1
|
Lin L, Liu G, Zhang D, Yu F, Tan L, Mu X, Lin Y. Quality grade evaluation of Nvjin Pills based on traditional Chinese medicine reference drug and network pharmacology of target-focused compounds. J Sep Sci 2024; 47:e2300134. [PMID: 37994399 DOI: 10.1002/jssc.202300134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
To improve the effectiveness of marketed drugs related to active ingredients, it is necessary to designate a more unified quality evaluation standard. Taking Nvjin Pills as an example, this study reported the development of a novel principle of analysis in traditional Chinese medicine. The core of the experiment is to prepare three batches of traditional Chinese medicine reference drugs by high-quality Chinese materia medica. The active ingredients identified in the herbal formula including glycyrrhizic acid, cinnamaldehyde, paeonol, baicalin, hesperidin, paeoniflorin, and ferulic acid were analyzed in traditional Chinese medicine reference drugs by the high-performance liquid chromatography method combined with wavelength switching. The simple prediction results of network pharmacological analysis verified the feasibility and reliability of the established quantitative analysis method for seven target-focused compounds in Nvjin Pills, which were recommended as candidate indicators for quality evaluation ultimately. Using the seven target-focused compounds as the scientific ruler, quality grade specifications of Nvjin Pills were proposed by comprehensive analysis. Accordingly, 16, 47, and 13 batches of samples were primarily graded as first grade, second grade, and unqualified grade, respectively. This study will provide a chemical basis for quality control of Nvjin Pills, which is necessary for the production process of pharmaceutical development.
Collapse
Affiliation(s)
- Lin Lin
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Guangzhen Liu
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Dexin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengrui Yu
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Lejun Tan
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Xiangrong Mu
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| | - Yongqiang Lin
- Shandong Institute for Food and Drug Control, Shandong Engineering Laboratory for Standard Innovation and Quality Evaluation of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Li S, Zhan J, Wang Y, Oduro PK, Owusu FB, Zhang J, Leng L, Li R, Wei S, He J, Wang Q. Suxiao Jiuxin Pill attenuates acute myocardial ischemia via regulation of coronary artery tone. Front Pharmacol 2023; 14:1104243. [PMID: 37234713 PMCID: PMC10206061 DOI: 10.3389/fphar.2023.1104243] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/10/2023] [Indexed: 05/28/2023] Open
Abstract
Suxiao Jiuxin Pill (SJP) is a well-known traditional Chinese medicine drug used to manage heart diseases. This study aimed at determining the pharmacological effects of SJP in acute myocardial infarction (AMI), and the molecular pathways its active compounds target to induce coronary artery vasorelaxation. Using the AMI rat model, SJP improved cardiac function and elevated ST segment. LC-MS and GC-MS detected twenty-eight non-volatile compounds and eleven volatile compounds in sera from SJP-treated rats. Network pharmacology analysis revealed eNOS and PTGS2 as the key drug targets. Indeed, SJP induced coronary artery relaxation via activation of the eNOS-NO pathway. Several of SJP's main compounds, like senkyunolide A, scopoletin, and borneol, caused concentration-dependent coronary artery relaxation. Senkyunolide A and scopoletin increased eNOS and Akt phosphorylation in human umbilical vein endothelial cells (HUVECs). Molecular docking and surface plasmon resonance (SPR) revealed an interaction between senkynolide A/scopoletin and Akt. Vasodilation caused by senkyunolide A and scopoletin was inhibited by uprosertib (Akt inhibitor) and eNOS/sGC/PKG axis inhibitors. This suggests that senkyunolide A and scopoletin relax coronary arteries through the Akt-eNOS-NO pathway. In addition, borneol induced endothelium-independent vasorelaxation of the coronary artery. The Kv channel inhibitor 4-AP, KCa2+ inhibitor TEA, and Kir inhibitor BaCl2 significantly inhibited the vasorelaxant effect of borneol in the coronary artery. In conclusion, the results show that Suxiao Jiuxin Pill protects the heart against acute myocardial infarction.
