1
|
Böhme U, Herbig M. New Complexes of Antimony(III) with Tridentate O, E, O-Ligands (E = O, S, Se, Te, NH, NMe) Derived from N-Methyldiethanolamine. Molecules 2023; 28:4959. [PMID: 37446634 PMCID: PMC10343548 DOI: 10.3390/molecules28134959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
We synthesized a series of new antimony(III) compounds by reaction of Sb(OEt)3 with organic ligands of the type E(CH2-CH2-OH)2, with E = NH, NMe, O, S, Se, and Te. The synthesized compounds have the general composition [E(CH2-CH2-O)2]Sb(OEt). For comparison, the compound (O-CH2-CH2-S)Sb(OEt) was prepared. All compounds are characterized using NMR, IR, and Raman spectroscopy. The molecular structures of the products reveal the formation of chelate complexes, wherein the ligand molecules coordinate as tridentate O,E,O-ligands to the antimony atom. Dimer formation in the solid state allows the antimony atoms to reach pentacoordination. Quantum chemical calculations including topological analysis of electron density reveal that there are polar shared bonds between antimony and the oxygen atoms bound to antimony. The interactions between the donor atom E and the Sb atom and the interactions in the dimers can be characterized as Van der Waals interactions. The reactivity of [MeN(CH2-CH2-O)2]Sb(OEt) was investigated as an example. For this purpose, the compound reacted with a range of organic compounds such as carboxylic acids and carboxylic anhydrides and small molecules like CO2 and NH3. This study establishes a new and easy accessible class of antimony(III) compounds, provides new insights into the chemistry of antimony compounds and opens up new opportunities for further research in this field.
Collapse
Affiliation(s)
| | - Marcus Herbig
- Institut für Anorganische Chemie, TU Bergakademie Freiberg, Leipziger Str. 29, 09599 Freiberg, Germany;
| |
Collapse
|
2
|
Guo S, Hua L, Liu W, Liu H, Chen Q, Li Y, Li X, Zhao L, Li R, Zhang Z, Zhang C, Zhu L, Sun H, Zhao H. Multiple metal exposure and metabolic syndrome in elderly individuals: A case-control study in an active mining district, Northwest China. CHEMOSPHERE 2023; 326:138494. [PMID: 36966925 DOI: 10.1016/j.chemosphere.2023.138494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 06/18/2023]
Abstract
The prevalence of metabolic syndrome (MetS) is increasing at an alarming rate worldwide, particularly among elderly individuals. Exposure to various metals has been linked to the development of MetS. However, limited studies have focused attention on the elderly population living in active mining districts. Participants with MetS (N = 292) were matched for age (±2 years old) and sex with a healthy subject (N = 292). We measured the serum levels of 14 metals in older people aged 65-85 years. Conditional logistic regression, restricted cubic spline model, multiple linear regression, and Bayesian Kernel Machine Regression (BKMR) were applied to estimate potential associations between multiple metals and the risk of MetS. Serum levels of Sb and Fe were significantly higher than the controls (0.58 μg/L vs 0.46 μg/L, 2167 μg/L vs 2042 μg/L, p < 0.05), while Mg was significantly lower (20035 μg/L vs 20,394 μg/L, p < 0.05). An increased risk of MetS was associated with higher serum Sb levels (adjusted odds ratio (OR) = 1.61 for the highest tertile vs. the lowest tertile, 95% CI = 1.08-2.40, p-trend = 0.018) and serum Fe levels (adjusted OR = 1.55 for the highest tertile, 95% CI = 1.04-2.33, p-trend = 0.032). Higher Mg levels in serum may have potential protective effects on the development of MetS (adjusted OR = 0.61 for the highest tertile, 95% CI = 0.41-0.91, p-trend = 0.013). A joint exposure analysis by the BKMR model revealed that the mixture of 12 metals (except Tl and Cd) was associated with increased risk of MetS. Our results indicated that exposure to Sb and Fe might increase the risk of MetS in an elderly population living in mining-intensive areas. Further work is needed to confirm the protective effect of Mg on MetS.
