1
|
Aung WT, Kopongpanich P, Boonkanokwong V. Supersaturable Solid Self-microemulsifying Delivery Systems of Astaxanthin via Spray Drying: Effects of Polymers and Solid Carriers. AAPS PharmSciTech 2023; 24:218. [PMID: 37891405 DOI: 10.1208/s12249-023-02671-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
This study aimed to develop the solid astaxanthin-encapsulated self-microemulsifying delivery system (S-AST SMEDS) spray-dried particles and investigate the effect of materials in formulations on product characteristics. The optimized liquid AST SMEDS incorporated with a polymeric precipitation inhibitor (PI) was solidified with a solid carrier by spray drying. Physicochemical properties of S-AST SMEDS spray-dried powders including morphology, particle size and distribution, flowability, solid-state characters, moisture content, yield, loading capacity of AST, and reconstitution properties were examined. Polymeric PIs seemed to have an impact on particles' size, surface smoothness, and flowability while solid carriers had an effect on the particles' moisture content and droplet size of microemulsions obtained after reconstitution. The amount of AST encapsulated in S-SMEDS powder was influenced by both polymer and solid carriers. Dissolution and short-term stability of S-AST SMEDS were also studied. Our developed spray-dried solid SMEDS particles helped enhance AST dissolution rate.
Collapse
Affiliation(s)
- Wai Thet Aung
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Peerawas Kopongpanich
- Pharmaceutical Product Development and Technology Transfer (PDTT) Unit, Chulalongkorn University Drug and Health Products Innovation Promotion Center (CUDHIP), Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand
| | - Veerakiet Boonkanokwong
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phayathai Road, Wang Mai, Pathum Wan, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Kovačević M, German Ilić I, Bolko Seljak K, Zvonar Pobirk A. High-Shear Wet Granulation of SMEDDS Based on Mesoporous Carriers for Improved Carvedilol Solubility. Pharmaceutics 2022; 14:pharmaceutics14102077. [PMID: 36297512 PMCID: PMC9606924 DOI: 10.3390/pharmaceutics14102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Mesoporous carriers are a convenient choice for the solidification of self-microemulsifying drug delivery systems (SMEDDS) designed to improve the solubility of poorly water-soluble drugs. They are known for high liquid load capacity and the ability to maintain characteristics of dry, free-flowing powders. Therefore, five different mesoporous carriers were used for the preparation of carvedilol-loaded SMEDDS granules by wet granulation methods—in paten (manually) and using a high-shear (HS) granulator. Granules with the highest SMEDDS content (63% and 66% of total granules mass, respectively) and suitable flow properties were obtained by Syloid® 244FP and Neusilin® US2. SMEDDS loaded granules produced by HS granulation showed superior flow characteristics compared to those obtained manually. All SMEDDS granules exhibited fast in vitro release, with 93% of carvedilol releasing from Syloid® 244FP-based granules in 5 min. Upon compaction into self-microemulsifying tablets, suitable tablet hardness and very fast disintegration time were achieved, thus producing orodispersible tablets. The compaction slightly slowed down the carvedilol release rate; nevertheless, upon 1 h (at pH 1.2) or 4 h (at pH 6.8) of in vitro dissolution testing, the amount of released drug was comparable with granules, confirming the suitability of orodispersible tablets for the production of the SMEDDS loaded single unit oral dosage form.