Collapse
Affiliation(s)
- Sa Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiaguo Zhan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yucheng Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Felix Boahen Owusu
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiale Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ruiqiao Li
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Shujie Wei
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jun He
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
- Endocrinology Department, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
3
|
Chen C, Li G, Dai L, Zhao H, Li N, Mi W, Yin S, Wang S, Zhang J. Simultaneous separation of glycyrrhizic acid, baicalein and wogonin from Radix Glycyrrhizae and Radix Scutellariae using foam fractionation and in vitro activity evaluation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5200-5209. [PMID: 35289954 DOI: 10.1002/jsfa.11872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 09/08/2021] [Accepted: 03/15/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND In this study, the optimal conditions for the extraction and purification of glycyrrhizic acid from Radix Glycyrrhizae (RG) and baicalein and wogonin from Radix Scutellariae (RS) by foam fractionation were studied on the basis of central composite design (CCD) and response surface methodology. RESULTS The results showed that herbal proportion (RG:RS), gas flow and ethanol concentration were the main factors guiding the foam fractionation of RG and RS. The optimum technological parameters were obtained as follows: herbal proportion (RG:RS), 1.86:1.14; gas flow, 109 mL min-1 ; and ethanol concentration, 53%. Under the optimal operating conditions, the maximal extraction yields of baicalein, glycyrrhizic acid and wogonin were 56.67, 13.25 and 9.51 mg g-1 , respectively, which were 2.32-, 1.22- and 1.84-fold higher than those of ultrasonic extraction and 17.28-, 1.15- and 9.91-fold higher than those of ultrasonic extraction without hydrolysis, respectively. Investigations on the antioxidant activity showed that the foam-fractionated extract exhibited better free radical scavenging activity (IC50 13.80 μg mL-1 ) than that of the ultrasonic extract (IC50 223.00 μg mL-1 ). Antibacterial activity showed that the minimum inhibitory concentrations of the foam fractionated extract against Staphylococcus aureus, Candida albicans, Group A Streptococcus and Pseudomonas aeruginosa were 1.38, 1.38, 0.69 and 5.50 mg mL-1 , respectively. CONCLUSION The results indicate that the foam fractionated extract exhibited better extraction yields and free radical scavenging activity than did the ultrasonic extract. Therefore, this fast and eco-friendly method was established and could be a basis for the extraction and separation of other active constituents from herbal medicines. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Caiyun Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Gaotian Li
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, China
| | - Long Dai
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, China
| | - Huijuan Zhao
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Ning Li
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Wei Mi
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shuying Yin
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Shaoping Wang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, China
| | - Jiayu Zhang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, China
| |
Collapse
|
4
|
Dias ALB, de Aguiar AC, Rostagno MA. Extraction of natural products using supercritical fluids and pressurized liquids assisted by ultrasound: Current status and trends. ULTRASONICS SONOCHEMISTRY 2021; 74:105584. [PMID: 33975187 PMCID: PMC8122360 DOI: 10.1016/j.ultsonch.2021.105584] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 05/16/2023]
Abstract
Natural products are a source of a wide range of chemical compounds, from pigments to bioactive compounds, which can be extracted and used in different applications. Due to consumer awareness, the interest in natural compounds significantly increased in the last decades, prompting the search for more efficient and environmentally friendly extraction techniques and methods. Pressurized liquids and fluids (sub and supercritical) are being explored to extract natural compounds within the green process concept. The combination of these techniques with ultrasound has emerged as an alternative to intensify the extraction process efficiently. In this context, this work presents a comprehensive review and current insights into the use of high-pressure systems, specifically supercritical fluid extraction and pressurized liquid extraction assisted by ultrasound, as emerging technologies for extracting bioactive compounds from natural products. The extraction mechanisms, applications, and the influence of operational parameters in the process are addressed, in addition to an analysis of the main challenges to be overcome for widespread application.
