1
|
Buravchenko GI, Scherbakov AM, Krymov SK, Salnikova DI, Zatonsky GV, Schols D, Vullo D, Supuran CT, Shchekotikhin AE. Synthesis and evaluation of sulfonamide derivatives of quinoxaline 1,4-dioxides as carbonic anhydrase inhibitors. RSC Adv 2024; 14:23257-23272. [PMID: 39045402 PMCID: PMC11265520 DOI: 10.1039/d4ra04548c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/12/2024] [Indexed: 07/25/2024] Open
Abstract
A series of sulfonamide-derived quinoxaline 1,4-dioxides were synthesized and evaluated as inhibitors of carbonic anhydrases (CA) with antiproliferative potency. Overall, the synthesized compounds demonstrated good inhibitory activity against four CA isoforms. Compound 7g exhibited favorable potency in inhibiting a CA IX isozyme with a K i value of 42.2 nM compared to the reference AAZ (K i = 25.7 nM). Nevertheless, most of the synthesized compounds have their highest activity against CA I and CA II isoforms over CA IX and CA XII. A molecular modeling study was used for an estimation of the binding mode of the selected ligand 7g in the active site of CA IX. The most active compounds (7b, 7f, 7h, and 18) exhibited significant antiproliferative activity against MCF-7, Capan-1, DND-41, HL60, and Z138 cell lines, with IC50 values in low micromolar concentrations. Moreover, derivatives 7a, 7e, and 8g showed similar hypoxic cytotoxic activity and selectivity compared to tirapazamine (TPZ) against adenocarcinoma cells MCF-7. The structure-activity relationships analysis revealed that the presence of a halogen atom or a sulfonamide group as substituents in the phenyl ring of quinoxaline-2-carbonitrile 1,4-dioxides was favorable for overall cytotoxicity against most of the tested cancer cell lines. Additionally, the presence of a carbonitrile fragment in position 2 of the heterocycle also had a positive effect on the antitumor properties of such derivatives against the majority of cell lines. The most potent derivative, 3-trifluoromethylquinoxaline 1,4-dioxide 7h, demonstrated higher or close antiproliferative activity compared to the reference agents, such as doxorubicin, and etoposide, with an IC50 range of 1.3-2.1 μM. Analysis of the obtained results revealed important patterns in the structure-activity relationship. Moreover, these findings highlight the potential of selected lead sulfonamides on the quinoxaline 1,4-dioxide scaffold for further in-depth evaluation and development of chemotherapeutic agents targeting carbonic anhydrases.
Collapse
Affiliation(s)
- Galina I Buravchenko
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Street Moscow 119021 Russia
| | - Alexander M Scherbakov
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, Blokhin N.N. National Medical Research Center of Oncology Kashirskoe sh. 24 115522 Moscow Russia
| | - Stepan K Krymov
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Street Moscow 119021 Russia
| | - Diana I Salnikova
- Department of Experimental Tumor Biology, Institute of Carcinogenesis, Blokhin N.N. National Medical Research Center of Oncology Kashirskoe sh. 24 115522 Moscow Russia
| | - George V Zatonsky
- Gause Institute of New Antibiotics 11 B. Pirogovskaya Street Moscow 119021 Russia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven 3000 Leuven Belgium
| | - Daniela Vullo
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence Florence Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence Florence Italy
| | | |
Collapse
|
2
|
Buravchenko GI, Shchekotikhin AE. Quinoxaline 1,4-Dioxides: Advances in Chemistry and Chemotherapeutic Drug Development. Pharmaceuticals (Basel) 2023; 16:1174. [PMID: 37631089 PMCID: PMC10459860 DOI: 10.3390/ph16081174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
N-Oxides of heterocyclic compounds are the focus of medical chemistry due to their diverse biological properties. The high reactivity and tendency to undergo various rearrangements have piqued the interest of synthetic chemists in heterocycles with N-oxide fragments. Quinoxaline 1,4-dioxides are an example of an important class of heterocyclic N-oxides, whose wide range of biological activity determines the prospects of their practical use in the development of drugs of various pharmaceutical groups. Derivatives from this series have found application in the clinic as antibacterial drugs and are used in agriculture. Quinoxaline 1,4-dioxides present a promising class for the development of new drugs targeting bacterial infections, oncological diseases, malaria, trypanosomiasis, leishmaniasis, and amoebiasis. The review considers the most important methods for the synthesis and key directions in the chemical modification of quinoxaline 1,4-dioxide derivatives, analyzes their biological properties, and evaluates the prospects for the practical application of the most interesting compounds.
