseolus vulgaris cv. “brown kidney bean.” The simple 2-step purification protocol involved affinity chromatography on Affi-gel blue gel and gel filtration by FPLC on Superdex 75. The lectin was absorbed on Affi-gel blue gel and desorbed using 1M NaCl in the starting buffer. Gel filtration on Superdex 75 yielded a major absorbance peak that gave a single 32-kDa band in SDS-PAGE. Hemagglutinating activity was completely preserved when the ambient temperature was in the range of 20°C–60°C. However, drastic reduction of the activity occurred at temperatures above 65°C. Full hemagglutinating activity of the lectin was observed at an ambient pH of 3 to 12. About 50% activity remained at pH 0–2, and only residual activity was observed at pH 13–14. Hemagglutinating activity of the lectin was inhibited by glucosamine. The brown kidney bean lectin elicited maximum mitogenic activity toward murine splenocytes at 2.5 µM. The mitogenic activity was nearly completely eliminated in the presence of 250 mM glucosamine. The lectin also increased mRNA expression of the cytokines IL-2, TNF-α and IFN-γ. The lectin exhibited antiproliferative activity toward human breast cancer (MCF7) cells, hepatoma (HepG2) cells and nasopharyngeal carcinoma (CNE1 and CNE2) cells with IC50 of 5.12 µM, 32.85 µM, 3.12 µM and 40.12 µM respectively after treatment for 24 hours. Flow cytometry with Annexin V and propidum iodide staining indicated apoptosis of MCF7 cells. Hoechst 33342 staining also indicated formation of apoptotic bodies in MCF7 cells after exposure to brown kidney bean lectin. Western blotting revealed that the lectin-induced apoptosis involved ER stress and unfolded protein response.
Collapse
Affiliation(s)
- Yau Sang Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Jack Ho Wong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Evandro Fei Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Wenliang Pan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Tzi Bun Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong
- * E-mail:
| |
Collapse
|
20
|
García-Gasca T, García-Cruz M, Hernandez-Rivera E, López-Matínez J, Castañeda-Cuevas AL, Yllescas-Gasca L, Rodríguez-Méndez AJ, Mendiola-Olaya E, Castro-Guillén JL, Blanco-Labra A. Effects of Tepary bean (Phaseolus acutifolius) protease inhibitor and semipure lectin fractions on cancer cells. Nutr Cancer 2012; 64:1269-78. [PMID: 23163855 PMCID: PMC3856472 DOI: 10.1080/01635581.2012.722246] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 07/29/2012] [Indexed: 11/12/2022]
Abstract
Some natural and synthetic protease inhibitors (PI), such as the Bowman-Birk PI from soybean, have anticancer effects. We previously purified and characterized a Bowman-Birk-type PI from Tepary bean (Phaseolus acutifolius) seeds (TBPI). A semipure protein fraction containing this inhibitor, when tested its in vitro effect on transformed cells, showed a differential cytotoxic effect, as well as an increase in cell attachment to culture dishes. In this article we report that lectins were responsible for the cytotoxic effect previously observed, exhibiting a differential, antiproliferative effect on nontransformed cells and on different lineages of cancer cells. Although the purified TBPI lacked cytotoxicity, it was found to be responsible for the increase in cell adhesion, decreasing culture dishes' extracellular matrix degradation, leading to a decrease of the in vitro cell invasion capacity. This effect coincided with the suppression of Matrix Metalloproteinase-9 activity. These results indicate that Tepary bean seeds contain at least 2 different groups of bioactive proteins with distinct effects on cancer cells.
Collapse
Affiliation(s)
- Teresa García-Gasca
- Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Valadez-Vega C, Guzmán-Partida AM, Soto-Cordova FJ, Álvarez-Manilla G, Morales-González JA, Madrigal-Santillán E, Villagómez-Ibarra JR, Zúñiga-Pérez C, Gutiérrez-Salinas J, Becerril-Flores MA. Purification, biochemical characterization, and bioactive properties of a lectin purified from the seeds of white tepary bean (phaseolus acutifolius variety latifolius). Molecules 2011; 16:2561-82. [PMID: 21441861 PMCID: PMC6259754 DOI: 10.3390/molecules16032561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 02/07/2023] Open
Abstract
The present work shows the characterization of Phaseolus acutifolius variety latifolius, on which little research has been published, and provides detailed information on the corresponding lectin. This protein was purified from a semi-domesticated line of white tepary beans from Sonora, Mexico, by precipitation of the aqueous extract with ammonium sulfate, followed by affinity chromatography on an immobilized fetuin matrix. MALDI TOF analysis of Phaseolus acutifolius agglutinin (PAA) showed that this lectin is composed of monomers with molecular weights ranging between 28 and 31 kDa. At high salt concentrations, PAA forms a dimer of 63 kDa, but at low salt concentrations, the subunits form a tetramer. Analysis of PAA on 2D-PAGE showed that there are mainly three types of subunits with isoelectric points of 4.2, 4.4, and 4.5. The partial sequence obtained by LC/MS/MS of tryptic fragments from the PAA subunits showed 90-100% identity with subunits from genus Phaseolus lectins in previous reports. The tepary bean lectin showed lower hemagglutination activity than Phaseolus vulgaris hemagglutinin (PHA-E) toward trypsinized human A and O type erythrocytes. The hemagglutination activity was inhibited by N-glycans from glycoproteins. Affinity chromatography with the immobilized PAA showed a high affinity to glycopeptides from thyroglobulin, which also has N-glycans with a high content of N-acetylglucosamine. PAA showed less mitogenic activity toward human lymphocytes than PHA-L and Con A. The cytotoxicity of PAA was determined by employing three clones of the 3T3 cell line, demonstrating variability among the clones as follows: T4 (DI₅₀ 51.5 µg/mL); J20 (DI₅₀ 275 µg/mL), and N5 (DI₅₀ 72.5 µg/mL).
Collapse
Affiliation(s)
- Carmen Valadez-Vega
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +52-771-717-2000; Fax: +52-771-717-2000, extension 5111
| | - Ana María Guzmán-Partida
- Center for Food Research and Development, A. C. Carretera a la Victoria Km 0.6 C.P. 83304. Hermosillo, Sonora, Mexico; E-Mails: (A.M.G.-P.); (F.J.S.-C.)
| | - Francisco Javier Soto-Cordova
- Center for Food Research and Development, A. C. Carretera a la Victoria Km 0.6 C.P. 83304. Hermosillo, Sonora, Mexico; E-Mails: (A.M.G.-P.); (F.J.S.-C.)
| | | | - José A. Morales-González
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - Eduardo Madrigal-Santillán
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - José Roberto Villagómez-Ibarra
- Basic Science and Engineering Institute, Universidad Autónoma del Estado de Hidalgo, Carr. A-Pachuca-Tulancingo Km 4.5 Cd Universitaria, CP 42184, Mineral de la Reforma, Hgo, Mexico; E-Mail: (J.R.V.-I.)
| | - Clara Zúñiga-Pérez
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| | - José Gutiérrez-Salinas
- Laboratory of Biochemistry and Experimental Medicine, Division of Biomedical Research, National Medical Center “20 de Noviembre”, ISSSTE, México D.F., Mexico; E-Mail: (J.G.-S.)
| | - Marco A. Becerril-Flores
- Institute of Health Sciences, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, CP 42080 Pachuca de Soto, Hgo, Mexico; E-Mails: (J.A.M.-G.); (E.M.-S.); (C.Z.-P.); (M.A.B.-F.)
| |
Collapse
|