Collapse
|
3
|
Zupančič O, Spoerk M, Paudel A. Lipid-based solubilization technology via hot melt extrusion: promises and challenges. Expert Opin Drug Deliv 2022; 19:1013-1032. [PMID: 35943158 DOI: 10.1080/17425247.2022.2112173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Self-emulsifying drug delivery systems (SEDDS) are a promising strategy to improve the oral bioavailability of poorly water-soluble drugs (PWSD). The excipients of SEDDS enable permeation through the mucus and gastro-intestinal barrier, inhibiting efflux transporters (e.g. P-glycoprotein) of drugs. Poor drug loading capacity and formulation instability are the main setbacks of traditional SEDDS. The use of polymeric precipitation inhibitors was shown to create supersaturable SEDDS with increased drug payload, and their solidification can help to overcome the instability challenge. As an alternative to several existing SEDDS solidification technologies, hot melt extrusion (HME) holds the potential for lean and continuous manufacturing of supersaturable solid-SEDDS. Despite being ubiquitously applied in solid lipid and polymeric processing, HME has not yet been widely considered for the preparation of SEDDS. AREAS COVERED The review begins with the rationale why SEDDS as the preferred lipid-based delivery systems (LBDS) is suitable for the oral delivery of PWSD and discusses the common barriers to oral administration. The potential of LBDS to surmount them is discussed. SEDDS as the flagship of LBDS for PWSD is proposed with a special emphasis on solid-SEDDS. Finally, the opportunities and challenges of HME from the lipid-based excipient (LBE) processing and product performance standpoint are highlighted. EXPERT OPINION HME can be a continuous, solvent-free, cost-effective, and scalable technology for manufacturing solid supersaturable SEDDS. Several critical formulations and process parameters in successfully preparing SEDDS via HME are identified.
Collapse
Affiliation(s)
- Ožbej Zupančič
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| | - Amrit Paudel
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria.,Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|
4
|
DoE-Based Solid Self-microemulsifying Drug Delivery System (S-SMEDDS) Approach for Improving the Dissolution Properties of Raltegravir Potassium. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09621-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Seo EB, du Plessis LH, Viljoen JM. Solidification of Self-Emulsifying Drug Delivery Systems as a Novel Approach to the Management of Uncomplicated Malaria. Pharmaceuticals (Basel) 2022; 15:ph15020120. [PMID: 35215233 PMCID: PMC8877057 DOI: 10.3390/ph15020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/14/2022] [Accepted: 01/15/2022] [Indexed: 01/27/2023] Open
Abstract
Malaria affects millions of people annually, especially in third-world countries. The mainstay of treatment is oral anti-malarial drugs and vaccination. An increase in resistant strains of malaria parasites to most of the current anti-malarial drugs adds to the global burden. Moreover, existing and new anti-malarial drugs are hampered by significantly poor aqueous solubility and low permeability, resulting in low oral bioavailability and patient noncompliance. Lipid formulations are commonly used to increase solubility and efficacy and decrease toxicity. The present review discusses the findings from studies focusing on specialised oral lipophilic drug delivery systems, including self-emulsifying drug delivery systems (SEDDSs). SEDDSs facilitate the spontaneous formation of liquid emulsions that effectively solubilise the incorporated drugs into the gastrointestinal tract and thereby improve the absorption of poorly-soluble anti-malaria drugs. However, traditional SEDDSs are normally in liquid dosage forms, which are delivered orally to the site of absorption, and are hampered by poor stability. This paper discusses novel solidification techniques that can easily and economically be up-scaled due to already existing industrial equipment that could be utilised. This method could, furthermore, improve product stability and patient compliance. The possible impact that solid oral SEDDSs can play in the fight against malaria is highlighted.
Collapse
|
6
|
Dhaval M, Vaghela P, Patel K, Sojitra K, Patel M, Patel S, Dudhat K, Shah S, Manek R, Parmar R. Lipid-based emulsion drug delivery systems - a comprehensive review. Drug Deliv Transl Res 2021; 12:1616-1639. [PMID: 34609731 DOI: 10.1007/s13346-021-01071-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
Lipid-based emulsion system - a subcategory of emulsion technology, has emerged as an enticing option to improve the solubility of the steadily rising water-insoluble candidates. Along with enhancing solubility, additional advantages such as improvement in permeability, protection against pre-systemic metabolism, ease of manufacturing, and easy to scale-up have made lipid-based emulsion technology very popular among academicians and manufacturers. The present article provides a comprehensive review regarding various critical properties of lipid-based emulsion systems, such as microemulsion, nanoemulsion, SMEDDS (self microemulsifying drug delivery system), and SNEDDS (self nanoemulsifying drug delivery system). The present article also explains in detail the similarities and differences between them, the stabilization mechanism, methods of preparation, excipients used to prepare them, and evaluation techniques. Subtle differences between nearly related terminologies such as microemulsion and nanoemulsion, SMEDDS, and SNEDDS are also explained in detail to clarify the basic differences. The present article also gives in-depth information regarding the chemical structure of various lipidic excipients, various possible chemical modifications to modify their inherent properties, and their regulatory status for rational selection.