Collapse
|
3
|
Nemeikaitė-Čėnienė A, Haberkant P, Kučiauskas D, Stein F, Čėnas N. Redox Proteomic Profile of Tirapazamine-Resistant Murine Hepatoma Cells. Int J Mol Sci 2023; 24:ijms24076863. [PMID: 37047836 PMCID: PMC10094930 DOI: 10.3390/ijms24076863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 04/04/2023] [Indexed: 04/14/2023] Open
Abstract
3-Amino-1,2,4-benzotriazine-1,4-dioxide (tirapazamine, TPZ) and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities. Their action is attributed to the enzymatic single-electron reduction to free radicals that initiate the prooxidant processes. In order to clarify the mechanisms of aerobic mammalian cytotoxicity of ArN→O, we derived a TPZ-resistant subline of murine hepatoma MH22a cells (resistance index, 5.64). The quantitative proteomic of wild-type and TPZ-resistant cells revealed 5818 proteins, of which 237 were up- and 184 down-regulated. The expression of the antioxidant enzymes aldehyde- and alcohol dehydrogenases, carbonyl reductases, catalase, and glutathione reductase was increased 1.6-5.2 times, whereas the changes in the expression of glutathione peroxidase, superoxide dismutase, thioredoxin reductase, and peroxiredoxins were less pronounced. The expression of xenobiotics conjugating glutathione-S-transferases was increased by 1.6-2.6 times. On the other hand, the expression of NADPH:cytochrome P450 reductase was responsible for the single-electron reduction in TPZ and for the 2.1-fold decrease. These data support the fact that the main mechanism of action of TPZ under aerobic conditions is oxidative stress. The unchanged expression of intranuclear antioxidant proteins peroxiredoxin, glutaredoxin, and glutathione peroxidase, and a modest increase in the expression of DNA damage repair proteins, tend to support non-site-specific but not intranuclear oxidative stress as a main factor of TPZ aerobic cytotoxicity.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania
| | - Per Haberkant
- Proteomics Core Facility EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Dalius Kučiauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| | - Frank Stein
- Proteomics Core Facility EMBL Heidelberg, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Agrawal N, Bhardwaj A. An appraisal on synthetic and pharmaceutical perspectives of quinoxaline 1,4-di-N-oxide scaffold. Chem Biol Drug Des 2022; 100:346-363. [PMID: 35610776 DOI: 10.1111/cbdd.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Abstract
Quinoxaline 1,4-di-N-oxides (QdNOs) exhibit multifaceted biological properties, wherein antimicrobial, anticancer, antitrypanosomal, and anti-inflammatory properties are included. Because of their various activities in clinical practice and research, they have a wide spectrum of uses and possibilities. QdNOs have received a significant amount of attention, and research into their medicinal chemistry is still a part of experimental investigation and analytical studies. In this review, QdNOs are classified depending on their actions, which include antibacterial and anti-mycobacterial, anticancer or antitumor, antimalarial, antifungal, and other activities. In a conclusion, it's important to base the development of novel synthetic techniques and the design of new QdNO derivatives on the most up-to-date knowledge gleaned from recent research. With the summarised structure-activity relationship of fascinating QdNOs, this review aims to provide insights into the developments in the chemistry and biological activity of QdNO derivatives.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Aditya Bhardwaj
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
5
|
Rivera G. Quinoxaline 1,4-di-N-Oxide Derivatives: Are They Unselective or Selective Inhibitors? Mini Rev Med Chem 2021; 22:15-25. [PMID: 33573542 DOI: 10.2174/1389557521666210126142541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 12/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND For decades, the quinoxaline 1,4-di-N-oxide ring has been considered a privileged structure to develop new antibacterial, antitumoural, and antiprotozoal agents, among others, however its mechanism of action is not clear. OBJECTIVE The main aim of this mini-review was to analyze the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives reported as antibacterial, antitumoural and antiprotozoal agents. RESULTS Initially, the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives against bacteria, tumoural cell lines, and parasites has been described as nonspecific, but recently, the results against different organisms have shown that these compounds have an inhibitory action on specific targets such as trypanothione reductase, triosephosphate isomerase, and other essential enzymes. CONCLUSION In summary, quinoxaline 1,4-di-N-oxide is a scaffold to develop new anti-Mycobacterium tuberculosis, antitumoural and antiprotozoal agents, however, understanding the mechanism of action of quinoxaline 1,4-di-N-oxide derivatives in each microorganism could contribute to the development of new, and more potent selective drugs.