Collapse
Affiliation(s)
- Arthur Luiz Baião Dias
- Laboratory of High Pressure in Food Engineering, Department of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Ana Carolina de Aguiar
- Laboratory of High Pressure in Food Engineering, Department of Food Engineering, University of Campinas, UNICAMP, 13083-862 Campinas, Brazil
| | - Maurício A Rostagno
- Multidisciplinary Laboratory of Food and Health (LabMAS), School of Applied Sciences (FCA), University of Campinas, UNICAMP, 13484-350 Limeira, SP, Brazil.
| |
Collapse
|
5
|
Fan S, Yang G, Zhang J, Li J, Bai B. Optimization of Ultrasound-Assisted Extraction Using Response Surface Methodology for Simultaneous Quantitation of Six Flavonoids in Flos Sophorae Immaturus and Antioxidant Activity. Molecules 2020; 25:molecules25081767. [PMID: 32290627 PMCID: PMC7221660 DOI: 10.3390/molecules25081767] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Ultrasound-assisted extraction (UAE) was applied to extract rutin (RU), nicotiflorin (NI), narcissoside (NA), kaempferol (KA), isorhamnetin (IS), quercetin (QU), and total flavonoids of Flos Sophorae Immaturus (TFFSI) from Flos Sophorae Immaturus (FSI). Through single factor test and response surface methodology (RSM), the optimal extraction conditions were concluded as follows: ethanol concentration 70%, time 30 min, temperature 61 °C, and liquid/solid ratio 15.30 mL/g, respectively. The actual extraction rates of RU, NI, NA, KA, IS, QU, and TFFSI were 14.6101%, 2.9310%, 7.1987%, 0.1041%, 0.4920%, 2.7998%, and 26.4260%, respectively. The experimental results demonstrated that the extraction method with accuracy and efficiency could be used for the comprehensive evaluation quality control of extracts from FSI. The antioxidant activities of hydroalcoholic extraction from FSI on 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), superoxide anion (•O2−) free radicals, and ferric reducing/antioxidant power (FRAP) were assessed. The results showed that the antioxidation activities of extracts on DPPH, ABTS•+, and •O2− free radicals were reached 89.29%, 97.86%, and 56.61%, and 81.4% in FRAP at 1.0 mg/mL, respectively. The antioxidant capacity of FSI extract was positively correlated with the amount of total flavonoids.
Collapse
Affiliation(s)
- Sanhong Fan
- College of Life Science, Shanxi University, Taiyuan 030000, China; (G.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030000, China
- Correspondence: (S.F.); (B.B.); Tel.: +86-13653644479 (S.F.); 86+15034132105 (B.B.)
| | - Gege Yang
- College of Life Science, Shanxi University, Taiyuan 030000, China; (G.Y.)
| | - Jinhua Zhang
- College of Life Science, Shanxi University, Taiyuan 030000, China; (G.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030000, China
| | - Jiani Li
- College of Life Science, Shanxi University, Taiyuan 030000, China; (G.Y.)
| | - Baoqing Bai
- College of Life Science, Shanxi University, Taiyuan 030000, China; (G.Y.)
- Shanxi Key Laboratory for Research and Development of Regional Plants, Taiyuan 030000, China
- Correspondence: (S.F.); (B.B.); Tel.: +86-13653644479 (S.F.); 86+15034132105 (B.B.)
| |
Collapse
|
6
|
Recent advances of modern sample preparation techniques for traditional Chinese medicines. J Chromatogr A 2019; 1606:460377. [DOI: 10.1016/j.chroma.2019.460377] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/14/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
|
7
|
Yang B, Wu Q, Luo Y, Yang Q, Wei X, Kan J. High-pressure ultrasonic-assisted extraction of polysaccharides from Hovenia dulcis: Extraction, structure, antioxidant activity and hypoglycemic. Int J Biol Macromol 2019; 137:676-687. [DOI: 10.1016/j.ijbiomac.2019.07.034] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
|
8
|
Optimization of Ultrasonic-Assisted Extraction and Purification of Zeaxanthin and Lutein in Corn Gluten Meal. Molecules 2019; 24:molecules24162994. [PMID: 31426603 PMCID: PMC6720893 DOI: 10.3390/molecules24162994] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/13/2019] [Accepted: 08/15/2019] [Indexed: 01/22/2023] Open
Abstract
Zeaxanthin and lutein have a wide range of pharmacological applications. In this study, we conducted systematic experimental research to optimize antioxidant extraction based on detection, extraction, process amplification, and purification. An ultrasonic-assisted method was used to extract zeaxanthin and lutein with high efficiency from corn gluten meal. Firstly, the effects of solid-liquid ratio, extraction temperature, and ultrasonic extraction time on the extraction of zeaxanthin were investigated in single-factor experiments. The optimization extraction parameters of zeaxanthin and lutein with ethanol solvent were obtained using the response surface methodology (RSM) as follows: liquid–solid ratio of 7.9:1, extraction temperature of 56 °C, and extraction time of 45 min. The total content of zeaxanthin and lutein was 0.501%. The optimum extraction experimental parameters were verified by process amplification, and we confirmed that the parameters of the extraction process optimized using the RSM design are reliable and precise. Zeaxanthin and lutein from crude extract of corn gluten were separated and purified using silica gel column chromatography with the purity of zeaxanthin increasing from 0.28% to 31.5% (about 110 times) and lutein from 0.25% to 16.3% (about 65 times), which could be used for large-scale industrial production of carotenoids.
