1
|
Zhu S, Jin G, He X, Li Y, Xu F, Guo H. Mechano-assisted strategies to improve cancer chemotherapy. Life Sci 2024; 359:123178. [PMID: 39471901 DOI: 10.1016/j.lfs.2024.123178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/25/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Chemotherapy remains a cornerstone in cancer treatment; however, its effectiveness is frequently undermined by the development of drug resistance. Recent studies underscores the pivotal role of the tumor mechanical microenvironment (TMME) and the emerging field of mechanical nanomedicine in tackling chemo-resistance. This review offers an in-depth analysis of mechano-assisted strategies aimed at mitigating chemo-resistance through the modification of the TMME and the refinement of mechanical nanomedicine delivery systems. We explore the potential of targeting abnormal tumor mechanical properties as a promising avenue for enhancing the efficacy of cancer chemotherapy, which offers novel directions for advancing future cancer therapies, especially from the mechanomedicine perspective.
Collapse
Affiliation(s)
- Shanshan Zhu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guorui Jin
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiaocong He
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China.
| |
Collapse
|
2
|
Paulus J, Sewald N. Small molecule- and peptide-drug conjugates addressing integrins: A story of targeted cancer treatment. J Pept Sci 2024; 30:e3561. [PMID: 38382900 DOI: 10.1002/psc.3561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 02/23/2024]
Abstract
Targeted cancer treatment should avoid side effects and damage to healthy cells commonly encountered during traditional chemotherapy. By combining small molecule or peptidic ligands as homing devices with cytotoxic drugs connected by a cleavable or non-cleavable linker in peptide-drug conjugates (PDCs) or small molecule-drug conjugates (SMDCs), cancer cells and tumours can be selectively targeted. The development of highly affine, selective peptides and small molecules in recent years has allowed PDCs and SMDCs to increasingly compete with antibody-drug conjugates (ADCs). Integrins represent an excellent target for conjugates because they are overexpressed by most cancer cells and because of the broad knowledge about native binding partners as well as the multitude of small-molecule and peptidic ligands that have been developed over the last 30 years. In particular, integrin αVβ3 has been addressed using a variety of different PDCs and SMDCs over the last two decades, following various strategies. This review summarises and describes integrin-addressing PDCs and SMDCs while highlighting points of great interest.
Collapse
Affiliation(s)
- Jannik Paulus
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Ram T, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives. RSC Med Chem 2023; 14:1837-1857. [PMID: 37859720 PMCID: PMC10583825 DOI: 10.1039/d3md00145h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 10/21/2023] Open
Abstract
MEK1/2 are critical components of the RAS-RAF-MEK-ERK or MAPK signalling pathway that regulates a variety of cellular functions including proliferation, survival, and differentiation. In 1997, a lung cancer cell line was first found to have a MEK mutation (encoding MEK2P298L). MEK is involved in various human cancers such as non-small cell lung cancer (NSCLC), spurious melanoma, and pancreatic, colorectal, basal, breast, and liver cancer. To date, 4 MEK inhibitors i.e., trametinib, cobimetinib, selumetinib, and binimetinib have been approved by the FDA and several are under clinical trials. In this review, we have highlighted structural insights into the MEK1/2 proteins, such as the αC-helix, catalytic loop, P-loop, F-helix, hydrophobic pocket, and DFG motif. We have also discussed current issues with all FDA-approved MEK inhibitors or drugs under clinical trials and combination therapies to improve the efficacy of clinical drugs. Finally, this study addressed recent developments on synthetic MEK inhibitors (from their discovery in 1997 to 2022), their unique properties, and their relevance to MEK mutant inhibition.