Collapse
Affiliation(s)
- Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, 88710 Reynosa. Mexico
| |
Collapse
|
6
|
Buravchenko GI, Scherbakov AM, Dezhenkova LG, Monzote L, Shchekotikhin AE. Synthesis of 7-amino-6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides: a way forward for targeting hypoxia and drug resistance of cancer cells. RSC Adv 2021; 11:38782-38795. [PMID: 35493230 PMCID: PMC9044171 DOI: 10.1039/d1ra07978f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/16/2021] [Indexed: 01/01/2023] Open
Abstract
New water-soluble hypoxia activated 7-aminoquinoxaline 1,4-dioxides, prepared by the regioselective Beirut reaction, acted as HIF-1α suppressors and induced apoptosis in hypoxic and MDR cancer cells.
Collapse
Affiliation(s)
- Galina I. Buravchenko
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
- Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russia
| | - Alexander M. Scherbakov
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Sh., Moscow 115522, Russia
| | - Lyubov G. Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russia
| | - Lianet Monzote
- Department of Parasitology, Pedro Kouri Tropical Medicine Institute, Havana, Cuba
| | | |
Collapse
|
7
|
Nemeikaitė-Čėnienė A, Šarlauskas J, Misevičienė L, Marozienė A, Jonušienė V, Lesanavičius M, Čėnas N. Aerobic Cytotoxicity of Aromatic N-Oxides: The Role of NAD(P)H:Quinone Oxidoreductase (NQO1). Int J Mol Sci 2020; 21:ijms21228754. [PMID: 33228195 PMCID: PMC7699506 DOI: 10.3390/ijms21228754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/18/2020] [Indexed: 12/24/2022] Open
Abstract
Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit tumoricidal, antibacterial, and antiprotozoal activities, which are typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the role of NAD(P)H:quinone oxidoreductase (NQO1) in ArN→O aerobic cytotoxicity. We synthesized 9 representatives of ArN→O with uncharacterized redox properties and examined their single-electron reduction by rat NADPH:cytochrome P-450 reductase (P-450R) and Plasmodium falciparum ferredoxin:NADP+ oxidoreductase (PfFNR), and by rat NQO1. NQO1 catalyzed both redox cycling and the formation of stable reduction products of ArN→O. The reactivity of ArN→O in NQO1-catalyzed reactions did not correlate with the geometric average of their activity towards P-450R- and PfFNR, which was taken for the parameter of their redox cycling efficacy. The cytotoxicity of compounds in murine hepatoma MH22a cells was decreased by antioxidants and the inhibitor of NQO1, dicoumarol. The multiparameter regression analysis of the data of this and a previous study (DOI: 10.3390/ijms20184602) shows that the cytotoxicity of ArN→O (n = 18) in MH22a and human colon carcinoma HCT-116 cells increases with the geometric average of their reactivity towards P-450R and PfFNR, and with their reactivity towards NQO1. These data demonstrate that NQO1 is a potentially important target of action of heteroaromatic N-oxides.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Jonas Šarlauskas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Audronė Marozienė
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Violeta Jonušienė
- Institute of Biosciences of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| | - Mindaugas Lesanavičius
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
| | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (J.Š.); (L.M.); (A.M.); (M.L.)