Collapse
Affiliation(s)
- Mori Dhaval
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India.
| | - Poonam Vaghela
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Kajal Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Keshvi Sojitra
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Mohini Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Sushma Patel
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Kiran Dudhat
- K. V. Virani Institute of Pharmacy and Research Centre, Badhada, Gujarat, India
| | - Sunny Shah
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Ravi Manek
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| | - Ramesh Parmar
- B.K. Mody Government Pharmacy College, Polytechnic Campus, Near Ajidam, Rajkot, Gujarat, India
| |
Collapse
|
7
|
Mandić J, Kosmač I, Kovačević M, Hodnik B, Hodnik Ž, Vrečer F, Gašperlin M, Perissutti B, Zvonar Pobirk A. Evaluation of solid carvedilol-loaded SMEDDS produced by the spray drying method and a study of related substances. Int J Pharm 2021; 605:120783. [PMID: 34111547 DOI: 10.1016/j.ijpharm.2021.120783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/16/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
In this study, various formulations of solidified carvedilol-loaded SMEDDS with high SMEDDS loading (up to 67% w/w) were produced with the spray drying process using various porous silica-based carriers. The process yield was improved with higher atomization gas flow rate during the spray drying process and with prolonged mixing time of dispersion of liquid SMEDDS and solid porous carriers prior to the spray drying process. Depending on the choice of the carrier and the SMEDDS:carrier ratio in solid SMEDDS, different drug loading, self-microemulsifying properties, drug release rates, and released drug fractions were obtained. The products exhibited fast drug release due to preserved self-microemulsifying properties and the absence of crystalline carvedilol, which was confirmed with XRD and Raman mapping. A decrease in drug content during the stability study was observed and investigated. This was at least partially attributed to the chemical degradation of the drug. Key degradation products determined by the LC-MS method were amides formed by in situ reaction of carvedilol with fatty acids present in the oily phase of SMEDDS.
Collapse
Affiliation(s)
- J Mandić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - I Kosmač
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - M Kovačević
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - B Hodnik
- Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Ž Hodnik
- Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - F Vrečer
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d, Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - M Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - B Perissutti
- University of Trieste, Dept. of Chemical and Pharmaceutical Sciences, P.le Europa 1, Trieste, Italy
| | - A Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
8
|
Tran P, Park JS. Recent trends of self-emulsifying drug delivery system for enhancing the oral bioavailability of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Mahajan S, Singh D, Sharma R, Singh G, Bedi N. pH-Independent Dissolution and Enhanced Oral Bioavailability of Aripiprazole-Loaded Solid Self-microemulsifying Drug Delivery System. AAPS PharmSciTech 2021; 22:24. [PMID: 33400035 DOI: 10.1208/s12249-020-01882-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/18/2020] [Indexed: 12/27/2022] Open
Abstract
The present study pursued the systematic development of a stable solid self-emulsifying drug delivery system (SMEDDS) of an atypical antipsychotic drug, aripiprazole (APZ), which exhibits poor aqueous solubility and undergoes extensive p-glycoprotein efflux and hepatic metabolism. Liquid SMEDDS excipients were selected on the basis of solubility studies, and the optimum ratio of surfactant/co-surfactant was determined using pseudo-ternary phase diagrams. The prepared formulations were subjected to in vitro characterization studies to facilitate the selection of optimum liquid SMEDD formulation containing 30% Labrafil® M 1944 CS, 46.7% Cremophor® EL and 23.3% PEG 400 which were further subjected to solidification using maltodextrin as a hydrophilic carrier. The optimized solid SMEDDS was extensively evaluated for stability under accelerated conditions, dissolution at various pH and pharmacokinetic profile. Solid-state attributes of the optimized solid SMEDDS indicated a marked reduction in crystallinity of APZ and uniform adsorption of liquid SMEDDS. Stability study of the solid SMEDDS demonstrated that the developed formulation retained its stability during the accelerated storage conditions. Both the optimized liquid and solid SMEDDS exhibited enhanced dissolution rate which was furthermore independent of the pH of the dissolution medium. Oral bioavailability studies in Sprague-Dawley rats confirmed quicker and greater extent of absorption with solid SMEDDS as evident from the significant reduction in Tmax in case of solid SMEDDS (0.83 ± 0.12 h) as compared with commercial tablet (3.33 ± 0.94 h). The results of the present investigation indicated the development of a stable solid SMEDDS formulation of APZ with enhanced dissolution and absorption attributes.
