1
|
Gandolfi MG, Taddei P, Zamparini F, Ottolenghi L, Polimeni A, Prati C. Dentine surface modification and remineralization induced by bioactive toothpastes. Int J Dent Hyg 2024; 22:554-574. [PMID: 37424392 DOI: 10.1111/idh.12710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/05/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
OBJECTIVE In this study, dentine surface was analysed through Environmental-scanning-electron-microscopy (ESEM) with energy-dispersive-X-ray-spectrometry (EDX) and Fourier-transform-infrared-spectroscopy (FTIR) with attenuated total-reflectance (ATR) to assess the morpho-chemical changes and variations in mineralization degree after demineralizing treatment, after five toothpastes application (HA & Citrate toothpaste, Zinc-HA toothpaste, Calcium Sodium Phosphosilicate toothpaste, Arginine & Calcium carbonate toothpaste, Colgate-Triple-Action, and Control toothpaste), after soaking in artificial saliva and after citric acid attack. METHODS Ca/P, Ca/N and P/N ratios were calculated from EDX atomic data to evaluate the mineralization degree of dentine surface. The IR calcium phosphate (CaP)/collagen and carbonate/collagen ratios has been evaluated to assess the remineralization changes in dentine; the carbonate/collagen IR ratio was calculated to identify the nucleation of B-type-carbonated apatite and calcium carbonate. RESULTS ESEM-EDX and ATR-FTIR showed residuals of toothpastes after the treatments in all cases, with a general increase in the mineralization degree after soaking in artificial saliva and a decrease after acid attack. Treatment with Arginine & Calcium carbonate toothpaste showed the highest Ca/P value after treatment (Ca/P 1.62) and acid attack (Ca/P 1.5) in confirmation, IR showed the highest amount of carbonate after treatment and soaking in artificial saliva. Arginine and calcium carbonate toothpaste and HA and citrate toothpaste remained to a higher extent on the dentine surface and revealed a higher remineralization activity. These formulations showed higher resistance to demineralization attack, as demonstrated by a higher ICaP/IAmide II intensity ratio than those obtained after EDTA treatment. CONCLUSIONS Toothpastes that remained to a higher extent on dentine surface (arginine and calcium carbonate toothpaste in particular) were more able to promote remineralization. The formed calcium phosphate (CaPs) phase was intimately bound to dentine rather than a simple deposit.
Collapse
Affiliation(s)
- Maria Giovanna Gandolfi
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Paola Taddei
- Biochemistry Unit, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Fausto Zamparini
- Laboratory of Green Biomaterials and Oral Pathology, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Livia Ottolenghi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Carlo Prati
- Endodontic Clinical Section, School of Dentistry, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Bai Y, Zheng X, Zhong X, Cui Q, Zhang S, Wen X, Heng BC, He S, Shen Y, Zhang J, Wei Y, Deng X, Zhang X. Manipulation of Heterogeneous Surface Electric Potential Promotes Osteogenesis by Strengthening RGD Peptide Binding and Cellular Mechanosensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209769. [PMID: 36934418 DOI: 10.1002/adma.202209769] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 03/12/2023] [Indexed: 06/16/2023]
Abstract
The heterogeneity of extracellular matrix (ECM) topology, stiffness, and architecture is a key factor modulating cellular behavior and osteogenesis. However, the effects of heterogeneous ECM electric potential at the micro- and nanoscale on osteogenesis remain to be elucidated. Here, the heterogeneous distribution of surface potential is established by incorporating ferroelectric BaTiO3 nanofibers (BTNF) into poly(vinylidene fluoridetrifluoroethylene) (P(VDF-TrFE)) matrix based on phase-field and first-principles simulation. By optimizing the aspect ratios of BTNF fillers, the anisotropic distribution of surface potential on BTNF/P(VDF-TrFE) nanocomposite membranes can be achieved by strong spontaneous electric polarization of BTNF fillers. These results indicate that heterogeneous surface potential distribution leads to a meshwork pattern of fibronectin (FN) aggregation, which increased FN-III7-10 (FN fragment) focal flexibility and anchor points as predicted by molecular dynamics simulation. Furthermore, integrin clustering, focal adhesion formation, cell spreading, and adhesion are enhanced sequentially. Increased traction of actin fibers amplifies mechanotransduction by promoting nuclear translocation of YAP/Runx2, which enhances osteogenesis in vitro and bone regeneration in vivo. The work thus provides fundamental insights into the biological effects of surface potential heterogeneity at the micro- and nanoscale on osteogenesis, and also develops a new strategy to optimize the performance of electroactive biomaterials for tissue regenerative therapies.
Collapse
Affiliation(s)
- Yunyang Bai
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xiaona Zheng
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xianwei Zhong
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Qun Cui
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shuan Zhang
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiufang Wen
- The School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Boon Chin Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Shan He
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China
| | - Yang Shen
- School of Materials Science and Engineering, State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinxing Zhang
- Department of Physics, Beijing Normal University, Beijing, 100875, P. R. China
| | - Yan Wei
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuliang Deng
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| | - Xuehui Zhang
- NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, 100081, P. R. China
| |
Collapse
|
3
|
Basu S, Basu B. Unravelling Doped Biphasic Calcium Phosphate: Synthesis to Application. ACS APPLIED BIO MATERIALS 2019; 2:5263-5297. [DOI: 10.1021/acsabm.9b00488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Subhadip Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Celik S, Kecel-Gunduz S, Akyuz S, Ozel AE. Structural analysis, spectroscopic characterization and molecular docking studies of the cyclic heptapeptide. J Biomol Struct Dyn 2017; 36:2407-2423. [DOI: 10.1080/07391102.2017.1356240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sefa Celik
- Electrical-Electronics Engineering Department, Engineering Faculty, Istanbul University, Avcilar, Istanbul, Turkey
| | - Serda Kecel-Gunduz
- Physics Department, Science Faculty, Istanbul University, Vezneciler, Istanbul, Turkey
| | - Sevim Akyuz
- Physics Department, Science and Letters Faculty, Istanbul Kultur University, Atakoy Campus, Bakirkoy, Istanbul, Turkey
| | - Aysen E. Ozel
- Physics Department, Science Faculty, Istanbul University, Vezneciler, Istanbul, Turkey
| |
Collapse
|
5
|
Innate Immunity and Biomaterials at the Nexus: Friends or Foes. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342304. [PMID: 26247017 PMCID: PMC4515263 DOI: 10.1155/2015/342304] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 06/22/2015] [Indexed: 01/04/2023]
Abstract
Biomaterial implants are an established part of medical practice, encompassing a broad range of devices that widely differ in function and structural composition. However, one common property amongst biomaterials is the induction of the foreign body response: an acute sterile inflammatory reaction which overlaps with tissue vascularisation and remodelling and ultimately fibrotic encapsulation of the biomaterial to prevent further interaction with host tissue. Severity and clinical manifestation of the biomaterial-induced foreign body response are different for each biomaterial, with cases of incompatibility often associated with loss of function. However, unravelling the mechanisms that progress to the formation of the fibrotic capsule highlights the tightly intertwined nature of immunological responses to a seemingly noncanonical “antigen.” In this review, we detail the pathways associated with the foreign body response and describe possible mechanisms of immune involvement that can be targeted. We also discuss methods of modulating the immune response by altering the physiochemical surface properties of the biomaterial prior to implantation. Developments in these areas are reliant on reproducible and effective animal models and may allow a “combined” immunomodulatory approach of adapting surface properties of biomaterials, as well as treating key immune pathways to ultimately reduce the negative consequences of biomaterial implantation.
Collapse
|