1
|
Hormozi M, Moulaee M, Alaee M, Beigi Boroujeni N, Beigi Boroujeni M. Effect of Silymarin on Expression of micro-RNA-21 and Matrix Metalloproteinase (MMP) 2 and 9 and Tissue Inhibitors of Matrix Metalloproteinase (TIMP) 1 and 2 in Hepatocellular Carcinoma Cell Line (HepG2). Med J Islam Repub Iran 2024; 38:78. [PMID: 39416370 PMCID: PMC11480674 DOI: 10.47176/mjiri.38.78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Indexed: 10/19/2024] Open
Abstract
Background Silymarin is a flavonolignan that has various medicinal properties such as liver protection, antioxidant, anti-inflammatory, anti-cancer and heart protection activities. The aim of this study was to investigate the effect of silymarin on the expression level of mir-21, matrix metalloproteinase(MMP), and their tissue inhibitors (TIMPs) in liver cancer HepG2 cell line. Methods An in-vitro experimental study was conducted on the human HepG2 cells prepared from Pasteur Institute, Tehran, Iran. Four concentrations of 0 (control), 50, 100, and 150 µM of silymarin were considered as the study groups according to the MTT assay. Gene expression study was performed using real-time PCR. The studied genes were mir-21, MMP-2, MMP-9, TIMP-1 and TIMP-2. In addition, some apoptosis-related genes including BAX, BCL2 and Caspase3 (CAS3) were investigated. GAPDH was used as an internal control. Relative expression was calculated by REST program using t-test on the logarithm of expression considering a significance level of 0.05. Results The significant up-regulations consisted of TIMP genes for doses 100 µM and 150 µM, and the apoptosis activating genes CAS3 and BAX (P < 0.05). The significant down-regulations consisted of MMP-9 in all concentrations, MMP-2 in concentration 100 µM, and the apoptosis inhibitory gene BCL2 in concentrations 50 µM and 100 µM (P < 0.05). In addition, mir-21 as an oncogenic micro-RNA showed significant down-regulation for all doses (P < 0.05). All the comparisons were with the control group. Conclusion The present study showed that silymarin could affect the HepG2 cell line at the gene expression level via increasing apoptosis and changing the expression of MMP-2, MMP-9, TIMP-1, TIMP-2 and mir-21. These findings were in line with each other and in favor of suppression of tumoral activity in this cell line.
Collapse
Affiliation(s)
- Maryam Hormozi
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Meysam Moulaee
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mahdi Alaee
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Nasim Beigi Boroujeni
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mandana Beigi Boroujeni
- Razi Herbal Medicines Research Center, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
2
|
Zhou X, Chen X, Fan L, Dong H, Ren Y, Chen X. Stepwise Diagnostic Product Ions Filtering Strategy for Rapid Discovery of Diterpenoids in Scutellaria barbata Based on UHPLC-Q-Exactive-Orbitrap-MS. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238185. [PMID: 36500290 PMCID: PMC9736491 DOI: 10.3390/molecules27238185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/26/2022]
Abstract
Diterpenoids are considered the major bioactive components in Scutellaria barbata to treat cancer and inflammation, but few comprehensive profiling studies of diterpenoids have been reported. Herein, a stepwise diagnostic product ions (DPIs) filtering strategy for efficient and targeted profiling of diterpenoids in Scutellaria barbata was developed using UHPLC-Q-Exactive-Orbitrap-MS. After UHPLC-HRMS/MS analysis of six diterpenoid reference standards, fragmentation behaviors of these references were studied to provide DPIs. Then, stepwise DPIs filtering aimed to reduce the potential interferences of matrix ions and achieve more chromatographic peaks was conducted to rapidly screen the diterpenoids. The results demonstrated that stepwise DPIs were capable of simplifying the workload in data post-processing and the effective acquisition of low abundance compounds. Subsequently, DPIs and MS/MS fragment patterns were adopted to identify the targeted diterpenoids. As a result, 381 diterpenoids were unambiguously or tentatively identified, while 141 of them with completely new molecular weights were potential new diterpenoids for Scutellaria barbata. These results demonstrate that the developed stepwise DPIs filtering method could be employed as an efficient, reliable, and valuable strategy to screen and identify the diterpenoid profile in Scutellaria barbata. This might accelerate and simplify target constituent profiling from traditional Chinese medicine (TCM) extracts.
Collapse
|
3
|
Cayetano-Salazar L, Nava-Tapia DA, Astudillo-Justo KD, Arizmendi-Izazaga A, Sotelo-Leyva C, Herrera-Martinez M, Villegas-Comonfort S, Navarro-Tito N. Flavonoids as regulators of TIMPs expression in cancer: Consequences, opportunities, and challenges. Life Sci 2022; 308:120932. [PMID: 36067841 DOI: 10.1016/j.lfs.2022.120932] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/14/2022]
Abstract
Cancer is one of the leading causes of death in patients worldwide, where invasion and metastasis are directly responsible for this statement. Although cancer therapy has progressed in recent years, current therapeutic approaches are ineffective due to toxicity and chemoresistance. Therefore, it is essential to evaluate other treatment options, and natural products are a promising alternative as they show antitumor properties in different study models. This review describes the regulation of tissue inhibitors of metalloproteinases (TIMPs) expression and the role of flavonoids as molecules with the antitumor activity that targets TIMPs therapeutically. These inhibitors regulate tissue extracellular matrix (ECM) turnover; they inhibit matrix metalloproteinases (MMPs), cell migration, invasion, and angiogenesis and induce apoptosis in tumor cells. Data obtained in cell lines and in vivo models suggest that flavonoids are chemopreventive and cytotoxic against various types of cancer through several mechanisms. Flavonoids also regulate crucial signaling pathways such as focal adhesion kinase (FAK), phosphatidylinositol-3-kinase (PI3K)-Akt, signal transducer and activator of transcription 3 (STAT3), nuclear factor κB (NFκB), and mitogen-activated protein kinase (MAPK) involved in cancer cell migration, invasion, and metastasis. All these data reposition flavonoids as excellent candidates for use in cancer therapy.
Collapse
Affiliation(s)
- Lorena Cayetano-Salazar
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Dania A Nava-Tapia
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Kevin D Astudillo-Justo
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Adán Arizmendi-Izazaga
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - César Sotelo-Leyva
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico
| | - Mayra Herrera-Martinez
- Instituto de Farmacobiología, Universidad de la Cañada, Teotitlán de Flores Magón, OAX 68540, Mexico
| | - Sócrates Villegas-Comonfort
- División de Ciencias Naturales e Ingeniería, Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, CDMX 05348, Mexico
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas s/n, Chilpancingo, GRO 39090, Mexico.
| |
Collapse
|
4
|
Li Y, Zhang J, Zhang K, Chen Y, Wang W, Chen H, Zou Z, Li Y, Dai M. Scutellaria barbata Inhibits Hepatocellular Carcinoma Tumorigenicity by Inducing Ferroptosis of Hepatocellular Carcinoma Cells. Front Oncol 2022; 12:693395. [PMID: 35321425 PMCID: PMC8936062 DOI: 10.3389/fonc.2022.693395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Ferroptosis is caused by accumulation of iron-dependent lipid peroxidation, which is characterized by reduction in cell volume and increase in mitochondrial membrane density. Studies have shown that ferroptosis contributes to the development and progression of numerous major diseases, including hepatocellular carcinoma (HCC). As a unique biomedical resource, Traditional Chinese Medicine (TCM) has been widely used in the treatment of HCC. In this present study, Scutellaria barbata was used to treat HCC cells in vitro, and the results revealed that S. barbata suppressed HCC cell growth through inducing ferroptosis. Next, the exploration of the molecular mechanism on how S. barbata induced ferroptosis in HCC cells suggested that S. barbata may induce ferroptosis by promoting iron perioxidation and lipid ROS metabolism. Finally, S. barbata also inhibited HCC tumorigenicity in vivo by inducing ferroptosis of HCC cells. These results provided theoretical basis for explaining the mechanism of TCM treatment for HCC and offered therapeutic opportunities for HCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Min Dai
- *Correspondence: Yongwei Li, ; Min Dai,
| |
Collapse
|
5
|
Subbaraj GK, Kumar YS, Kulanthaivel L. Antiangiogenic role of natural flavonoids and their molecular mechanism: an update. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Angiogenesis is the development of new blood vessels from the existing vasculature, which is important in normal developmental processes. Angiogenesis is a key step in tumor growth, invasion, and metastasis. Angiogenesis is necessary for the proper nourishment and removal of metabolic wastes from tumor sites. Therefore, modulation of angiogenesis is considered a therapeutic strategy of great importance for human health.