Collapse
Affiliation(s)
- Teja Ram
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus", GITAM (Deemed to be University) India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Amita Verma
- Bioorganic and Med. Chem. Res., Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
4
|
Gryzło B, Zaręba P, Malawska K, Mazur G, Rapacz A, Ła̧tka K, Höfner GC, Latacz G, Bajda M, Sałat K, Wanner KT, Malawska B, Kulig K. Novel Functionalized Amino Acids as Inhibitors of GABA Transporters with Analgesic Activity. ACS Chem Neurosci 2021; 12:3073-3100. [PMID: 34347423 PMCID: PMC8397297 DOI: 10.1021/acschemneuro.1c00351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
Neuropathic pain
resistance to pharmacotherapy has encouraged researchers
to develop effective therapies for its treatment. γ-Aminobutyric
acid (GABA) transporters 1 and 4 (mGAT1 and mGAT4) have been increasingly
recognized as promising drug targets for neuropathic pain (NP) associated
with imbalances in inhibitory neurotransmission. In this context,
we designed and synthesized new functionalized amino acids as inhibitors
of GABA uptake and assessed their activities toward all four mouse
GAT subtypes (mGAT1–4). According to the obtained results,
compounds 2RS,4RS-39c (pIC50 (mGAT4) = 5.36), 50a (pIC50 (mGAT2) = 5.43), and 56a (with moderate subtype selectivity
that favored mGAT4, pIC50 (mGAT4) = 5.04) were of particular
interest and were therefore evaluated for their cytotoxic and hepatotoxic
effects. In a set of in vivo experiments, both compounds 50a and 56a showed antinociceptive properties
in three rodent models of NP, namely, chemotherapy-induced neuropathic
pain models (the oxaliplatin model and the paclitaxel model) and the
diabetic neuropathic pain model induced by streptozotocin; however
compound 56a demonstrated predominant activity. Since
impaired motor coordination is also observed in neuropathic pain conditions,
we have pointed out that none of the test compounds induced motor
deficits in the rotarod test.
Collapse
Affiliation(s)
- Beata Gryzło
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Paula Zaręba
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Gabriela Mazur
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Anna Rapacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Kamil Ła̧tka
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Georg C. Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstraße 5-13, 81377 Munich, Germany
| | - Gniewomir Latacz
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Marek Bajda
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Kinga Sałat
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-Universität München Butenandtstraße 5-13, 81377 Munich, Germany
| | - Barbara Malawska
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| | - Katarzyna Kulig
- Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Kraków, Poland
| |
Collapse
|
5
|
Battistini L, Bugatti K, Sartori A, Curti C, Zanardi F. RGD Peptide‐Drug Conjugates as Effective Dual Targeting Platforms: Recent Advances. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lucia Battistini
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Kelly Bugatti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Andrea Sartori
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Claudio Curti
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| | - Franca Zanardi
- Dipartimento di Scienze degli Alimenti e del Farmaco Università di Parma Parco Area delle Scienze 27 A 43124 Parma Italy
| |
Collapse
|
6
|
Manzari MT, Shamay Y, Kiguchi H, Rosen N, Scaltriti M, Heller DA. Targeted drug delivery strategies for precision medicines. NATURE REVIEWS. MATERIALS 2021; 6:351-370. [PMID: 34950512 PMCID: PMC8691416 DOI: 10.1038/s41578-020-00269-6] [Citation(s) in RCA: 370] [Impact Index Per Article: 123.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/24/2020] [Indexed: 05/05/2023]
Abstract
Progress in the field of precision medicine has changed the landscape of cancer therapy. Precision medicine is propelled by technologies that enable molecular profiling, genomic analysis, and optimized drug design to tailor treatments for individual patients. Although precision medicines have resulted in some clinical successes, the use of many potential therapeutics has been hindered by pharmacological issues, including toxicities and drug resistance. Drug delivery materials and approaches have now advanced to a point where they can enable the modulation of a drug's pharmacological parameters without compromising the desired effect on molecular targets. Specifically, they can modulate a drug's pharmacokinetics, stability, absorption, and exposure to tumours and healthy tissues, and facilitate the administration of synergistic drug combinations. This Review highlights recent progress in precision therapeutics and drug delivery, and identifies opportunities for strategies to improve the therapeutic index of cancer drugs, and consequently, clinical outcomes.