- Correspondence: ; Tel.: +370-5-223-4392
| |
Collapse
|
8
|
Discovery of derivatives of 6(7)-amino-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides: novel, hypoxia-selective HIF-1α inhibitors with strong antiestrogenic potency. Bioorg Chem 2020; 104:104324. [DOI: 10.1016/j.bioorg.2020.104324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/15/2020] [Accepted: 09/25/2020] [Indexed: 12/18/2022]
|
9
|
Buravchenko GI, Scherbakov AM, Korlukov AА, Dorovatovskii PV, Shchekotikhin AE. Revision of the Regioselectivity of the Beirut Reaction of Monosubstituted Benzofuroxans with Benzoylacetonitrile. 6-Substituted quinoxaline-2-carbonitrile 1,4- dioxides: Structural Characterization and Estimation of Anticancer Activity and Hypoxia Selectivity. Curr Org Synth 2020; 17:29-39. [PMID: 32103715 DOI: 10.2174/1570179416666191210100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 11/13/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Quinoxaline 1,4-dioxides have a broad range of biological activity that causes a growing interest in their derivatives for drug discovery. Recent studies demonstrated that quinoxaline 1,4- dioxides have a promising anticancer activity and good hypoxia-selectivity. OBJECTIVE The preparation, isolation, structure characterization, and screening for anticancer activity of the first representatives of 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides have been described. MATERIALS AND METHODS A series of 7- and 6-halogeno-3-phenylquinoxaline-2-carbonitrile 1,4-dioxides was synthesized by the Beirut reaction. The cytotoxicity was assessed by MTT test (72 h incubation) in normoxia (21% O2) and hypoxia (1% O2) conditions. RESULTS We found that during the Beirut reaction between a benzofuroxan bearing an electron withdrawing group and benzoylacetonitrile in the presence of triethylamine, in addition to well-known 7-substituted quinoxaline-2-carbonitrile 1,4-dioxides 7-11a, the 6-isomers 7-11b are formed. Moreover, the yield of the 6- isomers increased with the increase in the electron-withdrawing character of the substituent. For benzofuroxans with CO2Me and CF3 groups, 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides 10-11b were the major products. Despite similarities in physicochemical and spectroscopic properties, the obtained isomers exhibit considerable differences in their anticancer activity and hypoxia selectivity. CONCLUSION Substituents and their electronic effects play a key role in the formation of 7- and 6-substituted quinoxaline-2-carbonitrile 1,4-dioxides in the Beirut reaction and in the cytotoxicity properties of the obtained isomers.
Collapse
Affiliation(s)
- Galina I Buravchenko
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russian Federation.,Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russian Federation
| | - Alexander M Scherbakov
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye sh., Moscow 115522, Russian Federation
| | - Alexander А Korlukov
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., Moscow 119991, Russian Federation.,Pirogov Russian National Research Medical University, 1 Ostrovitianov str., Moscow 117997, Russian Federation
| | - Pavel V Dorovatovskii
- National Research Center "Kurchatov Institute", 1 Akademika Kurchatova pl., Moscow 123182, Russian Federation
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow 119021, Russian Federation.,Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow 125190, Russian Federation
| |
Collapse
|
10
|
Zhao L, Liu B, Tan Q, Ding CH, Xu B. Silver-Assisted Oxidative Isocyanide Insertion of Ethers: A Direct Approach to β-Carbonyl α-Iminonitriles. Org Lett 2019; 21:9223-9227. [DOI: 10.1021/acs.orglett.9b03590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Leiyang Zhao
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Chang-Hua Ding
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai University, Shanghai 200444, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Hassan AY, Sarg MT, El‐Sebaey SA. Synthesis and antitumor evaluation of some new derivatives and fused heterocyclic compounds derived from thieno[2,3‐ b]pyridine. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Aisha Y. Hassan
- Department of Chemistry, Faculty of Science (Girls)Al‐Azhar University Cairo Egypt
| | - Marwa T. Sarg
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls)Al‐Azhar University Cairo Egypt
| | - Samiha A. El‐Sebaey
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Girls)Al‐Azhar University Cairo Egypt
| |
Collapse
|
12
|
Chemistry and pharmacological diversity of quinoxaline motifs as anticancer agents. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2019; 69:177-196. [PMID: 31259731 DOI: 10.2478/acph-2019-0013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/26/2018] [Indexed: 01/19/2023]
Abstract
Surpassing heart diseases, cancer is taking the lead as the deadliest disease because of its fast rate of spreading in all parts of the world. Tireless commitment to searching for novel therapeutic medicines is a worthwhile adventure in synthetic chemistry because of the drug resistance predicament and regular outbreak of new diseases due to abnormal cell growth and proliferation. Medicinal chemistry researchers and pharmacists have unveiled quinoxaline templates as precursors of importance and valuable intermediates in drug discovery because they have been established to possess diverse pharmacological potentials. Hence, this review highlights the current versatile routes to accessing functionalized quinoxaline motifs and harnessing their documented therapeutic potentials for anticancer drug development.