Main body
Numerous bioactive plant compounds are recently tested for their antiangiogenic potential. Among the most frequently studied are flavonoids which are abundantly present in fruits and vegetables. Flavonoids inhibit angiogenesis and metastasis through the regulation of multiple signaling pathways. Flavonoids regulate the expression of VEGF, matrix metalloproteinases (MMPs), EGFR, and inhibit NFB, PI3-K/Akt, and ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This present review aimed to provide up-to-date information on the molecular mechanisms of antiangiogenic properties of natural flavonoids.
Conclusion
Presently developed antiangiogenic drugs in malignant growth treatment do not meet assumptions about adequacy and safety. So further investigations are needed in this field in the future. More recently, flavonoids are the most effective antiangiogenic agent, by inhibition of signaling pathways.
Collapse
|
6
|
Huang C, Luo H, Huang Y, Fang C, Zhao L, Li P, Zhong C, Liu F. AURKB, CHEK1 and NEK2 as the Potential Target Proteins of Scutellaria barbata on Hepatocellular Carcinoma: An Integrated Bioinformatics Analysis. Int J Gen Med 2021; 14:3295-3312. [PMID: 34285555 PMCID: PMC8285231 DOI: 10.2147/ijgm.s318077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
Objective We aim to explore the potential anti-HCC mechanism of Scutellaria barbata through integrated bioinformatics analysis. Methods We searched active ingredients and related targets of Scutellaria barbata via TCMSP database, PubChem and SwissTargetPrediction database. Then, we identified HCC disease targets from GEO dataset by WGCNA. Next, the intersected targets of disease targets and drug targets were input into STRING database to construct PPI networking in order to obtain potential therapeutic targets of Scutellaria barbata. Cytoscape software was used to carry out network topology analysis of potential targets. We used the R package for GO analysis and KEGG analysis. Finally, we used AutoDock vina and PyMOL software for molecular docking. Results Sixteen active components from Scutellaria barbata were lastly selected for further investigation. A total of 442 component targets were identified from 16 active ingredients of Scutellaria barbata after the removal of duplicate targets. GSE45436 was selected for construction of WGCNA and screening of differentially expressed genes. A total of 354 genes were up-regulated in HCC samples and 100 were down-regulated in HCC patients. Twenty-one common genes were obtained by intersection and 10 critical targets were filtered for further investigation. The enrichment analysis showed that cell cycle, DNA replication, p53 signaling pathway were mainly involved. The molecular docking results showed that 4 potential combinations were with the best binding energy and molecular interactions. Conclusion AURKB, CHEK1 and NEK2 could be the potential target proteins of Scutellaria barbata in treating HCC. Cell cycle, DNA replication, p53 signaling pathway consist of the fundamental regulation cores in this mechanism.
Collapse
Affiliation(s)
- Chaoyuan Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hu Luo
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Yuancheng Huang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Chongkai Fang
- The First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Lina Zhao
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Peiwu Li
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Fengbin Liu
- Department of gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.,Department of gastroenterology, Baiyun Hospital of the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
7
|
Effective Material Basis and Mechanism Analysis of Compound Banmao Capsule against Tumors Using Integrative Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6653460. [PMID: 34055017 PMCID: PMC8112962 DOI: 10.1155/2021/6653460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 01/05/2023]
Abstract
Purpose Compound banmao capsule (CBC), a well-known traditional Chinese medical material, is known to inhibit various tumors. However, its material basis and pharmacological mechanisms remain to be elucidated. This study aimed to investigate the effective material basis and mechanisms of action of CBC against tumors. Methods Active compounds of CBC were identified using public database and reports to build a network. The corresponding targets of active compounds were retrieved from online databases, and the antitumor targets were identified by GeneCards database. The antitumor hub targets were generated via protein-protein interaction analysis using String, and key compounds and targets from the integrative network were detected by molecular docking and ADMET. Top targets in hepatocellular carcinoma were confirmed by quantitative real-time PCR (qPCR). Finally, the multivariate biological network was built to identify the integrating mechanisms of action of CBC against tumor cells. Results A total of 128 compounds and 436 targets of CBC were identified successfully. Based on the generated multivariate biological network analysis, 25 key compounds, nine hub targets, and two pathways were further explored. Effective material bases of cantharidin, baicalein, scutellarin, sesamin, and quercetin were verified by integrative network analysis. PTGS2, ESR1, and TP53 were identified as hub targets via multivariate biological network analysis and confirmed using qPCR. Furthermore, VEGF and estrogen signaling pathways seem to play a role in the antitumor activity of CBC. Thus, breast cancer may be a potential clinical indication of CBC. Conclusion This study successfully identified the material basis of CBC and its synergistic mechanisms of action against tumor cells.
Collapse
|
8
|
Chen Q, Rahman K, Wang SJ, Zhou S, Zhang H. Scutellaria barbata: A Review on Chemical Constituents, Pharmacological Activities and Clinical Applications. Curr Pharm Des 2020; 26:160-175. [PMID: 31840605 DOI: 10.2174/1381612825666191216124310] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022]
Abstract
Scutellaria barbata has a long history of medical use in Traditional Chinese Medicine for removing heat and toxic material, promoting blood circulation and removing blood stasis, and inducing diuresis to reduce edema. Recent pharmacology investigations have provided evidence for its anti-cancer, bacteriostasis, anti-virus, anti-inflammation, anti-oxidation and immunity enhancement properties. The efficacy of activating blood circulation and removing blood stasis has unique advantages in the treatment of cardiovascular and cerebrovascular diseases. A total of 84 compounds have been isolated from S. barbata and are characterized mainly as flavonoids, diterpenoids, followed by polysaccharide, volatile oil and steroids. Peer-reviewed articles published over the last few years were gathered by consulting the databases PubMed, Elsevier, Springer, and Chinese Herbal Classics. This review mainly focuses on the pharmacologically active constituents isolated from S. barbata,which have been subjected to in vitro and/or in vivo studies. Although, the chemical components, pharmacological activities, toxicology, clinical applications and mechanisms of action of S. barbata have been investigated, many constituents remain unknown. Further investigations are required to investigate the medicinal properties of S. barbata.
