1
|
Shojaee S, Azizi N, Mirjafary Z, Saeidian H. Magnet-responsive choline carbomer ionogels as a versatile and recyclable catalyst for one-pot synthesis of benzopyran in water. Sci Rep 2023; 13:21232. [PMID: 38040951 PMCID: PMC10692227 DOI: 10.1038/s41598-023-48625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
Ionogels are gaining popularity as a potential replacement for volatile organic solvents in various processes, such as catalysts, electrochemistry, spectroscopy, and medicinal chemistry, due to their low toxicity, high thermal stability, and good solubility. Magnet-responsive ion gels with high magnetic susceptibility are promising and can be used as catalysts, sensors, and MRI contrast agents. Herein, we fabricated simple and novel magnet choline carbomer ionogels using a precipitation-deposition method with carbomers and choline hydroxide. The morphology and structure of the resulting ionogels were analyzed using various characterization techniques, including FTIR, EDX, TGA, and SEM spectroscopy. These magnet ionogels were effective catalysts for a one-pot, three-component synthesis of benzopyran derivatives, providing mild reaction conditions, environmental friendliness, and good to excellent (78-96%) yields within a short reaction time (1-2 h). Additionally, the magnet ionogels were easily recyclable, and they could be reused up to five times without catalytic deactivation.
Collapse
Affiliation(s)
- Sara Shojaee
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Najmedin Azizi
- Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14335-186, Tehran, Iran.
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), PO Box 19395-4697, Tehran, Iran
| |
Collapse
|
2
|
Solvent-free mechanochemical multicomponent preparation of 4H-pyrans catalyzed by Cu 2(NH 2-BDC) 2(DABCO) metal-organic framework. Heliyon 2023; 9:e13522. [PMID: 36852068 PMCID: PMC9958292 DOI: 10.1016/j.heliyon.2023.e13522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
4H-pyrans have been prepared through a mechanochemical multicomponent reaction (MCR) of different aldehydes, malononitrile, and various 1,3-dicarbonyl compounds, catalyzed by an amine-functionalized metal-organic framework (MOF) Cu2(NH2-BDC)2(DABCO) as a heterogeneous catalyst with good to excellent yields.
Collapse
|
3
|
Khalil KD, Ahmed HA, Bashal AH, Bräse S, Nayl AA, Gomha SM. Efficient, Recyclable, and Heterogeneous Base Nanocatalyst for Thiazoles with a Chitosan-Capped Calcium Oxide Nanocomposite. Polymers (Basel) 2022; 14:polym14163347. [PMID: 36015604 PMCID: PMC9416520 DOI: 10.3390/polym14163347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/31/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Calcium oxide (CaO) nanoparticles have recently gained much interest in recent research due to their remarkable catalytic activity in various chemical transformations. In this article, a chitosan calcium oxide nanocomposite was created by the solution casting method under microwave irradiation. The microwave power and heating time were adjusted to 400 watts for 3 min. As it suppresses particle aggregation, the chitosan (CS) biopolymer acted as a metal oxide stabilizer. In this study, we aimed to synthesize, characterize, and investigate the catalytic potency of chitosan–calcium oxide hybrid nanocomposites in several organic transformations. The produced CS–CaO nanocomposite was analyzed by applying different analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and field-emission scanning electron microscopy (FESEM). In addition, the calcium content of the nanocomposite film was measured using energy-dispersive X-ray spectroscopy (EDS). Fortunately, the CS–CaO nanocomposite (15 wt%) was demonstrated to be a good heterogeneous base promoter for high-yield thiazole production. Various reaction factors were studied to maximize the conditions of the catalytic technique. High reaction yields, fast reaction times, and mild reaction conditions are all advantages of the used protocol, as is the reusability of the catalyst; it was reused multiple times without a significant loss of potency.