Collapse
Affiliation(s)
- Sai Guo
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Liting Hua
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wu Liu
- Jingyuan County Center for Disease Control and Prevention, Baiyin, Gansu, 730699, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Qiusheng Chen
- Institute of Agro-product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin, 300381, China
| | - Yongcheng Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Leicheng Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruoqi Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zining Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Chong Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongzhi Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Ogra Y, Roldán N, Verdugo M, González AA, Suzuki N, Quiroz W. Distribution, Metabolism, and Toxicity of Antimony Species in Wistar Rats. A Bio-Analytical Approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104160. [PMID: 37236494 DOI: 10.1016/j.etap.2023.104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
This work studied the distribution, reactivity, and biological effects of pentavalent or trivalent antimony (Sb(V), Sb(III)) and N-methylglucamine antimonate (NMG-Sb(V)) in Wistar Rats. The expression of fibrosis genes such as α-SMA, PAI-1, and CTGF were determined in Liver, and Kidney tissues. Wistar rats were treated with different concentrations of Sb(V), Sb(III), As(V) and As(III), and MA via intra-peritoneal injections. The results indicated a noteworthy elevation in mRNA levels of plasminogen activator 1 (PAI-1) in the kidneys of rats that were injected. The main accumulation site for Sb(V) was observed to be the liver, from which it is primarily excreted in its reduced form (Sb(III)) through the urine. The generation of Sb(III) in the kidneys has been found to induce damage through the expression of α-SMA and CTGF, and also lead to a higher creatinine clearance compared to As(III).
Collapse
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan.
| | - Nicole Roldán
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan; Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Marcelo Verdugo
- Laboratorio de Química Analítica y Ambiental, Departamento de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alexis A González
- Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Waldo Quiroz
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| |
Collapse
|
4
|
Lai Z, He M, Lin C, Ouyang W, Liu X. Interactions of antimony with biomolecules and its effects on human health. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113317. [PMID: 35182796 DOI: 10.1016/j.ecoenv.2022.113317] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Antimony (Sb) pollution has increased health risks to humans as a result of extensive application in diverse fields. Exposure to different levels of Sb and its compounds will directly or indirectly affect the normal function of the human body, whereas limited human health data and simulation studies delay the understanding of this element. In this review, we summarize current research on the effects of Sb on human health from different perspectives. First, the exposure pathways, concentration and excretion of Sb in humans are briefly introduced, and several studies have revealed that human exposure to high levels of Sb will cause higher concentrations in body tissues. Second, interactions between Sb and biomolecules or other nonbiomolecules affected biochemical processes such as gene expression and hormone secretion, which are vital for causing and understanding health effects and mechanisms. Finally, we discuss the different health effects of Sb at the biological level from small molecules to individual. In conclusion, exposure to high levels of Sb compounds will increase the risk of disease by affecting different cell signaling pathways. In addition, the appropriate form and dose of Sb contribute to inhibit the development of specific diseases. Key challenges and gaps in toxicity or benefit effects and mechanisms that still hinder risk assessment of human health are also identified in this review. Systematic studies on the relationships between the biochemical process of Sb and human health are needed.
Collapse
Affiliation(s)
- Ziyang Lai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China.