Collapse
|
13
|
Reduction Potential Predictions for Some 3-Aryl-Quinoxaline-2-Carbonitrile 1,4-Di-N-Oxide Derivatives with Known Anti-Tumor Properties. COMPUTATION 2019. [DOI: 10.3390/computation7010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ability for DFT: B3LYP calculations using the 6-31g and lanl2dz basis sets to predict the electrochemical properties of twenty (20) 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives with varying degrees of cytotoxic activity in dimethylformamide (DMF) was investigated. There was a strong correlation for the first reduction and moderate-to-low correlation of the second reduction of the diazine ring between the computational and the experimental data, with the exception of the derivative containing the nitro functionality. The four (4) nitro group derivatives are clear outliers in the overall data sets and the derivative E4 is ill-behaved. The remaining three (3) derivatives containing the nitro groups had a strong correlation between the computational and experimental data; however, the computational data falls substantially outside of the expected range.
Collapse
|
14
|
Kaushal T, Srivastava G, Sharma A, Singh Negi A. An insight into medicinal chemistry of anticancer quinoxalines. Bioorg Med Chem 2018; 27:16-35. [PMID: 30502116 DOI: 10.1016/j.bmc.2018.11.021] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 02/07/2023]
Abstract
Quinoxalines are benzopyrazines containing benzene and pyrazine rings fused together. In the recent past, quinoxalines have attracted Medicinal Chemists considerably for their syntheses and chemistry due to their distinct pharmacological activities. Diverse synthetic protocols have been developed via multicomponent reactions, single pot synthesis and combinatorial approach using efficient catalysts, reagents, and nano-composites etc. Further, the versatility of the quinoxaline core and its reasonable chemical simplicity devise it extremely promising source of bioactive compounds. Therefore, a wide variety of bioactive quinoxalines has been realised as antitumour, antifungal, anti-inflammatory, antimicrobial, and antiviral agents. Already, a few of them are clinical drugs while many more are under various phases of clinical trials. Present review focuses on chemistry and pharmacology (both efficacy and safety) of quinoxalines and also provides some insight in to their structure-activity relationship.
Collapse
Affiliation(s)
- Tanu Kaushal
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Gaurava Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Ashok Sharma
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India
| | - Arvind Singh Negi
- CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Kukrail Picnic Spot Road, Lucknow 226 015, UP, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
15
|
Scherbakov AM, Borunov AM, Buravchenko GI, Andreeva OE, Kudryavtsev IA, Dezhenkova LG, Shchekotikhin AE. Novel Quinoxaline-2-Carbonitrile-1,4-Dioxide Derivatives Suppress HIF1α Activity and Circumvent MDR in Cancer Cells. Cancer Invest 2018; 36:199-209. [PMID: 29624460 DOI: 10.1080/07357907.2018.1453072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A series of 3-aryl/hetarylquinoxaline-2-carbonitrile-1,4-dioxides was synthesized and evaluated against breast cancer cell lines in normoxia and hypoxia. Selected compounds in this series demonstrated better cytotoxicity and comparable hypoxia selectivity than tirapazamine. In contrast to Dox, quinoxaline-1,4-dioxides showed potent cytotoxicity against different MDR cells. Compound 2g inhibits of cancer cell growth through p53-independent mechanisms. Our results showed that compound 2g sensitized MCF-7 cells to metformin in hypoxia. Treatment with 2g results in the increase of ROS accumulation in cancer cells. Compound 2g can be considered as the lead compound for further anticancer drug design, evaluation, and development of new potent antitumor agents.