Collapse
Affiliation(s)
- Qiong Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Faculty of Science, Liverpool John Moores University, Liverpool L3 3AF, England, United Kingdom
| | - Su-Juan Wang
- Department of Drug Preparation, Hospital of TCM and Hui Nationality Medicine, Ningxia Medical University, Wuzhong 751100, China
| | - Shuang Zhou
- Acupuncture and Moxibustion Techniques Department, School of Acupuncture-moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.,Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
9
|
Zhang L, Liu J, Lin S, Tan J, Huang B, Lin J. Qingjie Fuzheng Granule Inhibited the Migration and Invasion of Colorectal Cancer Cells by Regulating the lncRNA ANRIL/let-7a/TGF- β1/Smad Axis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:5264651. [PMID: 32714407 PMCID: PMC7341385 DOI: 10.1155/2020/5264651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/02/2020] [Indexed: 12/24/2022]
Abstract
Qingjie Fuzheng granule (QFG) promotes cancer cell apoptosis and ameliorates intestinal mucosal damage caused by 5-fluorouracil. However, the antitumor role of QFG in colorectal cancer (CRC) progression remains unclear. In this study, the growth of HCT-8 and HCT116 cells incubated with various concentrations of QFG for 24 and 48 h was evaluated using MTT assays; their abilities of migration and invasion were investigated through wound healing and Transwell assays. The expression of lncRNA ANRIL, let-7a, and the TGF-β1/Smad signaling pathway components was assessed using real-time PCR and western blotting. The results elicited that QFG significantly suppressed the growth of HCT-8 and HCT116 cells; the half-maximal inhibitory concentrations (IC50) of QFG for HCT-8 and HCT116 cells for 48 h were 1.849 and 1.608 mg/mL, respectively. The abilities of wound healing, migration, and invasion of HCT-8 and HCT116 cells were dose-dependently decreased by QFG treatment for 24 h, respectively. QFG decreased the expression of lncRNA ANRIL, TGF-β1, phosphorylated (p)-Smad2/3, Smad4, and N-cadherin and upregulated the expression of let-7a in HCT-8 and HCT116 cells. Collectively, our data demonstrated that QFG inhibited the metastasis of CRC cells by regulating the lncRNA ANRIL/let-7a/TGF-β1/Smad axis, indicating that they might serve as an adjunctive medicine for CRC treatment.
Collapse
Affiliation(s)
- Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jianxin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Shan Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jingzhuang Tan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Bin Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
- Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, China
| |
Collapse
|
10
|
Wang L, Chen W, Li M, Zhang F, Chen K, Chen W. A review of the ethnopharmacology, phytochemistry, pharmacology, and quality control of Scutellaria barbata D. Don. JOURNAL OF ETHNOPHARMACOLOGY 2020; 254:112260. [PMID: 31577937 DOI: 10.1016/j.jep.2019.112260] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 09/28/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria barbata D. Don (S. barbata) is a well-known perennial herb that is used in traditional Chinese and Korean medicine. In China, it is known as Ban Zhi Lian, while in Korea, it is known as Banjiryun. In the Traditional Chinese Medicine (TCM) system, S. barbata has heat-clearing and detoxifying properties (Qingre Jiedu in Chinese). AIM OF THE REVIEW To provide a systematic review on current multifaceted understanding of S. barbata, with particular emphasis on the correlation between its traditional applications and pharmacological activities. MATERIALS AND METHODS All available S. barbata-related information from internet databases, including PubMed, Science Direct, Elsevier, China National Knowledge Internet, and Google Scholar (up to October 2018) were searched. Additional information was gathered from classical books on Chinese Herbals, Chinese Pharmacopoeia, and so on. RESULTS In the TCM system, S. barbata is mainly prescribed for its heat-clearing and detoxifying effects. More than 203 compounds have been isolated and identified from this herb, with neo-clerodane diterpenoids and flavonoids as the main compounds. Most neo-clerodanes have been demonstrated to have cytotoxic effects against different cancer cell types in vitro. The S. barbata extracts exhibited anti-inflammatory, anti-microbial, antitumor, and other pharmacological activities. To add, flavonoids, including wogonin, baicalein, apigenin, naringenin, and scutellarin, were identified as the key to quality control. CONCLUSIONS The heat-clearing effects of S. barbata could be attributed to its anti-inflammatory and hepatoprotective activities, whereas its detoxifying effects might be due to the anti-microbial functions of neo-clerodane diterpenoids and flavones. S. barbata may display anti-tumor effects and through active ingredient analysis, neo-clerodane diterpenoids are suggested to be its representative compounds. Overall, many pre-clinical studies have been conducted but very little concrete evidences are available on its specific effects, which are of therapeutic relevance.
Collapse
Affiliation(s)
- Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Chen
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Mingming Li
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Kaixian Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wansheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
11
|
Chinese herbal medicine therapy and the risk of overall mortality for patients with liver cancer who underwent surgical resection in Taiwan. Complement Ther Med 2019; 47:102213. [DOI: 10.1016/j.ctim.2019.102213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/02/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023] Open
|
12
|
Gao J, Yin W, Corcoran O. From Scutellaria barbata to BZL101 in Cancer Patients: Phytochemistry, Pharmacology, and Clinical Evidence. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19880645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Scutellaria barbata D.Don is a popular Chinese medicinal plant documented to treat cancer patients in traditional Chinese medicine (TCM). A botanical new investigational drug for breast cancer BZL101 (FDA IDN# 59521) was previously developed in the United States from the aqueous extract of the aerial parts from S. barbata. The early phase 1A and 1B clinical trials show its favorable toxicity profiles, good clinical tolerance, and promising efficacy for patients with metastatic breast cancer. To further evidence the phytopharmacology research, drug development, and anticancer use of this herb, a systematic literature review was performed herein on the phytochemistry, pharmacology, and specifically anticancer clinical evidence. A systematic review of the literature on phytochemical and pharmacological properties of the plant related to cancer treatment employed several web-based scientific databases including Wanfang (Chinese), Pubmed, Web of Science, and Elsevier. Key words included Scutellaria barbata, Ban Zhi Lian, cancer, and tumor. Based on critical quality criteria, only 8 out of 69 reports related to clinical studies of cancer patients in China. This review covered the available literature up to July 2019. The anticancer effects of S. barbata can be explained by the presence of various flavonoids and diterpenoids alkaloids. The underlying mechanisms are primarily summarized as cyclin/cyclin-dependent kinase (CDK)-modulated cell cycle arrest and mitochondria-mediated apoptotic death. The highly cancer-cell selective cytotoxicity and detoxifying effects of S. barbata contribute to a favorable clinical profile and enhanced quality of life for the cancer patient, thereby demanding further study as an adjuvant or alternative to conventional chemotherapy. The phytochemical and pharmacological studies reviewed strongly underpin a fundamental understanding of the anticancer activity of S. barbata and support ongoing clinical trials. The further safety verification and clinical trials are expected to progress S. barbata-based development to finally transform the traditional TCM herb S. barbata to the valuable anticancer drug.
Collapse
Affiliation(s)
- Jiayu Gao
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Weiping Yin
- School of Chemical Engineering and Pharmaceutics, Henan University of Science and Technology, Luoyang, China
| | - Olivia Corcoran
- Medicines Research Group, School of Health, Sport and Bioscience, University of East London, Water Lane, London, UK
| |
Collapse
|
13
|
|
14
|
Li L, Xu X, Wu L, Zhu H, He Z, Zhang B, Chi Y, Song G. Scutellaria barbata polysaccharides inhibit tumor growth and affect the serum proteomic profiling of hepatoma H22‑bearing mice. Mol Med Rep 2019; 19:2254-2262. [PMID: 30664217 PMCID: PMC6390040 DOI: 10.3892/mmr.2019.9862] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/20/2018] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to evaluate the antitumor effect of Scutellaria barbata polysaccharides (SBPS) in a hepatoma mouse model and examine the serum proteins involved in the tumorigenesis and SBPS treatment. A hepatoma model was established by the subcutaneous inoculation of murine hepatocellular carcinoma into Kunming mice. The treatment (once a day) lasted until the tumor weight in the model group was ~1 g (~7-10 days after inoculation). The sera proteins from each group were then collected and subjected to two-dimensional gel electrophoresis. Differentially expressed proteins were screened out and representatives were identified using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. SBPS treatment at different doses significantly inhibited hepatoma growth (all P<0.01 vs. model group). The comparative serum proteomics showed that pseudouridine synthase 1 and chain A of the signal recognition particle Alu RNA-binding heterodimer (Srp9/14) were increased in the serum of the H22 hepatoma-bearing mice, and both were reduced by SBPS treatment. Mitochondrial ribosomal protein L24 was absent from the serum of H22 hepatoma-bearing mice, and was restored by SBPS treatment to approximately the normal level. Taken together, SBPS inhibited the growth of hepatic carcinoma in mice and affected serum proteomic profiling.