Collapse
Affiliation(s)
- Khaled D. Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Ali H. Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawarah, Yanbu 46423, Saudi Arabia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76133 Karlsruhe, Germany
- Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Director Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia or
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Correspondence: (K.D.K.); (S.B.); (S.M.G.)
| |
Collapse
|
4
|
Madkour M, Khalil KD, Al-Sagheer FA. Heterogeneous Hybrid Nanocomposite Based on Chitosan/Magnesia Hybrid Films: Ecofriendly and Recyclable Solid Catalysts for Organic Reactions. Polymers (Basel) 2021; 13:polym13203583. [PMID: 34685340 PMCID: PMC8539060 DOI: 10.3390/polym13203583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/01/2022] Open
Abstract
Chitosan/magnesia hybrid films (CS-Mg) have been prepared via sol-gel process and employed as heterogeneous catalysts. An in situ generation of a magnesia network in the chitosan matrix was performed through hydrolysis/condensation reactions of magnesium ethoxide. The synthesized hybrid films were characterized using various analytical techniques, such as X-ray photo-electron spectroscopy (XPS), field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The hybrid films display excellent catalytic activities in Michael and Knoevenagel reactions via one pot or solvent-free approaches under microwave irradiation conditions. Chitosan/magnesia hybrid films, catalysed pyrimidine, benzochromene, coumarin and arylidene-malononitriles derivatives formation reactions occurred with highly efficient yields of 97%, 92%, 86% and 95% respectively. Due to the fact that the films are durable and insoluble in common organic solvents, they were easily separated and can be recycled up to five times without a considerable loss of their catalytic activity.
Collapse
Affiliation(s)
- Metwally Madkour
- Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait;
| | - Khaled D. Khalil
- Chemistry Department, Faculty of Science, Cairo University, P.O. 12613, Gisa 12573, Egypt;
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
| | - Fakhreia A. Al-Sagheer
- Chemistry Department, Faculty of Science, University of Kuwait, P.O. Box 5969, Safat 13060, Kuwait;
- Correspondence:
| |
Collapse
|
5
|
Nasrollahzadeh M, Shafiei N, Baran T, Pakzad K, Tahsili MR, Baran NY, Shokouhimehr M. Facile synthesis of Pd nanoparticles supported on a novel Schiff base modified chitosan-kaolin: Antibacterial and catalytic activities in Sonogashira coupling reaction. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
7
|
Moccia F, Rigamonti L, Messori A, Zanotti V, Mazzoni R. Bringing Homogeneous Iron Catalysts on the Heterogeneous Side: Solutions for Immobilization. Molecules 2021; 26:2728. [PMID: 34066456 PMCID: PMC8124704 DOI: 10.3390/molecules26092728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022] Open
Abstract
Noble metal catalysts currently dominate the landscape of chemical synthesis, but cheaper and less toxic derivatives are recently emerging as more sustainable solutions. Iron is among the possible alternative metals due to its biocompatibility and exceptional versatility. Nowadays, iron catalysts work essentially in homogeneous conditions, while heterogeneous catalysts would be better performing and more desirable systems for a broad industrial application. In this review, approaches for heterogenization of iron catalysts reported in the literature within the last two decades are summarized, and utility and critical points are discussed. The immobilization on silica of bis(arylimine)pyridyl iron complexes, good catalysts in the polymerization of olefins, is the first useful heterogeneous strategy described. Microporous molecular sieves also proved to be good iron catalyst carriers, able to provide confined geometries where olefin polymerization can occur. Same immobilizing supports (e.g., MCM-41 and MCM-48) are suitable for anchoring iron-based catalysts for styrene, cyclohexene and cyclohexane oxidation. Another excellent example is the anchoring to a Merrifield resin of an FeII-anthranilic acid complex, active in the catalytic reaction of urea with alcohols and amines for the synthesis of carbamates and N-substituted ureas, respectively. A SILP (Supported Ionic Liquid Phase) catalytic system has been successfully employed for the heterogenization of a chemoselective iron catalyst active in aldehyde hydrogenation. Finally, FeIII ions supported on polyvinylpyridine grafted chitosan made a useful heterogeneous catalytic system for C-H bond activation.