Collapse
Affiliation(s)
- Mandana T. Manzari
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- These authors have contributed equally to this work
| | - Yosi Shamay
- Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- These authors have contributed equally to this work
| | - Hiroto Kiguchi
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- These authors have contributed equally to this work
| | - Neal Rosen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
| | - Maurizio Scaltriti
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Daniel A. Heller
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
7
|
Di Filippo LD, Duarte JL, Luiz MT, de Araújo JTC, Chorilli M. Drug Delivery Nanosystems in Glioblastoma Multiforme Treatment: Current State of the Art. Curr Neuropharmacol 2021; 19:787-812. [PMID: 32867643 PMCID: PMC8686306 DOI: 10.2174/1570159x18666200831160627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/08/2020] [Accepted: 08/20/2020] [Indexed: 11/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common primary malignant Central Nervous System cancer, responsible for about 4% of all deaths associated with neoplasia, characterized as one of the fatal human cancers. Tumor resection does not possess curative character, thereby radio and/or chemotherapy are often necessary for the treatment of GBM. However, drugs used in GBM chemotherapy present some limitations, such as side effects associated with non-specific drug biodistribution as well as limited bioavailability, which limits their clinical use. To attenuate the systemic toxicity and overcome the poor bioavailability, a very attractive approach is drug encapsulation in drug delivery nanosystems. The main focus of this review is to explore the actual cancer global problem, enunciate barriers to overcome in the pharmacological treatment of GBM, as well as the most updated drug delivery nanosystems for GBM treatment and how they influence biopharmaceutical properties of anti-GBM drugs. The discussion will approach lipid-based and polymeric nanosystems, as well as inorganic nanoparticles, regarding their technical aspects as well as biological effects in GBM treatment. Furthermore, the current state of the art, challenges to overcome and future perspectives in GBM treatment will be discussed.
Collapse
Affiliation(s)
| | | | - Marcela Tavares Luiz
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Brazil
| |
Collapse
|
8
|
Petrova PR, Koval’skaya AV, Lobov AN, Tsypysheva IP. Conjugates of 9- and 11-Halo-Substituted Cytisines with 1′-N-Methylurocanic Acid. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02905-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Abstract
There is a growing interest for the discovery of new cancer-targeted delivery systems for drug delivery and diagnosis. A synopsis of the bibliographic data will be presented on bombesin, neurotensin, octreotide, Arg-Gly-Asp, luteinizing hormone-releasing hormone and other peptides. Many of them have reached the clinics for therapeutic or diagnostic purposes, and have been utilized as carriers of known cytotoxic agents such as doxorubicin, paclitaxel, cisplatin, methotrexate or dyes and radioisotopes. In our article, recent advances in the development of peptides as carriers of cytotoxic drugs or radiometals will be analyzed.
Collapse
|
10
|
Abstract
Conjugates of cytotoxic agents with RGD peptides (Arg-Gly-Asp) addressed to ανβ3, α5β1 and ανβ6 integrin receptors overexpressed by cancer cells, have recently gained attention as potential selective anticancer chemotherapeutics. In this review, the design and the development of RGD conjugates coupled to different small molecules including known cytotoxic drugs and natural products will be discussed.
Collapse
|
11
|
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24:21. [PMID: 28320393 PMCID: PMC5359827 DOI: 10.1186/s12929-017-0328-x] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/14/2017] [Indexed: 12/25/2022] Open
Abstract
Cancer along with cardiovascular disease are the main causes of death in the industrialised countries around the World. Conventional cancer treatments are losing their therapeutic uses due to drug resistance, lack of tumour selectivity and solubility and as such there is a need to develop new therapeutic agents. Therapeutic peptides are a promising and a novel approach to treat many diseases including cancer. They have several advantages over proteins or antibodies: as they are (a) easy to synthesise, (b) have a high target specificity and selectivity and (c) have low toxicity. Therapeutic peptides do have some significant drawbacks related to their stability and short half-life. In this review, strategies used to overcome peptide limitations and to enhance their therapeutic effect will be compared. The use of short cell permeable peptides that interfere and inhibit protein-protein interactions will also be evaluated.