Collapse
Affiliation(s)
- Li Li
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Xiaoyi Xu
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Leilei Wu
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Haicheng Zhu
- Department of Digestive Surgery, Mudanjiang Anorectal Hospital, Mudanjiang, Heilongjiang 157000, P.R. China
| | - Zhipeng He
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Bo Zhang
- Department of Clinical Laboratory, Tumor Hospital of Mudanjiang City, Mudanjiang, Heilongjiang 157009, P.R. China
| | - Yanjun Chi
- Department of Brain Surgery, Mudanjiang First People's Hospital, Mudanjiang, Heilongjiang 157011, P.R. China
| | - Gaochen Song
- Department of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang 157011, P.R. China
| |
Collapse
|
15
|
Baruah TJ, Sharan RN, Kma L. Vicenin-2: a potential radiosensitizer of non-small cell lung cancer cells. Mol Biol Rep 2018; 45:1219-1225. [PMID: 30099686 DOI: 10.1007/s11033-018-4275-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) is a major form of cancer and is resistant to chemo- and radio-therapy. Vicenin-2 (VCN-2) is a flavonoid obtained from Ocimum sanctum L. and it has been reported to have radioprotective and anti-cancer properties. This study was conducted to check for the radiosensitizing potential of VCN-2 in the NSCLC cell line, NCI-H23. NCI-H23 cells were exposed to VCN-2 singularly, and to X-rays with and without prior VCN-2 treatment. Cytotoxicity assay, cell proliferation assay, caspase-3 activity assay, DNA fragmentation assay and Western blotting for Rad50, MMP-2 and p21 were performed to investigate the radiosensitizing properties of VCN-2. Fibroblast survival assay was performed using HEK293T cells to check for any adverse effects of VCN-2 on normal fibroblast cell line. VCN-2 singularly and in combination with radiation reduced the surviving cancer cells, increased caspase-3 activity, increased DNA fragmentation, increased the levels of Rad50 and lowered levels of MMP-2 and p21 proteins while being non-toxic and radioprotective to the fibroblast cells. VCN-2 showed a potent radiosensitizing property while also showing a chemotherapeutic property against NSCLC cell line NCI-H23.
Collapse
Affiliation(s)
- Taranga Jyoti Baruah
- Cancer and Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - R N Sharan
- Radiation and Molecular Biology Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Lakhan Kma
- Cancer and Radiation Countermeasures Unit, Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
16
|
Braga DL, Mota STS, Zóia MAP, Lima PMAP, Orsolin PC, Vecchi L, Nepomuceno JC, Fürstenau CR, Maia YCP, Goulart LR, Araújo TG. Ethanolic Extracts from Azadirachta indica Leaves Modulate Transcriptional Levels of Hormone Receptor Variant in Breast Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19071879. [PMID: 29949923 PMCID: PMC6073126 DOI: 10.3390/ijms19071879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 06/19/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023] Open
Abstract
Breast Cancer (BC) encompasses numerous entities with different biological and behavioral characteristics, favored by tumor molecular complexity. Azadirachta indica (neem) presents phenolic compounds, indicating its potential as an antineoplastic compound. The present study aimed to evaluate the cellular response of MCF10, MCF7, and MDA-MB-231 breast cell lines to ethanolic extracts of neem leaves (EENL) obtained by dichloromethane (DCM) and ethyl acetate (EA) solvent. Extracts’ antiproliferative activities were evaluated against MCF 10A, MCF7, and MDA-MB-231 for 24 and 48 h using MTT assay. ESR1, ESR2, AR, AR-V1, AR-V4, and AR-V7 transcripts were quantified through qPCR for 0.03125 μg/mL of DCM and 1.0 μg/mL for EA for 48 h. The EENL was tested on Drosophila melanogaster as a sole treatment and then also together with doxorubicin. Antiproliferative effect on tumor cell lines without affecting MCF 10A were 1.0 µg/mL (P < 0.001) for EA, and 0.03125 µg/mL (P < 0.0001) for DCM, both after 48 h. Transcriptional levels of AR-V7 increased after treatment. In vivo assays demonstrated that EENL induced fewer tumors at a higher concentration with doxorubicin (DXR). The behavior of AR-V7 in the MDA-MB-231 tumor lineage indicates new pathways involved in tumor biology and this may have therapeutic value for cancer.
Collapse
Affiliation(s)
- Deisi L Braga
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38700-128, Brazil.
| | - Sara T S Mota
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38700-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Mariana A P Zóia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Paula M A P Lima
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas-MG 38700-207, Brazil.
| | - Priscila C Orsolin
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas-MG 38700-207, Brazil.
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Júlio C Nepomuceno
- Laboratory of Cytogenetic and Mutagenesis, University Center of Patos de Minas, Patos de Minas-MG 38700-207, Brazil.
| | - Cristina R Fürstenau
- Laboratory of Animal Cell Culture, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38700-128, Brazil.
| | - Yara C P Maia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
- University of California Davis, Dept. of Medical Microbiology and Immunology, Davis, CA 95616, USA.
| | - Thaise G Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38700-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| |
Collapse
|
17
|
Wang Q, Acharya N, Liu Z, Zhou X, Cromie M, Zhu J, Gao W. Enhanced anticancer effects of Scutellaria barbata D. Don in combination with traditional Chinese medicine components on non-small cell lung cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2018; 217:140-151. [PMID: 29458146 DOI: 10.1016/j.jep.2018.02.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Experience-based herbal medicine as a complementary to modern western medicine has triggered an array of studies in quest of novel anticancer drugs. Scutellaria barbata D. Don (SB) is commonly used to treat different types of cancers, but its molecular mechanism of action is not clearly understood. In this study, we attempted to elucidate the mode of action of a traditional Chinese medicine prescription with a total of 14 components, named Lian-Jia-San-Jie-Fang (LJSJF, in Chinese), where SB works as the "principle" against non-small cell lung cancer (NSCLC) cells. MATERIALS AND METHODS Four different NSCLC cell lines (A549, H460, H1650, and H1975) were used. Cytotoxicity, in vitro tumorigenicity, gene expression, and protein expression were analyzed by MTT assay, soft agar assay, real-time PCR, and Western blots, respectively. RESULTS Among the 14 components in LJSJF, SB was the only one to possess cytotoxic effects at its pharmacologically relevant doses. Additionally, we observed synergistically dose-dependent cytotoxic effects of SB in combination with other LJSJF components. After SB or LJSJF treatment, significant reductions in colony number and/or size were observed in A549 and H460; a notable dose-dependent decrease in EGFR was observed in A549, H460, and H1650; significant downregulation in EGFR and its downstream signaling targets mTOR and p38MAPK were also observed in A549 and H460; and p53 and p21 were significantly increased while survivin, cyclin D1, and MDM2 were significantly decreased in A549. Additionally, p53, p21, and Mettl7b were decreased, but p73 was increased in H460. Neither EGFR nor p53 was changed in H1975. Therefore, SB or LJSJF may induce cytotoxic effects by regulating multiple and/or distinct apoptotic pathways in different NSCLC cells. CONCLUSION LJSJF exerts more pronounced cytotoxic effects against NSCLC cells than SB does by synergistically regulating the underlining molecular mechanisms including EGFR and/or p53 signaling pathways.