Collapse
|
10
|
Buya AB, Beloqui A, Memvanga PB, Préat V. Self-Nano-Emulsifying Drug-Delivery Systems: From the Development to the Current Applications and Challenges in Oral Drug Delivery. Pharmaceutics 2020; 12:E1194. [PMID: 33317067 PMCID: PMC7764143 DOI: 10.3390/pharmaceutics12121194] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 12/31/2022] Open
Abstract
Approximately one third of newly discovered drug molecules show insufficient water solubility and therefore low oral bio-availability. Self-nano-emulsifying drug-delivery systems (SNEDDSs) are one of the emerging strategies developed to tackle the issues associated with their oral delivery. SNEDDSs are composed of an oil phase, surfactant, and cosurfactant or cosolvent. SNEDDSs characteristics, their ability to dissolve a drug, and in vivo considerations are determinant factors in the choice of SNEDDSs excipients. A SNEDDS formulation can be optimized through phase diagram approach or statistical design of experiments. The characterization of SNEDDSs includes multiple orthogonal methods required to fully control SNEDDS manufacture, stability, and biological fate. Encapsulating a drug in SNEDDSs can lead to increased solubilization, stability in the gastro-intestinal tract, and absorption, resulting in enhanced bio-availability. The transformation of liquid SNEDDSs into solid dosage forms has been shown to increase the stability and patient compliance. Supersaturated, mucus-permeating, and targeted SNEDDSs can be developed to increase efficacy and patient compliance. Self-emulsification approach has been successful in oral drug delivery. The present review gives an insight of SNEDDSs for the oral administration of both lipophilic and hydrophilic compounds from the experimental bench to marketed products.
Collapse
Affiliation(s)
- Aristote B. Buya
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Ana Beloqui
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| | - Patrick B. Memvanga
- Pharmaceutics and Phytopharmaceutical Drug Development Research Group, Faculty of Pharmaceutical Sciences, University of Kinshasa, Kinshasa XI BP 212, Democratic Republic of the Congo;
| | - Véronique Préat
- Advanced Drug Delivery and Biomaterials, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue Mounier 73, B1.73.12, 1200 Brussels, Belgium; (A.B.B.); (A.B.)
| |
Collapse
|
11
|
Jo K, Kim H, Khadka P, Jang T, Kim SJ, Hwang SH, Lee J. Enhanced intestinal lymphatic absorption of saquinavir through supersaturated self-microemulsifying drug delivery systems. Asian J Pharm Sci 2020; 15:336-346. [PMID: 32636951 PMCID: PMC7327769 DOI: 10.1016/j.ajps.2018.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/23/2018] [Accepted: 11/17/2018] [Indexed: 11/30/2022] Open
Abstract
The therapeutic potential of saquinavir, a specific inhibitor of human immunodeficiency virus (HIV)-1 and HIV-2 protease enzymes, has been largely limited because of a low solubility and consequnt low bioavailability. Thus, we aimed to design a supersaturated self-microemulsifying drug delivery system (S-SMEDDS) that can maintain a high concentration of saquinavir in gastro-intestinal fluid thorugh inhibiting the drug precipitation to enhance the lymphatic transport of saquinavir and to increase the bioavailability of saquinavir considerably. Solubilizing capacity of different oils, surfactants, and cosurfactants for saquinavir was evaluated to select optimal ingredients for preparation of SMEDDS. Through the construction of pseudo-ternary phase diagram, SMEDDS formulations were established. A polymer as a precipitation inhibitor was selected based on its viscosity and drug precipitation inhibiting capacity. The S-SMEDDS and SMEDDS designed were administered at an equal dose to rats. At predetermined time points, levels of saquinavir in lymph collected from the rats were assessed. SMEDDS prepared presented a proper self-microemulsification efficiency and dispersion stability. The S-SMEDDS fabricated using the SMEDDS and hydroxypropyl methyl cellulose 2910 as a precipitation inhibitor exhibited a signficantly enhanced solubilizing capacity for saquinavir. The drug concentration in a simulated intestinal fluid evaluated with the S-SMEDDS was also maintained at higher levels for prolonged time than that examined with the SMEDDS. The S-SMEDDS showed a considerably enhanced lymphatic absoprtion of saquinavir in rats compared to the SMEDDS. Therefore, the S-SMEDDS would be usefully exploited to enhance the lymphatic absorption of hydrophobic drugs that need to be targeted to the lymphatic system.