Collapse
Affiliation(s)
- Fabio Moccia
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Luca Rigamonti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, via G. Campi 103, 41125 Modena, Italy;
| | - Alessandro Messori
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Valerio Zanotti
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| | - Rita Mazzoni
- Dipartimento di Chimica Industriale “Toso Montanari”, Università degli Studi di Bologna, viale Risorgimento 4, 40136 Bologna, Italy; (F.M.); (A.M.); (V.Z.)
| |
Collapse
|
8
|
Abdel-Naby AS, Nabil S, Aldulaijan S, Ababutain IM, Alghamdi AI, Almubayedh S, Khalil KD. Synthesis, Characterization of Chitosan-Aluminum Oxide Nanocomposite for Green Synthesis of Annulated Imidazopyrazol Thione Derivatives. Polymers (Basel) 2021; 13:polym13071160. [PMID: 33916381 PMCID: PMC8038599 DOI: 10.3390/polym13071160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 11/16/2022] Open
Abstract
Chitosan-aluminum oxide nanocomposite was synthesized, characterized, and used as a green heterogeneous catalyst to synthesize novel imidazopyrazolylthione derivatives. Nanocomposite polymeric material was characterized by EDS-SEM and XRD. The powerful catalytic activity, and its base character of the nanocomposite, was used to synthesize imidazopyrazolylthione (1) in a good yield compared to traditional cyclocondensation synthesis. Using the nanocomposite catalyst, substitution of the thiol group (1) afforded the corresponding thiourea (2) and the corresponding ester (3). The efficiency of the nanocomposite over the traditional base organic catalyst, Et3N and NaOH, makes it an effective, economic, and reproducible nontoxic catalyst. Moreover, the heterogeneous nanocomposite polymeric film was easily isolated from the reaction medium, and recycled up to four times, without a significant loss of its catalytic activity. The newly synthesized derivatives were screened as antibacterial agents and showed high potency. Molecular docking was also performed for a more in-depth investigation. The results of the docking studies have demonstrated that the docked compounds have strong interaction energies with both Gram-positive and Gram-negative bacteria.
Collapse
Affiliation(s)
- Abir S. Abdel-Naby
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (S.N.); (S.A.)
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.M.A.); (A.I.A.); (S.A.)
- Correspondence:
| | - Sara Nabil
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (S.N.); (S.A.)
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.M.A.); (A.I.A.); (S.A.)
| | - Sarah Aldulaijan
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (S.N.); (S.A.)
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.M.A.); (A.I.A.); (S.A.)
| | - Ibtisam M. Ababutain
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.M.A.); (A.I.A.); (S.A.)
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Azzah I. Alghamdi
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.M.A.); (A.I.A.); (S.A.)
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Somaiah Almubayedh
- Water Treatment Unit, Basic & Applied Scientific Research Center (BASRC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (I.M.A.); (A.I.A.); (S.A.)