Collapse
Affiliation(s)
- Alexander M Scherbakov
- a Department of Experimental Tumor Biology , Blokhin N.N. National Medical Research Center of Oncology , Moscow , Russia
| | - Alexander M Borunov
- b Laboratory of Chemical Transformations of Antibiotics , Gause Institute of New Antibiotics , Moscow , Russia.,c Organic Chemistry Department , Mendeleyev University of Chemical Technology of Russia , Moscow , Russia
| | - Galina I Buravchenko
- b Laboratory of Chemical Transformations of Antibiotics , Gause Institute of New Antibiotics , Moscow , Russia.,c Organic Chemistry Department , Mendeleyev University of Chemical Technology of Russia , Moscow , Russia
| | - Olga E Andreeva
- a Department of Experimental Tumor Biology , Blokhin N.N. National Medical Research Center of Oncology , Moscow , Russia
| | - Igor A Kudryavtsev
- a Department of Experimental Tumor Biology , Blokhin N.N. National Medical Research Center of Oncology , Moscow , Russia
| | - Lyubov G Dezhenkova
- b Laboratory of Chemical Transformations of Antibiotics , Gause Institute of New Antibiotics , Moscow , Russia
| | - Andrey E Shchekotikhin
- b Laboratory of Chemical Transformations of Antibiotics , Gause Institute of New Antibiotics , Moscow , Russia.,c Organic Chemistry Department , Mendeleyev University of Chemical Technology of Russia , Moscow , Russia
| |
Collapse
|
16
|
Voltammetric Study of Some 3-Aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide Derivatives with Anti-Tumor Activities. Molecules 2017; 22:molecules22091442. [PMID: 28858261 PMCID: PMC6151727 DOI: 10.3390/molecules22091442] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 12/27/2022] Open
Abstract
The electrochemical properties of twenty 3-aryl-quinoxaline-2-carbonitrile 1,4-di-N-oxide derivatives with varying degrees of cytotoxic activity were investigated in dimethylformamide (DMF) using cyclic voltammetry and first derivative cyclic voltammetry. With one exception, the first reduction of these compounds was found to be reversible or quasireversible and is attributed to reduction of the N-oxide moiety to form a radical anion. The second reduction of the diazine ring was found to be irreversible. Compounds containing a nitro group on the 3-phenyl ring also exhibited a reduction process that may be attributed to that group. There was good correlation between molecular structure and reduction potential, with reduction being facilitated by an enhanced net positive charge at the electroactive site created by electron withdrawing substituents. Additionally, the reduction potential was calculated using two common basis sets, 6-31g and lanl2dz, for five of the test molecules. There was a strong correlation between the computational data and the experimental data, with the exception of the derivative containing the nitro functionality. No relationship between the experimentally measured reduction potentials and reported cytotoxic activities was evident upon comparison of the data.
Collapse
|
17
|
Zhao Y, Cheng G, Hao H, Pan Y, Liu Z, Dai M, Yuan Z. In vitro antimicrobial activities of animal-used quinoxaline 1,4-di-N-oxides against mycobacteria, mycoplasma and fungi. BMC Vet Res 2016; 12:186. [PMID: 27600955 PMCID: PMC5011961 DOI: 10.1186/s12917-016-0812-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 08/30/2016] [Indexed: 12/03/2022] Open
Abstract
Background The quinoxaline 1,4-di-N-oxides (QdNOs) were known as potent antibacterial agents. For the purpose of evaluating the bioactivity of existing animal-used QdNOs drugs against representative pathogenic microorganism, the representative drugs of quinoxalines including cyadox, mequindox, quinocetone and their metabolites were submitted to the in vitro evaluation for antituberculosis, antimycoplasma, antifungal and antiviral activities. Results In antituberculosis assays, the prototype compounds were active (MIC = 4 ~ 8 μg/mL) against Mycobacterium tuberculosis H37Rv and M. bovis. Combined antimicrobial susceptibility test indicated that cyadox, mequindox and quinocetone combined with rifampicin had additive effect against M. tuberculosis complex with Fractional Inhibitory Concentration Index (FIC) of 0.75. Results of antifungal assays showed that quinocetone was active against Microsporum canis with MIC of 8 μg/mL. Antimycoplasma screening showed a generally good activity of quinocetone against Mycoplasma gallisepticum and Mycoplasma