1
|
Severov V, Tsvetkov V, Barinov N, Babenko V, Klinov D, Pozmogova G. Spontaneous DNA Synapsis by Forming Noncanonical Intermolecular Structures. Polymers (Basel) 2022; 14:polym14102118. [PMID: 35632001 PMCID: PMC9144187 DOI: 10.3390/polym14102118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/14/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
We report the spontaneous formation of DNA-DNA junctions in solution in the absence of proteins visualised using atomic force microscopy. The synapsis position fits with potential G-quadruplex (G4) sites. In contrast to the Holliday structure, these conjugates have an affinity for G4 antibodies. Molecular modelling was used to elucidate the possible G4/IM-synaptic complex structures. Our results indicate a new role of the intermolecular noncanonical structures in chromatin architecture and genomic rearrangement.
Collapse
Affiliation(s)
- Viacheslav Severov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Correspondence: (V.S.); (V.T.)
| | - Vladimir Tsvetkov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Institute of Biodesign and Complex System Modeling, I.M. Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
- A.V. Topchiev Institute of Petrochemical Synthesis, Leninsky prospect Str. 29, 119991 Moscow, Russia
- Correspondence: (V.S.); (V.T.)
| | - Nikolay Barinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Vladislav Babenko
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| | - Dmitry Klinov
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str.6, 117198 Moscow, Russia
| | - Galina Pozmogova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119435 Moscow, Russia; (N.B.); (V.B.); (D.K.); (G.P.)
| |
Collapse
|
2
|
Andrabi M, Hutchins AP, Miranda-Saavedra D, Kono H, Nussinov R, Mizuguchi K, Ahmad S. Predicting conformational ensembles and genome-wide transcription factor binding sites from DNA sequences. Sci Rep 2017; 7:4071. [PMID: 28642456 PMCID: PMC5481346 DOI: 10.1038/s41598-017-03199-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 04/26/2017] [Indexed: 12/24/2022] Open
Abstract
DNA shape is emerging as an important determinant of transcription factor binding beyond just the DNA sequence. The only tool for large scale DNA shape estimates, DNAshape was derived from Monte-Carlo simulations and predicts four broad and static DNA shape features, Propeller twist, Helical twist, Minor groove width and Roll. The contributions of other shape features e.g. Shift, Slide and Opening cannot be evaluated using DNAshape. Here, we report a novel method DynaSeq, which predicts molecular dynamics-derived ensembles of a more exhaustive set of DNA shape features. We compared the DNAshape and DynaSeq predictions for the common features and applied both to predict the genome-wide binding sites of 1312 TFs available from protein interaction quantification (PIQ) data. The results indicate a good agreement between the two methods for the common shape features and point to advantages in using DynaSeq. Predictive models employing ensembles from individual conformational parameters revealed that base-pair opening - known to be important in strand separation - was the best predictor of transcription factor-binding sites (TFBS) followed by features employed by DNAshape. Of note, TFBS could be predicted not only from the features at the target motif sites, but also from those as far as 200 nucleotides away from the motif.
Collapse
Affiliation(s)
- Munazah Andrabi
- National Institutes of Biomedical Innovation Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 5670085, Japan
- Faculty of Biology,Medicine and Health, Michael Smith Building, The University of Manchester, Dover Street, Manchester, M13 9PT, UK
| | - Andrew Paul Hutchins
- Department of Biology, Southern University of Science and Technology of China, Shenzhen, 518055, China
| | - Diego Miranda-Saavedra
- World Premier International (WPI) Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, 565-0871, Osaka, Japan
- Centro de Biología Molecular Severo Ochoa, CSIC/Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Department of Computer Science, University of Oxford Wolfson Building, Parks Road, OXFORD, OX1 3QD, United Kingdom
| | - Hidetoshi Kono
- Molecular Modeling and Simulation (MMS) Group, National Institutes for Quantum and Radiological Science and Technology, 8-1-7, Umemidai, Kizugawa, Kyoto, 619-0215, Japan
| | - Ruth Nussinov
- National Cancer Institute, Cancer and Inflammation Program, Leidos Biomedical Research, Inc. Frederick, Maryland, USA
- Department of Biochemistry and Human Genetics, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kenji Mizuguchi
- National Institutes of Biomedical Innovation Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 5670085, Japan
| | - Shandar Ahmad
- National Institutes of Biomedical Innovation Health and Nutrition, 7-6-8, Saito-Asagi, Ibaraki, Osaka, 5670085, Japan.