| | - Khaled D. Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawrah, Yanbu 46423, Saudi Arabia
| |
Collapse
|
9
|
Chitosan-supported cinchona urea: Sustainable organocatalyst for asymmetric Michael reaction. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
10
|
Nasrollahzadeh M, Shafiei N, Nezafat Z, Soheili Bidgoli NS, Soleimani F. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano)catalysts in sustainable and selective oxidation reactions: A review. Carbohydr Polym 2020; 241:116353. [DOI: 10.1016/j.carbpol.2020.116353] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
|
11
|
Meninno S. Valorization of Waste: Sustainable Organocatalysts from Renewable Resources. CHEMSUSCHEM 2020; 13:439-468. [PMID: 31634413 DOI: 10.1002/cssc.201902500] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 06/10/2023]
Abstract
One of the greatest challenges facing our society is to reconcile our need to develop efficient and sophisticated chemical processes with the limited resources of our planet and its restricted ability to adsorb pollution. Organocatalysis has allowed many issues to be addressed in the development of sophisticated, but less polluting, processes. However, minimizing waste also means an efficient utilization of raw and renewable materials. Waste biomass represents an alternative to conventional petroleum-based chemical manufacturing and is a highly attractive renewable resource for the production of chemicals and high-value-added organocatalysts. Recent achievements in the use of renewable biomass feedstocks for the synthesis of organocatalysts are presented. Their application in synthetic methodologies, including multicomponent reactions, which are performed under solvent-free conditions or in eco-friendly reaction media, as well as recycling and reusing the organocatalysts, is illustrated. A few pioneering examples that demonstrate the potential of these promoters in asymmetric synthesis have also been documented. In particular, this review covers examples on the use of hetero- and homogeneous organocatalysts derived from 1) waste biopolymers, such as chitosan, alginic acid, and cellulose; ii) renewable platform molecules, such as levoglucosenone, isosorbide, mannose, d-glucosamine, and lecithin; 3) terpenes and rosin, such as pinane, isosteviol, and abietic acid; and iv) natural proteins (gelatin, bovine tendons, silk fibroin proteins).
Collapse
Affiliation(s)
- Sara Meninno
- Dipartimento di Chimica e Biologia, University of Salerno, Via Giovanni Paolo II, 84084, Fisciano, Italy
| |
Collapse
|
12
|
Abstract
Introduction:The popularity of chitosan is increasing among the researchers due to its environment friendly nature, high activity and easy approachability. Chitosan based catalysts are not only the most active and selective in catalytic reaction, but their “green” accessibility also makes them promising in organic catalysis. Chitosan is commonly extracted from chitin by alkaline deacetylation and it is the second abundant biopolymer in nature after cellulose. Chitosan based catalysts are advantageous by means of non-metallic activation as it involves small organic molecules. The robustness, nontoxicity, the lack of metal leaching possibility, inertness towards moisture and oxygen, easy handling and storage are the main advantages of organocatalysts. Traditional drawbacks associated with the metal-based heterogeneous catalysts, like longer reaction times during any synthesis, metal-leaching after every reaction and structural instability of the catalyst for prolonged recycling experiments are also very negligible for chitosan based catalysts. Besides, these catalysts can contribute more in catalysis due to their reusability and these special features increase their demand as the functionalized and profitable catalysts.Objective:The thorough description about the preparation of organocatalysts from chitosan and their uniqueness and novel activities in various famous reactions includes as the main aim of this review. Reusable and recycle nature of chitosan based organocatalysts gain the advantages over traditional and conventional catalyst which is further discussed over here.Methods and Discussions:In this article only those reactions are discussed where chitosan has been used both as support in heterogeneous catalysts or used as a catalyst itself without any co-catalyst for some reactions. Owing to its high biodegradability, nontoxicity, and antimicrobial properties, chitosan is widely-used as a green and sustainable polymeric catalyst in vast number of the reactions. Most of the preparations of catalyst have been achieved by exploring the complexation properties of chitosan with metal ions in heterogeneous molecular catalysis. Organocatalysis with chitosan is primarily discussed for carbon-carbon bond-forming reactions, carbon dioxide fixation through cyclo- addition reaction, condensation reaction and fine chemical synthesis reactions. Furthermore, its application as an enantioselective catalyst is also considered here for the chiral, helical organization of the chitosan skeleton. Moreover, another advantage of this polymeric catalyst is its easy recovery and reusability for several times under solvent-free conditions which is also explored in the current article.Conclusion:Important organocatalyzed reactions with either native chitosan or functionalized chitosan as catalysts have attracted great attention in the recent past. Also, chitosan has been widely used as a very promising support for the immobilization of catalytic metals for many reactions. In this review, various reactions have been discussed which show the potentiality of chitosan as catalyst or catalyst support.