Collapse
Affiliation(s)
- Qian Wang
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States; Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Narayan Acharya
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Zhongwei Liu
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Xianmei Zhou
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Meghan Cromie
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States
| | - Jia Zhu
- Department of Respiratory Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Weimin Gao
- Department of Environmental Toxicology, The Institute of Environmental and Human Health, Texas Tech University, Lubbock, Texas 79416, United States.
| |
Collapse
|
18
|
Ethyl Acetate Fraction from Hedyotis diffusa plus Scutellaria barbata Exerts Anti-Inflammatory Effects by Regulating miR-155 Expression and JNK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:3593408. [PMID: 29725352 PMCID: PMC5872671 DOI: 10.1155/2018/3593408] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 01/10/2023]
Abstract
Hedyotis diffusa Willd and Scutellaria barbata D. Don (HDSB) were the core couplet in medicines that were commonly used for the purpose of anti-inflammation and anticancer treatments in China. However, biological properties of this couplet have not been fully elucidated. In this study, we screened fractions of HDSB for their anti-inflammatory activities and explored pertinent molecular mechanisms on murine macrophage RAW264.7 cell model. Ethyl acetate fraction from the aqueous extract of the couplet at equal weight ratio (EA11) showed the strongest inhibition of the nitrite accumulation in supernatant of RAW264.7 cells stimulated with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). In addition, EA11 inhibited iNOS and IL-1β expression in a concentration-dependent manner while promoting the expression of HO-1 and PPAR-γ. Anti-inflammatory capability is most likely facilitated by its inhibitory effect on JNK signaling pathway and miR-155 expression. This study suggests that EA11 may be represented as a potential anti-inflammatory therapeutic candidate.
Collapse
|
19
|
Hong M, Cheng H, Song L, Wang W, Wang Q, Xu D, Xing W. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma. Molecules 2018; 23:molecules23020384. [PMID: 29439451 PMCID: PMC6017513 DOI: 10.3390/molecules23020384] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/17/2022] Open
Abstract
As one of the major active ingredients in Radix Scutellariae, wogonin has been shown to be associated with various pharmacological activities on cancer cell growth, apoptosis, and cell invasion and migration. Here, we demonstrated that wogonin may harbor potential anti-metastatic activities in hepatocarcinoma (HCC). The anti-metastasis potential of wogonin and its underlying mechanisms were evaluated by ligand–protein docking approach, surface plasmon resonance assay, and in vitro gelatin zymography studies. Our results showed that wogonin (100 μM, 50 μM) suppressed MHCC97L and PLC/PRF/5 cells migration and invasion in vitro. The docking approach and surface plasmon resonance assay indicated that the potential binding affinity between wogonin and matrix metalloproteinase-9 (MMP-9) may lead to inhibition of MMP-9 activity and further leads to suppression of tumor metastasis. This conclusion was further verified by Western blot results and gelatin zymography analysis. Wogonin might be a potent treatment option for disrupting the tumor metastasis that favors HCC development. The potential active targets from computational screening integrated with biomedical study may help us to explore the molecular mechanism of herbal medicines.
Collapse
Affiliation(s)
- Ming Hong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Honghui Cheng
- College of mechanical engineering, Yangzhou University, 88 South University Ave., Yangzhou 225009, China.
| | - Lei Song
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Wencai Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, 12 Jichang Road, Guangzhou 510405, China.
| | - Donggang Xu
- Department of Genome Engineering, Beijing Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, China.
| | - Weiwei Xing
- Department of Genome Engineering, Beijing Institute of Basic Medical Sciences, Taiping Road 27, Beijing 100850, China.
| |
Collapse
|
20
|
Chen CC, Kao CP, Chiu MM, Wang SH. The anti-cancer effects and mechanisms of Scutellaria barbata D. Don on CL1-5 lung cancer cells. Oncotarget 2017; 8:109340-109357. [PMID: 29312612 PMCID: PMC5752525 DOI: 10.18632/oncotarget.22677] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/29/2017] [Indexed: 12/11/2022] Open
Abstract
Lung cancer, with a poor prognosis and resistance to chemotherapy, is the most common malignant tumor and has the highest mortality rate worldwide. Scutellaria barbata D. Don (SB), which is derived from the dried whole plant of Labiatae, is a well-known anti-inflammatory and anti-cancer herb. The aim of this study was to examine the anti-cancer effects and precise regulatory mechanisms of SB in CL1-5 lung cancer cells. In an in vitro assay, we found that the anti-tumor mechanism of SB was due to P38/SIRT1-regulated cell apoptosis through G2/M phase arrest and ER stress-, intrinsic mitochondrial-, and extrinsic FAS/FASL-mediated pathways. Autophagy also plays a key role in SB-induced CL1-5 cell cytotoxicity. In addition, SB exerts additive effects with etoposide or cisplatin in lung cancer cells. In an in vivo assay, we found that SB significantly reduces tumor size with decreased proliferation and angiogenesis, as well as increased apoptosis and autophagy in CL1-5 tumor-bearing mice. These findings provided experimental evidence for the application of SB in the treatment of lung cancer.