Collapse
Affiliation(s)
- Kanghee Jo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyeongmin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Prakash Khadka
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Taejun Jang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Soo Jin Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Seong-Ha Hwang
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jaehwi Lee
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Development and characterization of curcumin-loaded solid self-emulsifying drug delivery system (SEDDS) by spray drying using Soluplus® as solid carrier. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Mandić J, Pirnat V, Luštrik M, German Ilić I, Vrečer F, Gašperlin M, Zvonar Pobirk A. Solidification of SMEDDS by fluid bed granulation and manufacturing of fast drug release tablets. Int J Pharm 2020; 583:119377. [PMID: 32339633 DOI: 10.1016/j.ijpharm.2020.119377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/05/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
Solidification of self-microemulsifying drug delivery systems (SMEDDS) is a rising experimental field with important potential for pharmaceutical industry, however fluid-bed granulation with SMEDDS is yet an unexplored solidification technique. The aim of the study was to solidify carvedilol-loaded SMEDDS utilizing fluid bed granulation process and to investigate how the formulation variables (type of solid carrier, optimization of granulation dispersion) and fluid-bed granulation process variables can be optimized in order to achieve suitable agglomeration process, high drug loading and appropriate product characteristics. Obtained granulates exhibited complete drug release, comparable to liquid SMEDDS and superior to crystalline carvedilol, nevertheless compromise between large SMEDDS loading and appropriate flow properties of the granules has to be made. Representative granulates with highest drug loading were further compressed into tablets. It was shown that the optimal excipient selection of compression mixture and compression force can lead to fast carvedilol release even from the tablets. Selfmicroemulsifying properties were not impaired neither after the solidification process and nor after the compression of solid SMEDDS into tablets. This suggests that fluid-bed granulation with SMEDDS offers a perspective alternative for solidification of the SMEDDS, enabling preservation of self-microemulsifying properties, acceptable drug loading and complete drug release.
Collapse
Affiliation(s)
- Jelena Mandić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d., Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Vesna Pirnat
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Matevž Luštrik
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Ilija German Ilić
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Franc Vrečer
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia; Krka, d.d., Novo mesto, Šmarješka cesta 6, 8000 Novo mesto, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Alenka Zvonar Pobirk
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
14
|
Comparison of 1-Palmitoyl-2-Linoleoyl-3-Acetyl-Rac-Glycerol-Loaded Self-Emulsifying Granule and Solid Self-Nanoemulsifying Drug Delivery System: Powder Property, Dissolution and Oral Bioavailability. Pharmaceutics 2019; 11:pharmaceutics11080415. [PMID: 31426411 PMCID: PMC6723086 DOI: 10.3390/pharmaceutics11080415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/05/2023] Open
Abstract
The main objective of this study was to compare the powder property, dissolution and bioavailability of 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG)-loaded self-emulsifying granule system (SEGS) and solid self-nanoemulsifying drug delivery system (SNEDDS). Various SEGS formulations were prepared, and the effect of surfactant and binder on the drug solubility in them, leading to selecting sodium lauryl sulphate (SLS) and hydroxyl propyl methyl cellulose (HPMC). The SEGS and SNEDDS were prepared with PLAG/SLS/HPMC/calcium silicate/microcrystalline cellulose at the weight ratio of 1:0.25:0.1:0.5:3 employing the fluid bed granulation and spray-drying technique, respectively. Their powder properties were compared in terms of flow ability, emulsion droplet size, scanning electron microscopy, and powder X-ray diffraction. Furthermore, the solubility, dissolution, and oral bioavailability in rats of the SEGS were assessed in comparison with the SNEDDS. The SEGS and SNEDDS enhanced the solubility of the drug approximately 36- and 32-fold as compared with the drug alone; but they had no differences. The crystalline drug may exist in both the calcium silicate and microcrystalline cellulose (MCC) in the SEGS, but only in the calcium silicate in the SNEDDS. The SEGS had considerably improved the flow ability (Hausner ratio, 1.23 vs. 1.07; Carr index, 19.8 vs. 43.5%) and drug dissolution as compared with the SNEDDS. The SEGS and SNEDDS with double peak profiles, unlike the single peak of drug alone, showed a significantly higher plasma concentration and area under the curve (AUC), as compared with drug alone. Although they were not significantly different, the SEGS gave higher AUC than did the SNEDDS, suggesting its enhanced oral bioavailability of PLAG. Thus, the SEGS could be used as a powerful oral dosage form to improve the flow ability and oral bioavailability of PLAG, an oily drug.