Collapse
Affiliation(s)
- Dipika Pan
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India
| | - Jhuma Ganguly
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, India
| |
Collapse
|
13
|
Konwar M, Chetia M, Sarma D. A Low-Cost, Well-Designed Catalytic System Derived from Household Waste "Egg Shell": Applications in Organic Transformations. Top Curr Chem (Cham) 2019; 377:6. [PMID: 30675643 DOI: 10.1007/s41061-018-0230-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/29/2018] [Indexed: 01/22/2023]
Abstract
A waste feedstock-derived economical basic alternative catalyst is described in this review. Eggshell is one of the household wastes created in tons of weight daily. Therefore, in order to reduce the environmental pollution-related problems, its use in heterogeneous catalysis can be attributed as a great contribution for the chemical and material science society to carry out several known reactions and for the much-needed energy alternative biodiesel production as low-cost catalytic system. Keeping green chemistry in mind, industrial use of these catalysts may also reduce the use of other traditionally used high-cost chemical catalytic systems.
Collapse
Affiliation(s)
- Manashjyoti Konwar
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Mitali Chetia
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India
| | - Diganta Sarma
- Department of Chemistry, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| |
Collapse
|
14
|
Merzendorfer H. Chitosan Derivatives and Grafted Adjuncts with Unique Properties. BIOLOGICALLY-INSPIRED SYSTEMS 2019. [DOI: 10.1007/978-3-030-12919-4_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Naghiyev F, Mamedov I, Khrustalev V, Shixaliyev N, Maharramov A. A new direction in the alkylation of 5-acetyl-2-amino-6-methyl-4-phenyl-4H
-pyran-3-carbonitrile with active methylene reagents. J CHIN CHEM SOC-TAIP 2018. [DOI: 10.1002/jccs.201800283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Farid Naghiyev
- Baku State University; Faculty of Chemistry; Baku Azerbaijan
| | - Ibrahim Mamedov
- Baku State University; Faculty of Chemistry; Baku Azerbaijan
| | - Victor Khrustalev
- People Friendship University of Russia (RUDN), Research Institute of Chemistry; Moscow Russia
| | | | - Abel Maharramov
- Baku State University; Faculty of Chemistry; Baku Azerbaijan
| |
Collapse
|
16
|
Riyadh SM, Khalil KD, Aljuhani A. Chitosan-MgO Nanocomposite: One Pot Preparation and Its Utility as an Ecofriendly Biocatalyst in the Synthesis of Thiazoles and [1,3,4]thiadiazoles. NANOMATERIALS 2018; 8:nano8110928. [PMID: 30413060 PMCID: PMC6266359 DOI: 10.3390/nano8110928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/03/2018] [Accepted: 11/04/2018] [Indexed: 12/05/2022]
Abstract
A chitosan-MgO hybrid nanocomposite was prepared using a simple chemical precipitation method and characterized using Fourier transform spectroscopy (FTIR), elemental analysis (EDX), and scanning electron microscopy (SEM). The nanocomposite was served as a powerful ecofriendly basic catalyst under microwave irradiation in the synthesis of two novel series of 5-arylazo-2-hydrazonothiazoles 4a–j and 2-hydrazono[1,3,4]thiadiazoles 8a–d, incorporating a sulfonamide group. The structures of the synthesized products were elucidated by spectral data and elemental analyses. Also, their yield percentages were calculated using triethylamine (as a traditional catalyst) and chitosan-MgO nanocomposite (as a green recyclable catalyst) in a comparative study.
Collapse
Affiliation(s)
- Sayed M Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Mounawrah 30002, Saudi Arabia.
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt.