Collapse
|
9
|
Xie Y, Liu H, Lin L, Zhao M, Zhang L, Zhang Y, Wu Y. Application of natural deep eutectic solvents to extract ferulic acid from Ligusticum chuanxiong Hort with microwave assistance. RSC Adv 2019; 9:22677-22684. [PMID: 35519449 PMCID: PMC9067139 DOI: 10.1039/c9ra02665g] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/01/2019] [Indexed: 12/02/2022] Open
Abstract
In this study, a method using natural deep eutectic solvents (NADES) combined with microwave-assistance extraction (MAE) was researched for the first time to establish an environmentally-friendly method for extracting ferulic acid from Ligusticum chuanxiong Hort. 20 kinds of NADES were initially screened, then response surface methodology was performed to optimize the NADES-MAE extraction of ferulic acid in L. c on the basis of the results of single-factor experiments. The results demonstrated that NADES could provide better extraction yields of ferulic acid than conventional solvents, and the combination of choline chloride and 1,2-propanediol was the most effective. The optimal conditions were an extraction time of 20 min, an extraction temperature of 68 °C, and a solvent-to-solid ratio of 30 : 1 mL g-1. Under these conditions, the extraction yield of ferulic acid with NADES-MAE (2.32 mg g-1) was higher than that using traditional extraction methods. This research demonstrates that this approach, which adopts NADES as a green solvent and MAE as an assistant extraction technique, could be an excellent choice to design an environmentally-friendly method for extracting phenolic compounds in various materials.
Collapse
Affiliation(s)
- Yilin Xie
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Herui Liu
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Li Lin
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Maojun Zhao
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Li Zhang
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Yunsong Zhang
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| | - Yichao Wu
- College of Science, Sichuan Agricultural University Ya'an Sichuan 625014 China
| |
Collapse
|
10
|
Ma X, Lin H, He Y, She Y, Wang M, Abd El-Aty AM, Afifi NA, Han J, Zhou X, Wang J, Zhang J. Magnetic molecularly imprinted polymers doped with graphene oxide for the selective recognition and extraction of four flavonoids from Rhododendron species. J Chromatogr A 2019; 1598:39-48. [PMID: 30940357 DOI: 10.1016/j.chroma.2019.03.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 01/16/2023]
Abstract
Herein, a novel magnetic molecularly imprinted polymer doped with reticular graphene oxide (Fe3O4@SiO2-GO@MIPs) was synthesized for the selective recognition and extraction of 4 flavonoids (farrerol, taxifolin, kaempferol, and hyperin) from Rhododendrons species. The Fe3O4@SiO2-GO@MIPs with lamellar membranes showed outstanding adsorption capacity. The 3D cavities complementary to the "shape" of farrerol were "imprinted" on the polymer framework after removal of farrerol template. Competitive binding assays showed that the polymer has a higher selectivity for farrerol compared with other analogues and references. The Fe3O4@SiO2-GO@MIPs as solid-phase extraction adsorbents combined with liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) was used for selective determination of four flavonoids from Rhododendrons samples. The limits of detection (LOD) were 0.07, 0.08, 0.06, and 0.08 μg L-1 for farrerol, taxifolin, kaempferol, and hyperin, respectively. These results suggest that the prepared Fe3O4@SiO2-GO@MIPs have the potential applicability to extract, purify, and enrich flavonoids from herbs, supplements, and other natural products.
