1
|
Yan C, Datta Sarma A, Moretto E, Thomann JS, Verge P, Schmidt D, Kayser F, Dieden R. Semiquantitative Solid-State NMR Study of the Adsorption of Soybean Oils on Silica and Its Significance for Rubber Processing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10298-10307. [PMID: 34406773 DOI: 10.1021/acs.langmuir.1c01280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Soybean oil (SBO) is a renewable material used as an alternative to conventional petroleum-derived oils in the processing of rubber composites. Upon chemical modifications, such as epoxidation, its performance in the processing of rubber can be significantly improved, as indicated by a considerable reduction of the mixing energy. Although it has been hypothesized that hydrogen bonding between functional groups (e.g., epoxy) of SBOs and silanols present on the silica surface plays a key role, there is still a lack of direct evidence supporting this hypothesis. In this work, it is demonstrated that there is an overall correlation between the epoxy concentration of SBOs and the mixing energy, consistent with the long-held hypothesis. In particular, a correlation between the SBO-silica adsorption affinity and the degree of epoxidation is revealed by a set of surface-selective solid-state nuclear magnetic resonance (ssNMR) experiments. In addition, the surface-selective ssNMR technique demonstrated in this work could also be used to evaluate the adsorption affinity of other oils and/or additives more broadly.
Collapse
Affiliation(s)
- Chuanyu Yan
- Department of "Materials Research and Technology", Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue des Hauts-Fourneaux, L-4365 Esch-sur-Alzette, Luxembourg
| | - Arpan Datta Sarma
- Department of "Materials Research and Technology", Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue des Hauts-Fourneaux, L-4365 Esch-sur-Alzette, Luxembourg
| | - Enzo Moretto
- Department of "Materials Research and Technology", Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, Avenue des Hauts-Fourneaux, L-4365 Esch-sur-Alzette, Luxembourg
| | - Jean-Sébastien Thomann
- Department of "Materials Research and Technology", Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Pierre Verge
- Department of "Materials Research and Technology", Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - Daniel Schmidt
- Department of "Materials Research and Technology", Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| | - François Kayser
- Goodyear Innovation Center Luxembourg, Avenue Gordon Smith, L-7750 Colmar Berg, Luxembourg
| | - Reiner Dieden
- Department of "Materials Research and Technology", Luxembourg Institute of Science and Technology, Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Zaunschirm M, Pignitter M, Kienesberger J, Hernler N, Riegger C, Eggersdorfer M, Somoza V. Contribution of the Ratio of Tocopherol Homologs to the Oxidative Stability of Commercial Vegetable Oils. Molecules 2018; 23:E206. [PMID: 29351234 PMCID: PMC6017329 DOI: 10.3390/molecules23010206] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/13/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
The antioxidant activity of tocopherols in vegetable oils was shown to chiefly depend on the amount and the tocopherol homolog present. However, the most effective ratio of tocopherol homologs with regard to the antioxidant capacity has not been elucidated so far. The present study analyzed the effect of different tocopherol concentrations, homologs and ratios of homologs on markers of lipid oxidation in the most commonly consumed vegetable oils (canola, sunflower, soybean oil) stored in a 12 h light/dark cycle at 22 ± 2 °C for 56 days under retail/household conditions. After 56 days of storage, the α-tocopherol-rich canola and sunflower oil showed the strongest rise in lipid peroxides, yielding 25.1 ± 0.03 meq O₂/kg (+25.3-fold) and 24.7 ± 0.05 meq O₂/kg (+25.0-fold), respectively. ESR experiments, excluding effects of the oils' matrices and other minor constituents, confirmed that a food representative tocopherol ratio of (γ + δ)/α = 4.77, as represented in soybean oil, led to a more pronounced delay of lipid oxidation than a lower ratio in canola (1.39) and sunflower oil (0.06). An optimum (γ + δ)/α -tocopherol ratio contributing to the oxidative quality of vegetable oils extending their shelf life has to be investigated.
Collapse
Affiliation(s)
- Mathias Zaunschirm
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
| | - Marc Pignitter
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
| | - Julia Kienesberger
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
| | - Natalie Hernler
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
| | - Christoph Riegger
- Department of Human Nutrition and Health, DSM Nutritional Products Ltd., 4303 Kaiseraugst, Switzerland.
| | - Manfred Eggersdorfer
- Department of Human Nutrition and Health, DSM Nutritional Products Ltd., 4303 Kaiseraugst, Switzerland.
| | - Veronika Somoza
- Department of Physiological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Soares AF, Lei H, Gruetter R. Characterization of hepatic fatty acids in mice with reduced liver fat by ultra-short echo time (1)H-MRS at 14.1 T in vivo. NMR IN BIOMEDICINE 2015; 28:1009-1020. [PMID: 26119835 DOI: 10.1002/nbm.3345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 06/04/2023]
Abstract
Alterations in the hepatic lipid content (HLC) and fatty acid composition are associated with disruptions in whole body metabolism, both in humans and in rodent models, and can be non-invasively assessed by (1)H-MRS in vivo. We used (1)H-MRS to characterize the hepatic fatty-acyl chains of healthy mice and to follow changes caused by streptozotocin (STZ) injection. Using STEAM at 14.1 T with an ultra-short TE of 2.8 ms, confounding effects from T2 relaxation and J-coupling were avoided, allowing for accurate estimations of the contribution of unsaturated (UFA), saturated (SFA), mono-unsaturated (MUFA) and poly-unsaturated (PUFA) fatty-acyl chains, number of double bonds, PU bonds and mean chain length. Compared with in vivo (1) H-MRS, high resolution NMR performed in vitro in hepatic lipid extracts reported longer fatty-acyl chains (18 versus 15 carbons) with a lower contribution from UFA (61 ± 1% versus 80 ± 5%) but a higher number of PU bonds per UFA (1.39 ± 0.03 versus 0.58 ± 0.08), driven by the presence of membrane species in the extracts. STZ injection caused a decrease of HLC (from 1.7 ± 0.3% to 0.7 ± 0.1%), an increase in the contribution of SFA (from 21 ± 2% to 45 ± 6%) and a reduction of the mean length (from 15 to 13 carbons) of cytosolic fatty-acyl chains. In addition, SFAs were also likely to have increased in membrane lipids of STZ-induced diabetic mice, along with a decrease of the mean chain length. These studies show the applicability of (1)H-MRS in vivo to monitor changes in the composition of the hepatic fatty-acyl chains in mice even when they exhibit reduced HLC, pointing to the value of this methodology to evaluate lipid-lowering interventions in the scope of metabolic disorders.
Collapse
Affiliation(s)
- Ana Francisca Soares
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechinque Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hongxia Lei
- Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
- Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging (LIFMET), École Polytechinque Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Radiology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Radiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|