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia.
| | - Ateyatallah Aljuhani
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Mounawrah 30002, Saudi Arabia.
| |
Collapse
|
17
|
Preparation of chitosan-supported urea materials and their application in some organocatalytic procedures. Carbohydr Polym 2018; 199:365-374. [DOI: 10.1016/j.carbpol.2018.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/03/2018] [Accepted: 07/03/2018] [Indexed: 01/20/2023]
|
18
|
Dyachenko VD, Dyachenko IV, Nenajdenko VG. Cyanothioacetamide: a polyfunctional reagent with broad synthetic utility. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4760] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Andrés JM, González F, Maestro A, Pedrosa R, Valle M. Biodegradable Chitosan-Derived Thioureas as Recoverable Supported Organocatalysts - Application to the Stereoselective Aza-Henry Reaction. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700582] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- José M. Andrés
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias; Universidad de Valladolid; Paseo de Belén 7 47011 Valladolid Spain
| | - Fernando González
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias; Universidad de Valladolid; Paseo de Belén 7 47011 Valladolid Spain
| | - Alicia Maestro
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias; Universidad de Valladolid; Paseo de Belén 7 47011 Valladolid Spain
| | - Rafael Pedrosa
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias; Universidad de Valladolid; Paseo de Belén 7 47011 Valladolid Spain
| | - María Valle
- Instituto CINQUIMA and Departamento de Química Orgánica, Facultad de Ciencias; Universidad de Valladolid; Paseo de Belén 7 47011 Valladolid Spain
| |
Collapse
|
20
|
O-Carboxymethyl Chitosan Supported Heterogeneous Palladium and Ni Catalysts for Heck Reaction. Molecules 2017; 22:molecules22010150. [PMID: 28106801 PMCID: PMC6155598 DOI: 10.3390/molecules22010150] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/25/2022] Open
Abstract
Two polymer catalysts (Pd-OCMCS and Ni-OCMCS) with good reusability were synthesized by coordinating Pd and Ni onto O-carboxymethyl chitosan (OCMCS). The chemical structure and thermal stability of prepared catalysts were determined by Fourier transform infrared (FT-IR) spectra, Energy Dispersive Spectrometer (EDS)analysis, X-ray diffraction (XRD), and thermogravimetric analyzer (TG-DTG), and the analysis results showed that the Pd and Ni ions coordinated onto the OCMCS and formed a ligand with the –COOH group, amino groups, and –OH group on the OCMCS, and the EDS and Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analysis results showed that the loading amounts of Pd and Ni were approximately 8.3% and 8.9%, respectively. In the Heck reaction between aryl halides and n-butyl acrylate catalyzed by the prepared catalyst, the test results showed that the product yield followed the order of aryl iodide > aryl bromide > aryl chloride. Additionally, the product yield for the aryl iodide and aryl bromide could reach up to 99% and 96%, respectively. Moreover, the electron-withdrawing and electron-donating property of the group on the aryl also affected the product yield, and the product yield for aryl halides with electron-withdrawing group p-NO2, p-CH3CO, and p-CHO was higher than that with electron-donating group p-CH3.
Collapse
|
21
|
Mojtahedi MM, Pourabdi L, Abaee MS, Jami H, Dini M, Halvagar MR. Facile one-pot synthesis of novel ortho-aminocarbonitriles and dicyanoanilines fused to heterocycles via pseudo four-component reactions. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
22
|
Gomha SM, Riyadh SM, Mahmmoud EA, Elaasser MM. Synthesis and anticancer activity of arylazothiazoles and 1,3,4-thiadiazoles using chitosan-grafted-poly(4-vinylpyridine) as a novel copolymer basic catalyst. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1815-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Khalil KD, Ibrahim EI, Al-Sagheer FA. A novel, efficient, and recyclable biocatalyst for Michael addition reactions and its iron(iii) complex as promoter for alkyl oxidation reactions. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01034a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel, efficient, and recyclable biocatalyst for Michael addition reactions and its iron(iii) complex as promoter for alkyl oxidation reactions.