Collapse
Affiliation(s)
- Xingbin Ma
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhanjiang Experimental Station of Chinese Academy of Tropical Sciences, Zhanjiang 524013, China; Institute of Veterinary and Animal Husbandry, Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850006, China; Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China
| | - Hongling Lin
- Zhanjiang Experimental Station of Chinese Academy of Tropical Sciences, Zhanjiang 524013, China
| | - Yahui He
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Miao Wang
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Nehal A Afifi
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Jianchen Han
- Zhanjiang Experimental Station of Chinese Academy of Tropical Sciences, Zhanjiang 524013, China
| | - Xuzheng Zhou
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China
| | - Jing Wang
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiyu Zhang
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China.
| |
Collapse
|
11
|
Xiao J, Chen G, Li N. Ionic Liquid Solutions as a Green Tool for the Extraction and Isolation of Natural Products. Molecules 2018; 23:E1765. [PMID: 30021998 PMCID: PMC6100307 DOI: 10.3390/molecules23071765] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 01/16/2023] Open
Abstract
In the past few years, the application of ionic liquids (ILs) had attracted more attention of the researchers. Many studies focused on extracting active components from traditional herbals using ILs as alternative solvents so as to address the issue caused by the traditional methods for extraction of natural products (NPs) with organic chemical reagents. Through the summary of reported research work, an overview was presented for the application of ILs or IL-based materials in the extraction of NPs, including flavonoids, alkaloids, terpenoids, phenylpropanoids and so on. Here, we mainly describe the application of ILs to rich the extraction of critical bioactive constituents that were reported possessing multiple therapeutic effects or pharmacological activities, from medicinal plants. This review could shed some light on the wide use of ILs in the field of natural products chemistry to further reduce the environmental damage caused by large quantity of organic chemical reagents.
Collapse
Affiliation(s)
- Jiao Xiao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China.
| |
Collapse
|
12
|
Mo ZZ, Liu YH, Li CL, Xu LQ, Wen LL, Xian YF, Lin ZX, Zhan JYX, Chen JN, Xu FF, Su ZR. Protective Effect of SFE-CO2 of Ligusticum chuanxiong Hort Against d-Galactose-Induced Injury in the Mouse Liver and Kidney. Rejuvenation Res 2017; 20:231-243. [DOI: 10.1089/rej.2016.1870] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Zhi-Zhun Mo
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Yu-Hong Liu
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Cai-Lan Li
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Lie-Qiang Xu
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Ling-Ling Wen
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Yan-Fang Xian
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Zhi-Xiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China
| | - Janis Ya-Xian Zhan
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Jian-Nan Chen
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
| | - Fang-Fang Xu
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, P.R. China
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Chinese Medicinals Development and Research, Guangzhou University of Chinese Medicine, Guangzhou, P.R. China
- Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Dongguan, P.R. China
| |
Collapse
|
13
|
Sheng Z, Wang B, Zhao J, Yu W. Optimization of Ultrasonic-Assisted Extraction for Pinocembrin from Flos populi Using Response Surface Methodology. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2017. [DOI: 10.1515/ijfe-2016-0428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
In this study, the ultrasound-assisted extraction (UAE) was used for extraction of pinocembrin from Flos populi. Based on the results of the single-factor experiment, four independent parameters, including ethanol concentration (40–80 %), extraction temperature (50–70 °C), extraction time (25–45 min) and electrical acoustic intensity (40.8–81.5 W/m2) were further investigated using response surface methodology (RSM) coupled with Box-Behnken design. The experimental data were fitted to the quadratic response surface model using multiple regression analysis with high adjusted determination coefficient value (R
2) of 0.9697. The highest yield (134.2 ± 1.53 mg/g) of pinocembrin was obtained under the optimal conditions (ethanol concentration of 68 %, extraction temperature of 69 °C, extraction time of 42 min and electrical acoustic intensity of 66.81 W/cm2), which agreed to the predicted value of 132.9 mg/g. Moreover, the comparison between the UAE and reflux extraction also showed the suitability of UAE for pinocembrin from Flos populi.