Collapse
Affiliation(s)
- Chin-Chuan Chen
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan, Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chun-Pin Kao
- Department of Nursing, Hsin Sheng Junior College of Medical Care and Management, Taoyuan, Taiwan
| | - Mei-Miao Chiu
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan, Republic of China
| | - Shu-Huei Wang
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
21
|
Lee SR, Kim MS, Kim S, Hwang KW, Park SY. Constituents from Scutellaria barbata
Inhibiting Nitric Oxide Production in LPS-Stimulated Microglial Cells. Chem Biodivers 2017; 14. [DOI: 10.1002/cbdv.201700231] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/11/2017] [Indexed: 12/18/2022]
Affiliation(s)
- So Ra Lee
- Department of Nanomedicine; World Class University; Dankook University; Cheonan 31116 Korea
| | - Min-Suk Kim
- Laboratory of Pharmacognosy; College of Pharmacy; Dankook University; Cheonan 31116 Korea
| | - Sunggun Kim
- Laboratory of Pharmacognosy; College of Pharmacy; Dankook University; Cheonan 31116 Korea
| | - Kwang Woo Hwang
- College of Pharmacy; Chung-Ang University; Seoul 06974 Korea
| | - So-Young Park
- Department of Nanomedicine; World Class University; Dankook University; Cheonan 31116 Korea
- Laboratory of Pharmacognosy; College of Pharmacy; Dankook University; Cheonan 31116 Korea
| |
Collapse
|
22
|
Lin TH, Hsu WH, Tsai PH, Huang YT, Lin CW, Chen KC, Tsai IH, Kandaswami CC, Huang CJ, Chang GD, Lee MT, Cheng CH. Dietary flavonoids, luteolin and quercetin, inhibit invasion of cervical cancer by reduction of UBE2S through epithelial-mesenchymal transition signaling. Food Funct 2017; 8:1558-1568. [PMID: 28277581 DOI: 10.1039/c6fo00551a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We previously reported that the dietary flavonoids, luteolin and quercetin, might inhibit the invasiveness of cervical cancer by reversing epithelial-mesenchymal transition (EMT) signaling. However, the regulatory mechanism exerted by luteolin and quercetin is still unclear. This study analyzed the invasiveness activation by ubiquitin E2S ligase (UBE2S) through EMT signaling and inhibition by luteolin and quercetin. We found that UBE2S expression was significantly higher in highly invasive A431 subgroup III (A431-III) than A431-parental (A431-P) cells. UBE2S small interfering (si)RNA knockdown and overexpression experiments showed that UBE2S increased the migratory and invasive abilities of cancer cells through EMT signaling. Luteolin and quercetin significantly inhibited UBE2S expression. UBE2S showed a negative correlation with von Hippel-Lindau (VHL) and a positive correlation with hypoxia-induced factor (Hif)-1α. Our findings suggest that high UBE2S in malignant cancers contributes to cell motility through EMT signaling and is reversed by luteolin and quercetin. UBE2S might contribute to Hif-1α signaling in cervical cancer. These results show the metastatic inhibition of cervical cancer by luteolin and quercetin through reducing UBE2S expression, and provide a functional role for UBE2S in the motility of cervical cancer. UBE2S could be a potential therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Tsung-Han Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhang Y, Liang Y, He C. Anticancer activities and mechanisms of heat-clearing and detoxicating traditional Chinese herbal medicine. Chin Med 2017; 12:20. [PMID: 28702078 PMCID: PMC5506596 DOI: 10.1186/s13020-017-0140-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/30/2017] [Indexed: 02/07/2023] Open
Abstract
In traditional Chinese medicine (TCM) theory, pathogenic heat and toxins, which are akin to the inflammatory factors, are the causes of cancer and could promote its virulent development. Therefore, heat-clearing and detoxicating (HCD) herbs are essential components of TCM formulas for cancer treatment. An increasing interest has been focused on the study of HCD herbs and accumulated evidences have shown that HCD herbs or HCD herbs-based formulas exhibited remarkable anticancer effects when used alone or combined with other therapeutic approaches. Some of the HCD herb-derived products have been tested in clinical trials. Studies revealed that extracts or pure compounds of the HCD herbs showed a broad anticancer spectrum against both solid and hematologic malignancies without significant toxic effects. Notably, some HCD herbs or formulas could strongly enhance the anticancer activities of chemo- or radio-therapy and alleviate their side effects. The anticancer activities of HCD herb exacts or the pure compounds were reported to be through multiple cellular or molecular mechanisms, such as induction of cancer cell apoptosis, differentiation and cell cycle arrest, inhibition of cancer cell growth, invasion and metastasis, and inhibition of tumor angiogenesis. In this review, we provide comprehensive analysis and summary of research progress and future prospects in this field to facilitate the further study and application of HCD herbs.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Yeer Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, N22-7038, Avenida da Universidade, Taipa, Macao, 999078 China
| |
Collapse
|
24
|
Naso LG, Badiola I, Marquez Clavijo J, Valcarcel M, Salado C, Ferrer EG, Williams PAM. Inhibition of the metastatic progression of breast and colorectal cancer in vitro and in vivo in murine model by the oxidovanadium(IV) complex with luteolin. Bioorg Med Chem 2016; 24:6004-6011. [PMID: 27707626 DOI: 10.1016/j.bmc.2016.09.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 01/09/2023]
Abstract
The anticancer and antimetastatic behavior of the flavonoid luteolin and its oxidovanadium(IV) complex [VO(lut)(H2O)2]Na·3H2O (VOlut) has been investigated. Considering that the complex displayed strong anticancer activity on MDAMB231 human breast cancer cell line we herein determined through in vitro assays that the complex would probably reduce breast cancer cell metastasis in a higher extent than the natural antioxidant. In the CT26 colon cancer cell line a stronger anticancer effect has also been determined for the complex (IC50 0.9μM) and in addition it did not exert toxic effects on normal colon epithelial cells at concentrations up to 10μM. Working with a murine model of highly aggressive, orthotopic colon cancer model (CT26 cancer cell lines) it has been determined that the complex might prevent metastatic dissemination of the colon cancer cells to the liver. The flavonoid luteolin also exerted anticancer effects (at a low degree, IC50 5.9μM) on CT26 cell line and produced a 24% reduction of colon cancer liver metastasis.
Collapse
Affiliation(s)
- Luciana G Naso
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 120 N° 1465, 1900 La Plata, Argentina
| | - Iker Badiola
- Department of Cell Biology and Histology, Faculty of Medicine, University of the Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain
| | - Joana Marquez Clavijo
- Department of Cell Biology and Histology, Faculty of Medicine, University of the Basque Country UPV/EHU, Leioa, 48940 Vizcaya, Spain
| | - María Valcarcel
- Innoprot SL, Parque científico y Tecnológico de Bizkaia Edificio 502-P1, 48160 Derio, Spain
| | - Clarisa Salado
- Innoprot SL, Parque científico y Tecnológico de Bizkaia Edificio 502-P1, 48160 Derio, Spain
| | - Evelina G Ferrer
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 120 N° 1465, 1900 La Plata, Argentina
| | - Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR, CONICET, UNLP), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 120 N° 1465, 1900 La Plata, Argentina.
| |
Collapse
|
25
|
Tang QL, Kang AR, Lu CX. Phytochemical Analysis, Antibacterial Activity and Mode of Action of the Methanolic Extract of Scutellaria barbata Against Various Clinically Important Bacterial Pathogens. INT J PHARMACOL 2016. [DOI: 10.3923/ijp.2016.116.125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
26
|
Wang X, Wang N, Cheung F, Lao L, Li C, Feng Y. Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2015; 13:142-64. [PMID: 26006028 DOI: 10.1016/s2095-4964(15)60171-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of leading causes of death in the world. Although various treatments have been developed, the therapeutic side effects are far from desirable. Chinese medicines (CMs, including plants, animal parts and minerals) have drawn a great deal of attention in recent years for their potential in the treatment of HCC. Most studies have shown that CMs may be able to retard HCC progression with multiple actions, either alone or in combination with other conventional therapies to improve quality of life in HCC patients. Additionally, CMs are used for preventing HCC occurrence. The aim of this study is to review the potential prophylactic and curative effects of CMs on human HCC and the possible mechanisms that underlie these pharmacological actions. Publications were collected and reviewed from PubMed and China National Knowledge Infrastructure from 2000 to 2014. Keywords for literature searches include "Chinese medicine", "Chinese herb", "traditional Chinese Medicine", "hepatocellular carcinoma" and "liver cancer". CMs in forms of pure compounds, isolated fractions, and composite formulas are included. Combination therapies are also considered. Both in vitro and in vivo efficacies of CMs are being discussed and the translational potential to bedside is to be discussed with clinical cases, which show the actions of CMs on HCC may include tumor growth inhibition, antimetastatic activities, anti-inflammation, anti-liver cancer stem cells, reversal on multi-drug resistance and induction/reduction of oxidative stress. Multiple types of molecules are found to contribute in the above actions. The review paper indicated that CMs might have potential to both prevent HCC occurrence and retard HCC progression with several molecular targets involved.