Collapse
|
15
|
Mandić J, Luštrik M, Vrečer F, Gašperlin M, Zvonar Pobirk A. Solidification of carvedilol loaded SMEDDS by swirling fluidized bed pellet coating. Int J Pharm 2019; 566:89-100. [DOI: 10.1016/j.ijpharm.2019.05.055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/06/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
|
16
|
Ha ES, Lee SK, Choi DH, Jeong SH, Hwang SJ, Kim MS. Application of diethylene glycol monoethyl ether in solubilization of poorly water-soluble drugs. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2019. [DOI: 10.1007/s40005-019-00454-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Shaker DS, Ismail S, Hamed S, El-Shishtawy EM. Butoconazole nitrate vaginal sponge: Drug release and antifungal efficacy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Bolko Seljak K, Ilić IG, Gašperlin M, Zvonar Pobirk A. Self-microemulsifying tablets prepared by direct compression for improved resveratrol delivery. Int J Pharm 2018; 548:263-275. [PMID: 29969713 DOI: 10.1016/j.ijpharm.2018.06.065] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 02/07/2023]
Abstract
The purpose of this study was to develop self-microemulsifying (SME-) tablets to improve resveratrol solubility whilst delivering resveratrol in a preferred tablet dosage form. Resveratrol was dissolved in liquid self-microemulsifying drug delivery system (SMEDDS) (10% w/w) and solidified through adsorption on several different solid carriers. Two ranges of synthetic amorphous silica (Sylysia® 290, 350, 470, 580; Syloid® 244FP, AL-1FP) as well as granulated magnesium aluminometasilicate (Neusilin® US2) were screened for their SMEDDS adsorbent capacity. The most efficient carrier from every range was chosen for further SME-tablet development. To counteract the high ratio of liquid in SME-tablets, additional dry binders (microcrystalline cellulose, copovidone) were added to the tableting mixture, as well as superdisintegrant (croscarmellose sodium) and lubricant (magnesium stearate). Finally, approx. 600 mg tablets were directly pressed using 12 mm flat face punch, containing 41.75% SMEDDS. Overall, all tablets exhibited sufficient hardness (>50 N), although it was negatively affected by higher compression force. Tablets with Neusilin® US2 proved to have highest hardness, as granulated structure of Neusilin® US2 provided best compaction properties needed for successful direct compression of tablets. All prepared SME tablet formulations disintegrated in under 10 min and formed microemulsions (droplet size < 100 nm) upon dilution with water, with Neusilin® US2 tablets exhibiting the lowest droplet size (<30 nm). While conventional dissolution test indicated incomplete resveratrol release from solid carriers in both pH 1.2 and 6.8 media, no difference fatty acid amount titrated during fasted state in vitro lipolysis between liquid and solid SMEDDS was observed. Moreover, accelerated stability tests confirmed over 90% of trans-resveratrol remained in solid SMEDDS following 90 days at 40 °C, with no crystallization of resveratrol observed during that time. To sum up, through adsorption on solid carriers, in particular Neusilin® US2, SMEDDS was successfully transformed into a directly compressible mixture and tableted without the loss of its self-microemulsifying ability.