Collapse
|
14
|
Phthalides: Distribution in Nature, Chemical Reactivity, Synthesis, and Biological Activity. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 104 2017; 104:127-246. [DOI: 10.1007/978-3-319-45618-8_2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Liu JL, Li LY, He GH. Optimization of Microwave-Assisted Extraction Conditions for Five Major Bioactive Compounds from Flos Sophorae Immaturus (Cultivars of Sophora japonica L.) Using Response Surface Methodology. Molecules 2016; 21:296. [PMID: 26950107 PMCID: PMC6274464 DOI: 10.3390/molecules21030296] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/28/2023] Open
Abstract
Microwave-assisted extraction was applied to extract rutin; quercetin; genistein; kaempferol; and isorhamnetin from Flos Sophorae Immaturus. Six independent variables; namely; solvent type; particle size; extraction frequency; liquid-to-solid ratio; microwave power; and extraction time were examined. Response surface methodology using a central composite design was employed to optimize experimental conditions (liquid-to-solid ratio; microwave power; and extraction time) based on the results of single factor tests to extract the five major components in Flos Sophorae Immaturus. Experimental data were fitted to a second-order polynomial equation using multiple regression analysis. Data were also analyzed using appropriate statistical methods. Optimal extraction conditions were as follows: extraction solvent; 100% methanol; particle size; 100 mesh; extraction frequency; 1; liquid-to-solid ratio; 50:1; microwave power; 287 W; and extraction time; 80 s. A rapid and sensitive ultra-high performance liquid chromatography method coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (EIS-Q-TOF MS/MS) was developed and validated for the simultaneous determination of rutin; quercetin; genistein; kaempferol; and isorhamnetin in Flos Sophorae Immaturus. Chromatographic separation was accomplished on a Kinetex C18 column (100 mm × 2.1 mm; 2.6 μm) at 40 °C within 5 min. The mobile phase consisted of 0.1% aqueous formic acid and acetonitrile (71:29; v/v). Isocratic elution was carried out at a flow rate of 0.35 mL/min. The constituents of Flos Sophorae Immaturus were simultaneously identified by EIS-Q-TOF MS/MS in multiple reaction monitoring mode. During quantitative analysis; all of the calibration curves showed good linear relationships (R² > 0.999) within the tested ranges; and mean recoveries ranged from 96.0216% to 101.0601%. The precision determined through intra- and inter-day studies showed an RSD% of <2.833%. These results demonstrate that the developed method is accurate and effective and could be readily utilized for the comprehensive quality control of Flos Sophorae Immaturus.
Collapse
Affiliation(s)
- Jin-Liang Liu
- Institute of Material Medical Planting, Chongqing Academy of Chinese Materia Medica (Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Medicine Resources), Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing 400065, China.
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| | - Long-Yun Li
- Institute of Material Medical Planting, Chongqing Academy of Chinese Materia Medica (Chongqing Engineering Research Center for Fine Variety Breeding Techniques of Chinese Materia Medica, Chongqing Key Laboratory of Chinese Medicine Resources), Chongqing Sub-Center of National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, Chongqing 400065, China.
| | - Guang-Hua He
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Hung HY, Wu TS. Recent progress on the traditional Chinese medicines that regulate the blood. J Food Drug Anal 2016; 24:221-238. [PMID: 28911575 PMCID: PMC9339571 DOI: 10.1016/j.jfda.2015.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 10/13/2015] [Accepted: 10/29/2015] [Indexed: 01/12/2023] Open
Abstract
In traditional Chinese medicine, the herbs that regulate blood play a vital role. Here, nine herbs including Typhae Pollen, Notoginseng Root, Common Bletilla Tuber, India Madder Root and Rhizome, Chinese Arborvitae Twig, Lignum Dalbergiae Oderiferae, Chuanxiong Rhizoma, Corydalis Tuber, and Motherwort Herb were selected and reviewed for their recent studies on anti-tumor, anti-inflammatory and cardiovascular effects. Besides, the analytical methods developed to qualify or quantify the active compounds of the herbs are also summarized.