Collapse
Affiliation(s)
- Xuanbin Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Charlie Li
- California Department of Public Health, Richmond, CA 94804, USA
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Barletta E, Ramazzotti M, Fratianni F, Pessani D, Degl'Innocenti D. Hydrophilic extract from Posidonia oceanica inhibits activity and expression of gelatinases and prevents HT1080 human fibrosarcoma cell line invasion. Cell Adh Migr 2015; 9:422-31. [PMID: 26176658 PMCID: PMC4955962 DOI: 10.1080/19336918.2015.1008330] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Posidonia oceanica (L.) Delile is an endemic Mediterranean sea-grass distributed in the infralittoral zones, where it forms meadows playing a recognized ecological role in the coastal marine habitat. Although its use as a traditional herbal remedy is poorly documented, recent literature reports interesting pharmacological activities as antidiabetic, antioxidant and vasoprotective. Differently from previous literature, this study presents a hydrophilic extraction method that recovers metabolites that may be tested in biological buffers. We showed for the first time in the highly invasive HT1080 human fibrosarcoma cell line that our hydrophilic extract from P. oceanica was able to strongly decrease gene and protein expression of gelatinases MMP-2 and MMP-9 and to directly inhibit in a dose-dependent manner gelatinolytic activity in vitro. Moreover, we have revealed that our extract strongly inhibited HT1080 cell migration and invasion. Biochemical analysis of the hydrophilic extract showed that catechins were the major constituents with minor contribution of gallic acid, ferulic acid and chlorogenic plus a fraction of uncharacterized phenols. However, if each individual compound was tested independently, none by itself was able to induce a direct inhibition of gelatinases as strong as that observed in total extract, opening up new routes to the identification of novel compounds. These results indicate that our hydrophilic extract from P. oceanica might be a source of new pharmacological natural products for treatment or prevention of several diseases related to an altered MMP-2 and MMP-9 expression.
Collapse
Affiliation(s)
- Emanuela Barletta
- a Dipartimento Scienze Biomediche Sperimentali e Cliniche ; Università degli Studi di Firenze ; Firenze , Italy.,e These authors equally contributed to this work
| | - Matteo Ramazzotti
- a Dipartimento Scienze Biomediche Sperimentali e Cliniche ; Università degli Studi di Firenze ; Firenze , Italy.,e These authors equally contributed to this work
| | - Florinda Fratianni
- b Istituto di Scienze dell'Alimentazione; Consiglio Nazionale delle Ricerche (ISA-CNR) ; Avellino , Italy
| | - Daniela Pessani
- c Laboratorio di Zoologia e Biologia Marina; Dipartimento di Biologia Animale e dell'Uomo ; Università degli Studi di Torino ; Torino , Italy.,d Centro Interuniversitario di Biologia Marina ed Ecologia Applicata (CIBM) ; Livorno , Italy
| | - Donatella Degl'Innocenti
- a Dipartimento Scienze Biomediche Sperimentali e Cliniche ; Università degli Studi di Firenze ; Firenze , Italy.,d Centro Interuniversitario di Biologia Marina ed Ecologia Applicata (CIBM) ; Livorno , Italy
| |
Collapse
|
28
|
Integrated Treatment of Aqueous Extract of Solanum nigrum-Potentiated Cisplatin- and Doxorubicin-Induced Cytotoxicity in Human Hepatocellular Carcinoma Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015. [PMID: 26221175 PMCID: PMC4499398 DOI: 10.1155/2015/675270] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemotherapy is the main approach for treating advanced and recurrent hepatocellular carcinoma (HCC), but the clinical performance of chemotherapy is limited by a relatively low response rate, drug resistance, and adverse effects that severely affect the quality of life of patients. The aqueous extract of Solanum nigrum (AE-SN) is a crucial ingredient in some traditional Chinese medicine (TCM) formulas for treating cancer patients and exhibits antitumor effects in human HCC cells. Therefore, this study examined the tumor-suppression efficiency of AE-SN integrated with a standard chemotherapeutic drug, namely, cisplatin or doxorubicin, in human HCC cells, namely, Hep3B and HepJ5. The results suggested that the integrated treatment with AE-SN-potentiated cisplatin and doxorubicin induced cytotoxicity through the cleavage of caspase-7 and accumulation of microtubule-associated protein-1 light chain-3 A/1B II (LC-3 A/B II), which were associated with apoptotic and autophagic cell death, respectively, in both the Hep3B and HepJ5 cells. In conclusion, AE-SN can potentially be used in novel integrated chemotherapy with cisplatin or doxorubicin to treat HCC patients.
Collapse
|
29
|
Inhibition of Tumor Growth and Immunomodulatory Effects of Flavonoids and Scutebarbatines of Scutellaria barbata D. Don in Lewis-Bearing C57BL/6 Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:630760. [PMID: 26064167 PMCID: PMC4433671 DOI: 10.1155/2015/630760] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/02/2015] [Indexed: 02/03/2023]
Abstract
Immunomodulatory effect has been found to be an important therapeutic measure for immune responses against cancer. In this study, we evaluated the inhibition of Scutellaria barbata D. Don (SB), an anti-inflammatory and an antitumor Chinese herb, including flavonoids and scutebarbatines on tumor growth and its immunomodulatory effects in vivo. HPLC and LC/MS/MS methods were conducted for the analysis of flavonoids and scutebarbatines in SB. Lewis-bearing C57BL/6 mice model was established and tumor volume was evaluated by high frequency color ultrasound experiment. ELISA and western blot analysis were performed for the determination of immunomodulatory factors. SB treatment at the dose of 10, 6.67, and 3.33 g crude drug/kg/d significantly inhibited tumor growth of Lewis-bearing C57BL/6 mice with the inhibition rates of 44.41 ± 5.44%, 33.56 ± 4.85%, and 27.57 ± 4.96%, respectively. More importantly, the spleen and thymus indexes were increased remarkably by SB treatment. SB could decrease IL-17, IL-10, FOXP3, TGF-β1, RORγt, and IL-6 levels whereas it could increase remarkably IL-2 and IFN-γ levels. Our results demonstrated that SB could inhibit tumor growth in vivo through regulating immune function in tumor-bearing mice and suggested that the immunomodulatory function of SB had a potential therapeutic effect in lung cancer.