Collapse
Affiliation(s)
- Khaled D. Khalil
- Chemistry Department
- Faculty of Science
- University of Kuwait
- Safat 13060
- Kuwait
| | - Enas I. Ibrahim
- Chemistry Department
- Faculty of Science
- University of Kuwait
- Safat 13060
- Kuwait
| | | |
Collapse
|
24
|
Mobinikhaledi A, Bodaghifard MA, Asadbegi S. A novel four- and pseudo-five-component reaction: unexpected efficient one-pot synthesis of 4H-thiopyran derivatives. Mol Divers 2015; 20:461-8. [PMID: 26351178 DOI: 10.1007/s11030-015-9634-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/25/2015] [Indexed: 11/24/2022]
Abstract
A facile and convenient novel method is reported for the synthesis of substituted 4H-thiopyrans by reacting aldehydes, malononitrile, carbon disulfide, and primary amines at room temperature in the presence of triethylamine as a catalyst. This reaction affords the desired products in high purity and has advantages of excellent yields, simple work-up procedure, and short reaction time.
Collapse
Affiliation(s)
- Akbar Mobinikhaledi
- Department of Chemistry, Faculty of Science, Arak University, 38156-88349, Arak, Iran
| | | | - Sajad Asadbegi
- Department of Chemistry, Faculty of Science, Arak University, 38156-88349, Arak, Iran
| |
Collapse
|
25
|
Mahé O, Brière JF, Dez I. Chitosan: An Upgraded Polysaccharide Waste for Organocatalysis. European J Org Chem 2015. [DOI: 10.1002/ejoc.201403396] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
M. Riyadh S, M. Gomha S, A. Mahmmoud E, M. Elaasser M. Synthesis and Anticancer Activities of Thiazoles, 1,3-Thiazines, and Thiazolidine Using Chitosan-Grafted-Poly(vinylpyridine) as Basic Catalyst. HETEROCYCLES 2015. [DOI: 10.3987/com-15-13210] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
El Kadib A. Chitosan as a sustainable organocatalyst: a concise overview. CHEMSUSCHEM 2015; 8:217-244. [PMID: 25470553 DOI: 10.1002/cssc.201402718] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/20/2014] [Indexed: 06/04/2023]
Abstract
Increased demand for more sustainable materials and chemical processes has tremendously advanced the use of polysaccharides, which are natural biopolymers, in domains such as adsorption, catalysis, and as an alternative chemical feedstock. Among these biopolymers, the use of chitosan, which is obtained by deacetylation of natural chitin, is on the increase due to the presence of amino groups on the polymer backbone that makes it a natural cationic polymer. The ability of chitosan-based materials to form open-network, macroporous, high-surface-area hydrogels with accessible basic surface sites has enabled their use not only as macrochelating ligands for active metal catalysts and as a support to disperse nanosized particles, but also as a direct organocatalyst. This review provides a concise overview of the use of native and modified chitosan, possessing different textural properties and chemical properties, as organocatalysts. Organocatalysis with chitosan is primarily focused on carbon-carbon bond-forming reactions, multicomponent heterocycle formation reactions, biodiesel production, and carbon dioxide fixation through [3+2] cycloaddition. Furthermore, the chiral, helical organization of the chitosan skeleton lends itself to use in enantioselective catalysis. Chitosan derivatives generally display reactivity similar to homogeneous bases, ionic liquids, and organic and inorganic salts. However, the introduction of cooperative acid-base interactions at active sites substantially enhances reactivity. These functional biopolymers can also be easily recovered and reused several times under solvent-free conditions. These accomplishments highlight the important role that natural biopolymers play in furthering more sustainable chemistry.
Collapse
Affiliation(s)
- Abdelkrim El Kadib
- Euro-Med Research Institute, Engineering Division, Euro-Mediterranean University of Fes (UEMF), Fès Shore, Route de Sidi Hrazem, 30070 Fès (Morocco).
| |
Collapse
|
28
|
Rai P, Srivastava M, Singh J, Singh J. Chitosan/ionic liquid forms a renewable and reusable catalyst system used for the synthesis of highly functionalized spiro derivatives. NEW J CHEM 2014. [DOI: 10.1039/c3nj01545a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|