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, 110067, India.
| |
Collapse
|
3
|
Geny S, Moreno PMD, Krzywkowski T, Gissberg O, Andersen NK, Isse AJ, El-Madani AM, Lou C, Pabon YV, Anderson BA, Zaghloul EM, Zain R, Hrdlicka PJ, Jørgensen PT, Nilsson M, Lundin KE, Pedersen EB, Wengel J, Smith CIE. Next-generation bis-locked nucleic acids with stacking linker and 2'-glycylamino-LNA show enhanced DNA invasion into supercoiled duplexes. Nucleic Acids Res 2016; 44:2007-19. [PMID: 26857548 PMCID: PMC4797291 DOI: 10.1093/nar/gkw021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/08/2016] [Indexed: 12/17/2022] Open
Abstract
Targeting and invading double-stranded DNA with synthetic oligonucleotides under physiological conditions remain a challenge. Bis-locked nucleic acids (bisLNAs) are clamp-forming oligonucleotides able to invade into supercoiled DNA via combined Hoogsteen and Watson–Crick binding. To improve the bisLNA design, we investigated its mechanism of binding. Our results suggest that bisLNAs bind via Hoogsteen-arm first, followed by Watson–Crick arm invasion, initiated at the tail. Based on this proposed hybridization mechanism, we designed next-generation bisLNAs with a novel linker able to stack to adjacent nucleobases, a new strategy previously not applied for any type of clamp-constructs. Although the Hoogsteen-arm limits the invasion, upon incorporation of the stacking linker, bisLNA invasion is significantly more efficient than for non-clamp, or nucleotide-linker containing LNA-constructs. Further improvements were obtained by substituting LNA with 2′-glycylamino-LNA, contributing a positive charge. For regular bisLNAs a 14-nt tail significantly enhances invasion. However, when two stacking linkers were incorporated, tail-less bisLNAs were able to efficiently invade. Finally, successful targeting of plasmids inside bacteria clearly demonstrates that strand invasion can take place in a biologically relevant context.
Collapse
Affiliation(s)
- Sylvain Geny
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Pedro M D Moreno
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden INEB-Instituto de Engenharia Biomedica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Tomasz Krzywkowski
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Olof Gissberg
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Nicolai K Andersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Abdirisaq J Isse
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Amro M El-Madani
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Chenguang Lou
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Y Vladimir Pabon
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | | | - Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Rula Zain
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden Centre for Rare Diseases, Department of Clinical Genetics, Karolinska University Hospital, SE-171 76 Stockholm, Sweden
| | | | - Per T Jørgensen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Mats Nilsson
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-171 21, Sweden
| | - Karin E Lundin
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| | - Erik B Pedersen
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - Jesper Wengel
- Nucleic Acid Center, Department of Physics, Chemistry and Pharmacy, Nucleic Acid Centre, University of Southern Denmark, 5230 Odense, Denmark
| | - C I Edvard Smith
- Department of Laboratory Medicine, Karolinska Institutet and Clinical Research Center, Karolinska University Hospital Huddinge, SE-141 86 Stockholm, Sweden
| |
Collapse
|
4
|
Lomzov AA, Vorobjev YN, Pyshnyi DV. Evaluation of the Gibbs Free Energy Changes and Melting Temperatures of DNA/DNA Duplexes Using Hybridization Enthalpy Calculated by Molecular Dynamics Simulation. J Phys Chem B 2015; 119:15221-34. [PMID: 26569147 DOI: 10.1021/acs.jpcb.5b09645] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A molecular dynamics simulation approach was applied for the prediction of the thermal stability of oligonucleotide duplexes. It was shown that the enthalpy of the DNA/DNA complex formation could be calculated using this approach. We have studied the influence of various simulation parameters on the secondary structure and the hybridization enthalpy value of Dickerson-Drew dodecamer. The optimal simulation parameters for the most reliable prediction of the enthalpy values were determined. The thermodynamic parameters (enthalpy and entropy changes) of a duplex formation were obtained experimentally for 305 oligonucleotides of various lengths and GC-content. The resulting database was studied with molecular dynamics (MD) simulation using the optimized simulation parameters. Gibbs free energy changes and the melting temperatures were evaluated using the experimental correlation between enthalpy and entropy changes of the duplex formation and the enthalpy values calculated by the MD simulation. The average errors in the predictions of enthalpy, the Gibbs free energy change, and the melting temperature of oligonucleotide complexes were 11%, 10%, and 4.4 °C, respectively. We have shown that the molecular dynamics simulation gives a possibility to calculate the thermal stability of native DNA/DNA complexes a priori with an unexpectedly high accuracy.
Collapse
Affiliation(s)
- Alexander A Lomzov
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Yury N Vorobjev
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| | - Dmitrii V Pyshnyi
- Institute of Chemical Biology and Fundamental Medicine , Novosibirsk 630090, Russia.,Novosibirsk State University , Novosibirsk 630090, Russia
| |
Collapse
|