Collapse
Affiliation(s)
| | - Ilija German Ilić
- Univerza v Ljubljani, Fakulteta za farmacijo, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Mirjana Gašperlin
- Univerza v Ljubljani, Fakulteta za farmacijo, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Alenka Zvonar Pobirk
- Univerza v Ljubljani, Fakulteta za farmacijo, Aškerčeva 7, 1000 Ljubljana, Slovenia.
| |
Collapse
|
19
|
Londhe V, Shirsat R. Formulation and Characterization of Fast-Dissolving Sublingual Film of Iloperidone Using Box-Behnken Design for Enhancement of Oral Bioavailability. AAPS PharmSciTech 2018; 19:1392-1400. [PMID: 29396734 DOI: 10.1208/s12249-018-0954-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/08/2018] [Indexed: 11/30/2022] Open
Abstract
Iloperidone is a second-generation antipsychotic drug which is used for the treatment of schizophrenia and has very low aqueous solubility and bioavailability. This drug also undergoes first-pass metabolism. The aim of this work is to formulate fast-dissolving sublingual films of iloperidone to improve its bioavailability. Sublingual films were prepared by solvent casting method. Hydroxypropyl methyl cellulose E5, propylene glycol 400, and transcutol HP were optimized using Box-Behnken three-level statistical design on the basis of disintegration time and folding endurance of films. Iloperidone:hydroxypropyl-β-cyclodextrin kneaded complex was used in films instead of plain drug due to its low solubility. Optimized film was further evaluated for drug content, pH, dissolution studies, ex vivo permeation studies, and pharmacokinetic studies in rats. The optimized film disintegrated within 30 s. The in vitro dissolution of the film showed 80.3 ± 3.4% drug dissolved within first 5 min. In ex vivo permeation studies using sublingual tissue, flux achieved within first 15 min by film was around 117.1 ± 0.35 (mcg/cm2/h) which was ten times more than that of plain drug. This formulation showed excellent uniformity. AUC and Cmax of film were significantly higher (p < 0.001) as compared to plain drug and relative bioavailability of the films was 148% when compared to the plain drug. Thus, this study showed optimized fast-dissolving sublingual film to improve permeation and bioavailability of iloperidone. Fast-dissolving films will be customer-friendly approach for geadiatric schizophrenic patients.
Collapse
|
20
|
Mandić J, Zvonar Pobirk A, Vrečer F, Gašperlin M. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. Int J Pharm 2017; 533:335-345. [DOI: 10.1016/j.ijpharm.2017.05.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/23/2017] [Accepted: 05/16/2017] [Indexed: 12/19/2022]
|
21
|
Čerpnjak K, Pobirk AZ, Vrečer F, Gašperlin M. Tablets and minitablets prepared from spray-dried SMEDDS containing naproxen. Int J Pharm 2015; 495:336-346. [DOI: 10.1016/j.ijpharm.2015.08.099] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 08/28/2015] [Accepted: 08/29/2015] [Indexed: 11/28/2022]
|
22
|
Čerpnjak K, Zvonar A, Vrečer F, Gašperlin M. Development of a solid self-microemulsifying drug delivery system (SMEDDS) for solubility enhancement of naproxen. Drug Dev Ind Pharm 2015; 41:1548-57. [PMID: 25308746 DOI: 10.3109/03639045.2014.971031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CONTEXT Comparative evaluation of liquid and solid self-microemulsifying drug delivery systems (SMEDDS) as promising approaches for solubility enhancement. OBJECTIVE The aim of this work was to develop, characterize, and evaluate a solid SMEDDS prepared via spray-drying of a liquid SMEDDS based on Gelucire® 44/14 to improve the solubility and dissolution rate of naproxen. MATERIAL AND METHODS Various oils and co-surfactants in combination with Gelucire® 44/14 were evaluated during excipient selection study, solubility testing, and construction of (pseudo)ternary diagrams. The selected system was further evaluated for naproxen solubility, self-microemulsification ability, and in vitro dissolution of naproxen. In addition, its transformation into a solid SMEDDS by spray-drying using maltodextrin as a solid carrier was performed. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to evaluate the physical characteristics of the solid SMEDDS obtained. RESULTS The selected formulation of SMEDDS was comprised of Miglyol 812®, Peceol™, Gelucire® 44/14, and Solutol® HS 15. The liquid and solid SMEDDS formed a microemulsion after dilution with comparable average droplet size and exhibited uniform droplet size distribution. In the solid SMEDDS, liquid SMEDDS was adsorbed onto the surface of maltodextrin and formed smooth granular particles with the encapsulated drug predominantly in a dissolved state and partially in an amorphous state. Overall, incorporation of naproxen in SMEDDS, either liquid or solid, resulted in improved solubility and dissolution rate compared to pure naproxen. CONCLUSION This study indicates that a liquid and solid SMEDDS is a strategy for solubility enhancement in the future development of orally delivered dosage forms.