hyopneumoniae, with MIC between 8 and 16 μg/mL. As shown from the combined antimicrobial susceptibility test, cyadox, mequindox and quinocetone combined with tetracycline had additive effect against Mycoplasma gallisepticum with FIC of 0.75. These compounds were also submitted to antiviral assay against infectious bursal disease virus, porcine reproductive and respiratory syndrome virus, porcine parvovirus and classical swine fever virus. The results obtained showed that these QdNOs and their metabolites have no inhibitory activity against these viruses in vitro. Conclusions QdNOs exhibit antimicrobial activities against mycobacteria, mycoplasma and fungi. This study gives new insight in further application of QdNOs and offers a way to promote the healthcare of animal husbandry. Electronic supplementary material The online version of this article (doi:10.1186/s12917-016-0812-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Zhao
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Guyue Cheng
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Haihong Hao
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yuanhu Pan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhenli Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Menghong Dai
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Zonghui Yuan
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan, Hubei, 430070, China. .,Hubei Collaborative Innovation Center for Animal Nutrition and Feed Safety, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
18
|
Hypoxia-Targeted Drug Q6 Induces G2-M Arrest and Apoptosis via Poisoning Topoisomerase II under Hypoxia. PLoS One 2015. [PMID: 26649750 DOI: 10.1371/journal.pone.0144506.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In spite of the tremendous efforts dedicated to developing hypoxia-activated prodrugs, no agents yet have been approved for clinical therapy. In the present study, the hypoxic selective anti-cancer activity as well as the cellular target of a novel tirapazamine (TPZ) analogue, 7-methyl-3-(3-chlorophenyl)-quinoxaline-2-carbonitrile 1,4-dioxide (Q6) were investigated. Q6 implemented anti-cancer effects via poisoning topoisomerase II (topo II) under hypoxia. Modified trapped in agarose DNA immunostaining (TARDIS) assay showed more topo II-DNA cleavage complexes trapped by Q6 than TPZ at even lower concentration. In addition, by introducing ataxia-telangiectasia-mutated (ATM) kinase inhibitors caffeine and KU-60019, we displayed that Q6-triggered apoptosis was attributed, at least partially, to DNA double-strand breaks generated by the topo II-targeting effect. Collectively, Q6 stood out for its better hypoxia-selectivity and topo II-poisoning than the parental compound TPZ. All these data shed light on the research of Q6 as a promising hypoxia-activated prodrug candidate for human hepatocellular carcinoma therapy.
Collapse
|
19
|
Chang L, Liu X, Wang D, Ma J, Zhou T, Chen Y, Sheng R, Hu Y, Du Y, He Q, Yang B, Zhu H. Hypoxia-Targeted Drug Q6 Induces G2-M Arrest and Apoptosis via Poisoning Topoisomerase II under Hypoxia. PLoS One 2015; 10:e0144506. [PMID: 26649750 PMCID: PMC4674137 DOI: 10.1371/journal.pone.0144506] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/19/2015] [Indexed: 02/06/2023] Open
Abstract
In spite of the tremendous efforts dedicated to developing hypoxia-activated prodrugs, no agents yet have been approved for clinical therapy. In the present study, the hypoxic selective anti-cancer activity as well as the cellular target of a novel tirapazamine (TPZ) analogue, 7-methyl-3-(3-chlorophenyl)-quinoxaline-2-carbonitrile 1,4-dioxide (Q6) were investigated. Q6 implemented anti-cancer effects via poisoning topoisomerase II (topo II) under hypoxia. Modified trapped in agarose DNA immunostaining (TARDIS) assay showed more topo II–DNA cleavage complexes trapped by Q6 than TPZ at even lower concentration. In addition, by introducing ataxia-telangiectasia-mutated (ATM) kinase inhibitors caffeine and KU-60019, we displayed that Q6-triggered apoptosis was attributed, at least partially, to DNA double-strand breaks generated by the topo II-targeting effect. Collectively, Q6 stood out for its better hypoxia-selectivity and topo II-poisoning than the parental compound TPZ. All these data shed light on the research of Q6 as a promising hypoxia-activated prodrug candidate for human hepatocellular carcinoma therapy.