Collapse
Affiliation(s)
- Hsin-Yi Hung
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Tian-Shung Wu
- School of Pharmacy, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; Department of Pharmacy, Tajen University, Pingtung 907, Taiwan.
| |
Collapse
|
17
|
Liu JL, Zheng SL, Fan QJ, Yuan JC, Yang SM, Kong FL. Optimisation of high-pressure ultrasonic-assisted extraction and antioxidant capacity of polysaccharides from the rhizome of Ligusticum chuanxiong. Int J Biol Macromol 2015; 76:80-5. [DOI: 10.1016/j.ijbiomac.2015.02.031] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 02/15/2015] [Accepted: 02/22/2015] [Indexed: 12/17/2022]
|
18
|
Wang JH, Du YQ, Sun HJ, Zhang JC. Extraction and preliminary characterization of polysaccharide fromUmbilicaria esculentacultivated in Huangshan Mountain. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1022222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
19
|
He WQ, Lv WS, Zhang Y, Qu Z, Wei RR, Zhang L, Liu CH, Zhou XX, Li WR, Huang XT, Wang Q. Study on Pharmacokinetics of Three Preparations from Levistolide A by LC–MS-MS. J Chromatogr Sci 2015; 53:1265-73. [DOI: 10.1093/chromsci/bmu224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Indexed: 11/13/2022]
|
20
|
Wang YQ, Wu ZF, Ke G, Yang M. An effective vacuum assisted extraction method for the optimization of labdane diterpenoids from Andrographis paniculata by response surface methodology. Molecules 2014; 20:430-45. [PMID: 25558855 PMCID: PMC6272694 DOI: 10.3390/molecules20010430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 12/23/2014] [Indexed: 11/16/2022] Open
Abstract
An effective vacuum assisted extraction (VAE) technique was proposed for the first time and applied to extract bioactive components from Andrographis paniculata. The process was carefully optimized by response surface methodology (RSM). Under the optimized experimental conditions, the best results were obtained using a boiling temperature of 65 °C, 50% ethanol concentration, 16 min of extraction time, one extraction cycles and a 12:1 liquid-solid ratio. Compared with conventional ultrasonic assisted extraction and heat reflux extraction, the VAE technique gave shorter extraction times and remarkable higher extraction efficiency, which indicated that a certain degree of vacuum gave the solvent a better penetration of the solvent into the pores and between the matrix particles, and enhanced the process of mass transfer. The present results demonstrated that VAE is an efficient, simple and fast method for extracting bioactive components from A. paniculata, which shows great potential for becoming an alternative technique for industrial scale-up applications.
Collapse
Affiliation(s)
- Ya-Qi Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Zhen-Feng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Gang Ke
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
21
|
Zhou W, Liu X, Zhang P, Zhou P, Shi X. Effect analysis of mineral salt concentrations on nosiheptide production by Streptomyces actuosus Z-10 using response surface methodology. Molecules 2014; 19:15507-20. [PMID: 25264834 PMCID: PMC6270855 DOI: 10.3390/molecules191015507] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/02/2014] [Accepted: 09/12/2014] [Indexed: 11/26/2022] Open
Abstract
The objective of this study was to develop an optimal combination of mineral salts in the fermentation medium for nosiheptide (Nsh) production using statistical methodologies. A Plackett-Burman design (PBD) was used to evaluate the impacts of eight mineral salts on Nsh production. The results showed that among the no-significant factors, CaCO3, and K2HPO4·3H2O had positive effects, whereas FeSO4·7H2O, CuSO4·5H2O, and ZnSO4·7H2O had negative effects on Nsh production. The other three significant factors (Na2SO4, MnSO4·H2O, and MgSO4·7H2O) were further optimized by using a five-level three-factor central composite design (CCD). Experimental data were fitted to a quadratic polynomial model, which provided an effective way to determine the interactive effect of metal salts on Nsh production. The optimal values were determined to be 2.63, 0.21, and 3.37 g/L, respectively. The model also ensured a good fitting of scale-up Nsh batch fermentation with a maximum production of 1501 mg/L, representing a 1.56-fold increase compared to the original standard condition. All these results revealed that statistical optimization methodology had the potential to achieve comprehensive optimization in Nsh fermentation behaviors, which indicates a possibility to establish economical large-scale production of Nsh.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Xiaohui Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai 201620, China
| | - Pei Zhang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Pei Zhou
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Xunlong Shi
- School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|