Collapse
|
23
|
Čerpnjak K, Zvonar A, Vrečer F, Gašperlin M. Characterization of naproxen-loaded solid SMEDDSs prepared by spray drying: The effect of the polysaccharide carrier and naproxen concentration. Int J Pharm 2015; 485:215-28. [DOI: 10.1016/j.ijpharm.2015.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 12/01/2022]
|
24
|
Kumar D, Thipparaboina R, Modi SR, Bansal AK, Shastri NR. Effect of HPMC concentration on crystal habit of nifedipine. CrystEngComm 2015. [DOI: 10.1039/c4ce02164a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Non-polar surface area increased and polar energy decreased resulting in reduction in dissolution rate upon increasing HPMC concentration, from 0% w/v (Nif-0) to 0.6% w/v (Nif-6).
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education & Research (NIPER)
- Hyderabad, India
| | - Rajesh Thipparaboina
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education & Research (NIPER)
- Hyderabad, India
| | - Sameer R Modi
- National Institute of Pharmaceutical Education & Research (NIPER)
- SAS Nagar, India
| | - Arvind K Bansal
- National Institute of Pharmaceutical Education & Research (NIPER)
- SAS Nagar, India
| | - Nalini R Shastri
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education & Research (NIPER)
- Hyderabad, India
| |
Collapse
|
25
|
Hassan TH, Metz H, Mäder K. Novel semisolid SNEDDS based on PEG-30-dipolyhydroxystearate: development and characterization. Int J Pharm 2014; 477:506-18. [PMID: 25445530 DOI: 10.1016/j.ijpharm.2014.10.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/27/2014] [Accepted: 10/28/2014] [Indexed: 12/11/2022]
Abstract
The aim of the current study is to explore the potential of PEG-30-dipolyhydroxystearate (Cithrol(®) DPHS) and Soluplus(®) as ingredients in novel semisolid self-nanoemulsifying drug delivery systems (SNEDDS). Semisolid SNEDDS consisting of Cithrol(®) DPHS, Capmul(®) MCM and Kolliphor(®) HS 15 were successfully prepared. The formulations were comprehensively characterized by photon correlation spectroscopy (PCS), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), electron spin resonance (ESR) and proton nuclear magnetic resonance ((1)H NMR). All formulations were semisolid at room temperature and melted at body temperature. The hydrodynamic diameter of the dispersions was less than 25 nm. The ratio Cithrol(®) DPHS:Capmul(®) MCM was found to be critical for the dispersibility and the stability of the formed nanoemulsion.
Collapse
Affiliation(s)
- Tamer H Hassan
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany
| | - Hendrik Metz
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany
| | - Karsten Mäder
- Department of Pharmaceutics and Biopharmaceutics, Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, D-06120 Halle (Saale), Germany.
| |
Collapse
|
26
|
Tang Y, Zhang H, Lu X, Jiang L, Xi X, Liu J, Zhu J. Development and evaluation of a dry powder formulation of liposome-encapsulated oseltamivir phosphate for inhalation. Drug Deliv 2013; 22:608-18. [DOI: 10.3109/10717544.2013.863526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
27
|
Tan A, Rao S, Prestidge CA. Transforming Lipid-Based Oral Drug Delivery Systems into Solid Dosage Forms: An Overview of Solid Carriers, Physicochemical Properties, and Biopharmaceutical Performance. Pharm Res 2013; 30:2993-3017. [DOI: 10.1007/s11095-013-1107-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 06/04/2013] [Indexed: 10/26/2022]
|