Collapse
Affiliation(s)
- Linlin Chang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaowen Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dandan Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Jian Ma
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Tianyi Zhou
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Rong Sheng
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yongzhou Hu
- ZJU-ENS Joint Laboratory of Medicinal Chemistry, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ying Du
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
20
|
Sheng R, Li S, Lin G, Shangguan S, Gu Y, Qiu N, Cao J, He Q, Yang B, Hu Y. Novel potent HIF-1 inhibitors for the prevention of tumor metastasis: discovery and optimization of 3-aryl-5-indazole-1,2,4-oxadiazole derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra15191k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Our newly synthesized HIF-1 inhibitors 4g and 4h are proved to be the most potential therapeutic agents against tumor metastasis.
Collapse
|
21
|
Mfuh AM, Larionov OV. Heterocyclic N-Oxides - An Emerging Class of Therapeutic Agents. Curr Med Chem 2015; 22:2819-57. [PMID: 26087764 PMCID: PMC4711945 DOI: 10.2174/0929867322666150619104007] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 05/22/2015] [Accepted: 06/18/2015] [Indexed: 11/22/2022]
Abstract
Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents.
Collapse
Affiliation(s)
| | - O V Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas, United States.
| |
Collapse
|
22
|
Liu XW, Cai TY, Zhu H, Cao J, Su Y, Hu YZ, He QJ, Yang B. Q6, a novel hypoxia-targeted drug, regulates hypoxia-inducible factor signaling via an autophagy-dependent mechanism in hepatocellular carcinoma. Autophagy 2013; 10:111-22. [PMID: 24220190 PMCID: PMC4389865 DOI: 10.4161/auto.26838] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Tumor hypoxia underlies treatment failure and yields more aggressive and metastatic cancer phenotypes. Although therapeutically targeting these hypoxic environments has been proposed for many years, to date no approaches have shown the therapeutic value to gain regulatory approval. Here, we demonstrated that a novel hypoxia-activated prodrug, Q6, exhibits potent antiproliferative efficacy under hypoxic conditions and induces caspase-dependent apoptosis in 2 hepatocellular carcinoma (HCC) cell lines, with no obvious toxicity being detected in 2 normal liver cell lines. Treatment with Q6 markedly downregulated HIF1A [hypoxia inducible factor 1, α subunit (basic helix-loop-helix transcription factor)] expression and transcription of the downstream target gene, VEGFA (vascular endothelial growth factor A). This dual hypoxia-targeted modulation mechanism leads to high potency in suppressing tumor growth and vascularization in 2 in vivo models. Intriguingly, it is the autophagy-dependent degradation pathway that plays a crucial role in Q6-induced attenuation of HIF1A expression, rather than the proteasome-dependent pathway, which is normally regarded as the predominant mechanism underlying posttranslational regulation of HIF1A. Inhibition of autophagy, either by short interfering RNA (siRNA) or by chemical inhibitors, blocked Q6-induced HIF1A degradation. Autophagic degradation of HIF1A was further confirmed by the observation that HIF1A coimmunoprecipitated with the ubiquitin-binding adaptor protein, SQSTM1, which is degraded through autophagy. Additionally, silencing of SQSTM1 inhibited Q6-induced HIF1A degradation. These findings suggest that the novel hypoxia-targeted agent, Q6, has potential clinical value in the therapy of HCC. Furthermore, the identification of autophagy as a crucial regulator of HIF1A provides new insights into hypoxia-related treatments.
Collapse
Affiliation(s)
- Xiao-Wen Liu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; Institute of Pharmacology and Toxicology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Tian-Yu Cai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; Institute of Pharmacology and Toxicology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; Institute of Pharmacology and Toxicology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; Institute of Pharmacology and Toxicology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Yi Su
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; Institute of Pharmacology and Toxicology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Yong-Zhou Hu
- ZJU-ENS Joint laboratory of Medicinal Chemistry; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Qiao-Jun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; Institute of Pharmacology and Toxicology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research; Institute of Pharmacology and Toxicology; College of Pharmaceutical Sciences; Zhejiang University; Hangzhou, China
| |
Collapse
|
23
|
|
24
|
Elshihawy H, Hammad M. Molecular modeling studies and synthesis of novel quinoxaline derivatives with potential anti-cancer activity as inhibitors of methionine synthase. Med Chem Res 2012. [DOI: 10.1007/s00044-012-0307-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|