Collapse
|
30
|
XIA DONG, FENG LIBO, WU XIAOLONG, XIA GUODONG, XU LIANG. Microencapsulation of recombinant adenovirus within poly-DL-lactide-poly(ethylene glycol) microspheres for enhanced gene transfection efficiency and inhibitory effects on hepatocellular carcinoma cells in vitro. Mol Med Rep 2015; 12:2336-42. [DOI: 10.3892/mmr.2015.3578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 06/17/2014] [Indexed: 11/06/2022] Open
|
31
|
Zhu YD, Liu YQ, Qian YY, Zhang H, Li GQ, Yang L. Extracts of Celastrus orbiculatus exhibit anti-proliferative and anti-invasive effects on human gastric adenocarcinoma cells. Chin J Integr Med 2014. [PMID: 25382615 DOI: 10.1007/s11655-014-1951-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Indexed: 01/05/2023]
Abstract
OBJECTIVE To assess the effect of Celastrus orbiculatus (COE) on growth, invasion and migration of human gastric cancer MGC-803 cells and to explore the possible mechanism. METHODS The effect of COE on cell viability, apoptosis, adhesion, invasion and migration were studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, flow cytometric, cell adhesion and transwell assay, respectively. The activity and expression of matrix metalloproteinase-9 (MMP-9) were determined by gelatin zymography, Western blot and quantitative real-time polymerase chain reaction analysis. Meanwhile, effects of COE on the expression of mitogen-activated protein kinases (MAPKs), serine threonine kinase (Akt), nuclear factor κB (NF-κB) were investigated with Western blot analysis. RESULTS COE inhibited proliferation and induced apoptosis of MGC-803 cells in a dose-dependent manner. When treated with low-toxic (below 80 μg/mL) doses of COE, cell adhesion, invasion and migration were markedly suppressed. Furthermore, the gelatinolytic activity and expression of MMP-9 were also remarkably suppressed in a dose-dependent manner. In addition, upstream signaling pathways, including the phosphatidylinositol-3 kinase (PI3K)/Akt and NF-κB, were suppressed by COE. Additionally, the PI3K/Akt inhibitor, LY294002, in treating MGC-803 cells potently suppressed cell invasion and migration as well as expression of MMP-9. Similarly, the combined treatment with COE and LY294002 showed a synergistic effect compared with the treatment with COE or LY294002 alone in MGC-803 cells. CONCLUSIONS COE inhibits invasion and migration of MGC-803 cells by reducing MMP-9 expression. It also inhibit PI3K/Akt and NF-κB signaling pathways, which may offer a novel approach for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Yao-Dong Zhu
- Institute of Traditional Chinese Medicine and Western Medicine, School of Medicine, Yangzhou University, Yangzhou, Jiangsu Province, 225009, China
| | | | | | | | | | | |
Collapse
|
32
|
Ruan C, Xiao XH, Li GK. Microwave-assisted extraction coupled with countercurrent chromatography for the rapid preparation of flavonoids from Scutellaria barbata D. Don. J Sep Sci 2014; 37:1364-9. [DOI: 10.1002/jssc.201400168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/23/2023]
Affiliation(s)
- Chong Ruan
- School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou China
- School of Public Health; Guangxi Medical University; Nanning China
| | - Xiao-hua Xiao
- School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou China
| | - Gong-ke Li
- School of Chemistry and Chemical Engineering; Sun Yat-sen University; Guangzhou China
| |
Collapse
|
33
|
Chen G, Zhang Y, Wu X. 786-0 Renal cancer cell line-derived exosomes promote 786-0 cell migration and invasion in vitro.. Oncol Lett 2014; 7:1576-1580. [PMID: 24765179 PMCID: PMC3997692 DOI: 10.3892/ol.2014.1962] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 01/27/2014] [Indexed: 11/27/2022] Open
Abstract
Emerging evidence indicates that cancer-derived exosomes contribute to angiogenesis, tumor immunology and invasion. However, whether cancer cell-derived exosomes regulate the migration and invasion of the cancer cell itself, and the underlying mechanisms are not well understood. In the present study, exosomes derived from the 786-0 human renal cancer cell line were isolated, purified and 100 μg/ml were co-cultured with 786-0 cells for 24 h. The 786-0 cells were harvested for a cell invasion and migration assay. The expression of chemokine receptor type 4 (CXCR4) and matrix metalloproteinase-9 (MMP-9) in the 786-0 cells was examined by western blot analysis and revealed that the migration and invasion capabilities of the 786-0 cells were increased, however, the cell adhesion abilities were decreased as a result of the 24-h treatment with 786-0-derived exosomes. Furthermore, the expression levels of CXCR4 and MMP-9 in the 786-0 cells were increased. In conclusion, the 786-0 renal cancer cell line-derived exosomes increased migration and invasion, however, they decreased the adhesion ability of the 786-0 cells. The exosomes may have increased the CXCR4 and MMP-9 expression levels in the 786-0 cells. These findings indicated that renal tumor-derived exosomes may contribute to renal cancer development and progression.
Collapse
Affiliation(s)
- Gang Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Yao Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| | - Xiaohou Wu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Yuzhong, Chongqing 400016, P.R. China
| |
Collapse
|
34
|
Fan SH, Wang YY, Lu J, Zheng YL, Wu DM, Li MQ, Hu B, Zhang ZF, Cheng W, Shan Q. Luteoloside suppresses proliferation and metastasis of hepatocellular carcinoma cells by inhibition of NLRP3 inflammasome. PLoS One 2014; 9:e89961. [PMID: 24587153 PMCID: PMC3935965 DOI: 10.1371/journal.pone.0089961] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/25/2014] [Indexed: 01/20/2023] Open
Abstract
The inflammasome is a multi-protein complex which when activated regulates caspase-1 activation and IL-1β secretion. Inflammasome activation is mediated by NLR proteins that respond to stimuli. Among NLRs, NLRP3 senses the widest array of stimuli. NLRP3 inflammasome plays an important role in the development of many cancer types. However, Whether NLRP3 inflammasome plays an important role in the process of hepatocellular carcinoma (HCC) is still unknown. Here, the anticancer effect of luteoloside, a naturally occurring flavonoid isolated from the medicinal plant Gentiana macrophylla, against HCC cells and the underlying mechanisms were investigated. Luteoloside significantly inhibited the proliferation of HCC cells in vitro and in vivo. Live-cell imaging and transwell assays showed that the migration and invasive capacities of HCC cells, which were treated with luteoloside, were significantly inhibited compared with the control cells. The inhibitory effect of luteoloside on metastasis was also observed in vivo in male BALB/c-nu/nu mouse lung metastasis model. Further studies showed that luteoloside could significantly reduce the intracellular reactive oxygen species (ROS) accumulation. The decreased levels of ROS induced by luteoloside was accompanied by decrease in expression of NLRP3 inflammasome resulting in decrease in proteolytic cleavage of caspase-1. Inactivation of caspase-1 by luteoloside resulted in inhibition of IL-1β. Thus, luteoloside exerts its inhibitory effect on proliferation, invasion and metastasis of HCC cells through inhibition of NLRP3 inflammasome. Our results indicate that luteoloside can be a potential therapeutic agent not only as an adjuvant therapy for HCC, but also, in the control and prevention of metastatic HCC.
Collapse
Affiliation(s)
- Shao-hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yan-yan Wang
- Department of Function Examination, The First People's Hospital of Xuzhou, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Yuan-lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
- * E-mail:
| | - Dong-mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Meng-qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Zi-feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| | - Wei Cheng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu, China
| |
Collapse
|
35
|
Shu G, Mi X, Cai J, Zhang X, Yin W, Yang X, Li Y, Chen L, Deng X. Brucine, an alkaloid from seeds of Strychnos nux-vomica Linn., represses hepatocellular carcinoma cell migration and metastasis: the role of hypoxia inducible factor 1 pathway. Toxicol Lett 2013; 222:91-101. [PMID: 23933019 DOI: 10.1016/j.toxlet.2013.07.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 07/26/2013] [Accepted: 07/27/2013] [Indexed: 12/15/2022]
Abstract
Brucine is an alkaloid derived from the seeds of Strychnos nux-vomica Linn. which have long been used as a traditional medicine for the treatment of hepatocellular carcinoma (HCC) in China. HCC prognosis can be greatly influenced by metastasis. There has thus far been little research into brucine as a source of anti-metastasis activity against HCC. In this study, we revealed that brucine dramatically repressed HepG2 and SMMC-7721 HCC cell migration with few cytotoxic effects. Hypoxia inducible factor 1 (HIF-1) is a key transcription factor mediating cell migration and invasion. Brucine suppressed HIF-1-dependent luciferase activity in HepG2 cells. The transcriptions of four known HIF-1 target genes involved in HCC metastasis, i.e., fibronectin, matrix metallopeptidase 2, lysyl oxidase, and cathepsin D, were also attenuated after brucine treatment. Experiments in vivo showed that an intraperitoneal injection of 5 and 15 mg/kg of brucine resulted in dose-dependent decreases in the lung metastasis of H22 ascitic hepatoma cells. Moreover, a dosage of brucine at 15 mg/kg exhibited very low toxic effects to tumor-bearing mice. Consistently, brucine downregulated expression levels of HIF-1 responsive genes in vivo. Our current study demonstrated the capacity of brucine in suppressing HCC cell migration in vitro and lung metastasis in vivo. The inhibition of the HIF-1 pathway is implicated in the anti-metastasis activity of brucine.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmacy, South-Central University for Nationalities, Wuhan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|