Collapse
Affiliation(s)
- Susan Marqus
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Elena Pirogova
- School of Engineering, RMIT University, Bundoora, VIC 3083 Australia
| | - Terrence J. Piva
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083 Australia
| |
Collapse
|
12
|
Hou J, Diao Y, Li W, Yang Z, Zhang L, Chen Z, Wu Y. RGD peptide conjugation results in enhanced antitumor activity of PD0325901 against glioblastoma by both tumor-targeting delivery and combination therapy. Int J Pharm 2016; 505:329-40. [PMID: 27085642 DOI: 10.1016/j.ijpharm.2016.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/28/2016] [Accepted: 04/11/2016] [Indexed: 11/16/2022]
Abstract
Glioblastoma (GBM) is the most aggressive tumor type in the central nervous system. Both tumor-targeting drug delivery and combination therapy of multiple therapeutic agents with distinct mechanisms are important for GBM treatment. We combined these two strategies and developed a new platform of peptide-drug conjugate (RGD-PEG-Suc-PD0325901, W22) for tumor-targeting delivery using a combination of PD0325901 (a MEK1/2 inhibitor) and RGD peptide. In the present study, the combination of PD0325901 and RGD peptide strongly inhibited U87MG model in vitro and in vivo. This inhibition contributed to synergistic suppression of cell proliferation by blocking ERK pathway activity and cell migration. Modified by conjugation strategy, their conjugate W22 enhanced PD0325901 delivery to GBM cells by receptor mediated cellular internalization. W22 showed great superiority in targeting to U87MG xenografted tumors and strong anti-tumor efficacy based on ERK pathway inhibition and tumor-targeted delivery in vitro and in vivo. Moreover, W22 was stable in serum and able to release PD0325901 in the enzymatic environment. These data indicated that the RGD-PEG-Suc-PD0325901 conjugate provided a strategy for effective delivery of PD0325901 and RGD peptide into the GBM cells and inhibition of tumor growth in a synergistic manner.
Collapse
Affiliation(s)
- Jianjun Hou
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Yiping Diao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Wei Li
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Lihe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China
| | - Zili Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China.
| | - Yun Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, PR China.
| |
Collapse
|
13
|
Kue CS, Kamkaew A, Burgess K, Kiew LV, Chung LY, Lee HB. Small Molecules for Active Targeting in Cancer. Med Res Rev 2016; 36:494-575. [PMID: 26992114 DOI: 10.1002/med.21387] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/29/2022]
Abstract
For the purpose of this review, active targeting in cancer research encompasses strategies wherein a ligand for a cell surface receptor expressed on tumor cells is used to deliver a cytotoxic or imaging cargo. This area of research is more than two decades old, but in those 20 and more years, how many receptors have been studied extensively? What kinds of the ligands are used for active targeting? Are they mostly naturally occurring molecules such as folic acid, or synthetic substances developed in campaigns for medicinal chemistry efforts? This review outlines the most important receptor or ligand combinations that have been used in active targeting to answer these questions, and therefore to address the most important one of all: is research in active targeting affording diminishing returns, or is this an area for which the potential far exceeds progress made so far?
Collapse
Affiliation(s)
- Chin S Kue
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anyanee Kamkaew
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Kevin Burgess
- Department of Chemistry, Texas A & M University, Box 30012, College Station, TX, 77842
| | - Lik V Kiew
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Lip Y Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Hong B Lee
- Department of Pharmacy, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci 2016; 23:8. [PMID: 26786672 PMCID: PMC4717660 DOI: 10.1186/s12929-016-0223-x] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 01/11/2016] [Indexed: 12/25/2022] Open
Abstract
Combinatorial phage library is a powerful research tool for high-throughput screening of protein interactions. Of all available molecular display techniques, phage display has proven to be the most popular approach. Screening phage-displayed random peptide libraries is an effective means of identifying peptides that can bind target molecules and regulate their function. Phage-displayed peptide libraries can be used for (i) B-cell and T-cell epitope mapping, (ii) selection of bioactive peptides bound to receptors or proteins, disease-specific antigen mimics, peptides bound to non-protein targets, cell-specific peptides, or organ-specific peptides, and (iii) development of peptide-mediated drug delivery systems and other applications. Targeting peptides identified using phage display technology may be useful for basic research and translational medicine. In this review article, we summarize the latest technological advancements in the application of phage-displayed peptide libraries to applied biomedical sciences.
Collapse
Affiliation(s)
- Chien-Hsun Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - I-Ju Liu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Ruei-Min Lu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan
| | - Han-Chung Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 11529, Taiwan.
| |
Collapse
|
15
|
Protein– and Peptide–Drug Conjugates. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 98:1-55. [DOI: 10.1016/bs.apcsb.2014.11.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|