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing 100875, China
| |
Collapse
|
5
|
Espinosa AV, Costa DDS, Tunes LG, Monte‐Neto RLD, Grazul RM, Almeida MV, Silva H. Anticancer and antileishmanial in vitro activity of gold(I) complexes with 1,3,4‐oxadiazole‐2(
3H
)‐thione ligands derived from δ‐D‐gluconolactone. Chem Biol Drug Des 2020; 97:41-50. [DOI: 10.1111/cbdd.13757] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/15/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Affiliation(s)
| | - Danilo de Souza Costa
- Departamento de Química ICEUniversidade Federal de Juiz de Fora Juiz de Fora MG Brazil
| | | | | | | | - Mauro Vieira Almeida
- Departamento de Química ICEUniversidade Federal de Juiz de Fora Juiz de Fora MG Brazil
| | - Heveline Silva
- Departamento de Química ICExUniversidade Federal de Minas Gerais Belo Horizonte MG Brazil
| |
Collapse
|
6
|
Islam A, Ain Q, Munawar A, Corrêa Junior JD, Khan A, Ahmad F, Demicheli C, Shams DF, Ullah I, Sohail MF, Yasinzai M, Frézard F, Nadhman A. Reactive oxygen species generating photosynthesized ferromagnetic iron oxide nanorods as promising antileishmanial agent. Nanomedicine (Lond) 2020; 15:755-771. [PMID: 32193975 DOI: 10.2217/nnm-2019-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: To investigate the photodynamic therapeutic potential of ferromagnetic iron oxide nanorods (FIONs), using Trigonella foenum-graecum as a reducing agent, against Leishmania tropica. Materials & methods: FIONs were characterized using ultraviolet visible spectroscopy, x-ray diffraction and scanning electron microscopy. Results: FIONs showed excellent activity against L. tropica promastigotes and amastigotes (IC50 0.036 ± 0.003 and 0.072 ± 0.001 μg/ml, respectively) upon 15 min pre-incubation light-emitting diode light (84 lm/W) exposure, resulting in reactive oxygen species generation and induction of cell death via apoptosis. FIONs were found to be highly biocompatible with human erythrocytes (LD50 779 ± 21 μg/ml) and significantly selective (selectivity index >1000) against murine peritoneal macrophages (CC50 102.7 ± 2.9 μg/ml). Conclusion: Due to their noteworthy in vitro antileishmanial properties, FIONs should be further investigated in an in vivo model of the disease.
Collapse
Affiliation(s)
- Arshad Islam
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan.,Postgraduate Program in Physiology & Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Quratul Ain
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Amna Munawar
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - José Dias Corrêa Junior
- Departamento of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Ajmal Khan
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Farhan Ahmad
- Department of Biotechnology, Bacha Khan University, Charsadda, KPK, Pakistan
| | - Cynthia Demicheli
- Department of Chemistry, Institute of Exact Sciences, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Dilawar Farhan Shams
- Department of Environmental Sciences, Abdul Wali Khan University Mardan, Pakistan
| | - Ikram Ullah
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Masoom Yasinzai
- Sulaiman Bin Abdullah Aba Al Khail Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Frédéric Frézard
- Postgraduate Program in Physiology & Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Akhtar Nadhman
- Institute of Integrative Biosciences, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| |
Collapse
|
7
|
Synthesis of heteroleptic pentavalent antimonials bearing heterocyclic cinnamate moieties and their biological studies. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Sheikhmoradi V, Saberi S, Saghaei L, Pestehchian N, Fassihi A. Synthesis and antileishmanial activity of antimony (V) complexes of hydroxypyranone and hydroxypyridinone ligands. Res Pharm Sci 2018; 13:111-120. [PMID: 29606965 PMCID: PMC5842482 DOI: 10.4103/1735-5362.223793] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A novel series of antimony (V) complexes with the hydroxypyranone and hydroxypyridinone ligands were synthesized and characterized by 1HNMR, FT-IR and electron spin ionization mass spectroscopic (ESI-MS) techniques. The synthesis process involved protection of hydroxyl group followed by the reaction of the intermediate with primary amines and finally deprotection. All compounds were evaluated for in vitro activities against the amastigote and promastigote forms of Leishmania major. Most of the synthesized compounds exhibited good antileishmanial activity against both forms of L. major. IC50 values of the most active compounds; 9d, 9d and 9e, after 24, 48 and 72 h against amastigote model were 15, 12.5 and 5.5 μg/mL, respectively. 9e, 11 and 9e inhibited the promastigote form of parasite after 24, 48 and 72 h with IC50 values of 10, 2 and 1 μg/mL, respectively.
Collapse
Affiliation(s)
- Vafa Sheikhmoradi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Sedigheh Saberi
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Nader Pestehchian
- Department of Mycology and Parasitology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Afshin Fassihi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
9
|
Piló ED, Recio-Despaigne AA, Da Silva JG, Ferreira IP, Takahashi JA, Beraldo H. Effect of coordination to antimony(III) on the antifungal activity of 2-acetylpyridine- and 2-benzoylpyridine-derived hydrazones. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|