1
|
Fu YP, Li CY, Zou YF, Peng X, Paulsen BS, Wangensteen H, Inngjerdingen KT. Bioactive polysaccharides in different plant parts of Aconitum carmichaelii. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:746-758. [PMID: 37670420 DOI: 10.1002/jsfa.12967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/23/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
BACKGROUND Aconitum carmichaelii is an industrially cultivated medicinal plant in China and its lateral and mother roots are used in traditional Chinese medicine due to the presence of alkaloids. However, the rootlets and aerial parts are discarded after collection of the roots, and the non-toxic polysaccharides in this plant have attracted less attention than the alkaloids and poisonous features. In this study, five neutral and 14 acidic polysaccharide fractions were isolated systematically from different plant parts of A. carmichaelii, and their structural features and bioactivity were studied and compared. RESULTS The neutral fraction isolated from the rootlets differed from those isolated from the lateral and mother roots. It consisted of less starch and more possible mannans, galactans, and/or xyloglucans, being similar to those of the aerial parts. Pectic polysaccharides containing homogalacturonan and branched type-I rhamnogalacturonan (RG-I) were present in all plant parts of A. carmichaelii. However, more arabinogalactan (AG)-II side chains in the RG-I backbone were present in the aerial parts of the plants, while more amounts of arabinans were found in the roots. Various immunomodulatory effects were observed, determined by complement fixation activity and anti-inflammatory effects on the intestinal epithelial cells of all polysaccharide fractions. CONCLUSION This study highlighted the diversity of polysaccharides present in A. carmichaelii, especially in the unutilized plant parts, and showed their potential medicinal value. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Ping Fu
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Cen-Yu Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Yuan-Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Xi Peng
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Berit Smestad Paulsen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Helle Wangensteen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | |
Collapse
|
2
|
Son SU, Lee HW, Shin KS. Immunostimulating activities and anti-cancer efficacy of rhamnogalacturonan-I rich polysaccharide purified from Panax ginseng leaf. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
3
|
New Inonotus Polysaccharides: Characterization and Anticomplementary Activity of Inonotus rheades Mycelium Polymers. Polymers (Basel) 2023; 15:polym15051257. [PMID: 36904498 PMCID: PMC10007321 DOI: 10.3390/polym15051257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Inonotus is a small genus of xylotrophic basidiomycetes and a source of bioactive fungochemicals among which a special place is occupied by polymeric compounds. In this study, polysaccharides that are widespread in Europe, Asia, and North America and a poorly understood fungal species, I. rheades (Pers.) Karst. (fox polypore), were investigated. Water-soluble polysaccharides of I. rheades mycelium were extracted, purified, and studied using chemical reactions, elemental and monosaccharide analysis, UV-Vis and FTIR spectroscopy, gel permeation chromatography, and linkage analysis. Five homogenic polymers (IRP-1-IRP-5) with molecular weights of 110-1520 kDa were heteropolysaccharides that consist mainly of galactose, glucose, and mannose. The dominant component, IRP-4, was preliminary concluded to be a branched (1→3,6)-linked galactan. Polysaccharides of I. rheades inhibited the hemolysis of sensitized sheep erythrocytes by complement from human serum, signifying anticomplementary activity with the greatest effects for the IRP-4 polymer. These findings suggest that I. rheades mycelium is a new source of fungal polysaccharides with potential immunomodulatory and anti-inflammatory properties.
Collapse
|
4
|
Dénou A, Togola A, Inngjerdingen KT, Moussavi N, Rise F, Zou YF, Dafam DG, Nep EI, Ahmed A, Alemika TE, Diallo D, Sanogo R, Paulsen BS. Isolation, characterisation and complement fixation activity of acidic polysaccharides from Argemone mexicana used as antimalarials in Mali. PHARMACEUTICAL BIOLOGY 2022; 60:1278-1285. [PMID: 35797701 PMCID: PMC9272928 DOI: 10.1080/13880209.2022.2089691] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/13/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Global studies on Argemone mexicana L. (Papaveraceae) traditionally used against malaria in Mali are limited to its low-mass compounds activities, and little information on its bioactive polysaccharides is available. OBJECTIVE This study determines the structure and the immunomodulatory activity of polysaccharides from aerial parts of A. mexicana. MATERIALS AND METHODS Acidic polysaccharides from this plant material named HMAmA1 and HMAmA2 were isolated from water extracts. Their monosaccharide composition was determined by gas chromatography. Glycosidic linkages were determined using GC-MS. NMR was also applied. The polymers were tested for effects on the human complement system in vitro at different doses. RESULTS The monosaccharide composition showed that the two polysaccharides contained in different amounts the following monomers: arabinose, rhamnose, galactose, and galacturonic acid. Overall structural analysis showed the presence of a low ratio of 1,2-linked rhamnose compared to 1,4-linked galacturonic acid with arabinogalactans substituted on position 4 of rhamnose. NMR data showed the presence of galacturonans alternated by rhamnogalacturonans bearing arabinose and galactose units. α-Linkages were found for l-arabinose, l-rhamnose and d-galacturonic acid, while β-linkages were found for d-galactose. The two polysaccharides exhibited strong complement fixation activities, with HMAmA1 being the highest potent fraction. ICH50 value of HMAmA1 was 5 µg/mL, compared to the control BPII being 15.9 µg/mL. DISCUSSION AND CONCLUSIONS Polysaccharides form A. mexicana presented a complement fixation effect. The complement system is an important part of the immune defense, and compounds acting on the cascade are of interest. Therefore, these polymers may be useful as immunodulatory agents.
Collapse
Affiliation(s)
- Adama Dénou
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Adiaratou Togola
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | | | - Nastaran Moussavi
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Yuan Feng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, P.R. China
| | - Dalen G. Dafam
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Elijah I. Nep
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Abubakar Ahmed
- Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Taiwo E. Alemika
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, University of Jos, Jos, Nigeria
| | - Drissa Diallo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Rokia Sanogo
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Berit Smestad Paulsen
- Section for Pharmaceutical Chemistry, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
Characterization and Biocompatibility Properties In Vitro of Gel Beads Based on the Pectin and κ-Carrageenan. Mar Drugs 2022; 20:md20020094. [PMID: 35200624 PMCID: PMC8878971 DOI: 10.3390/md20020094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
This study aimed to investigate the influence of kappa (κ)-carrageenan on the initial stages of the foreign body response against pectin gel. Pectin-carrageenan (P-Car) gel beads were prepared from the apple pectin and κ-carrageenan using gelling with calcium ions. The inclusion of 0.5% κ-carrageenan (Car0.5) in the 1.5 (P1.5) and 2% pectin (P2) gel formulations decreased the gel strength by 2.5 times. Car0.5 was found to increase the swelling of P2 gel beads in the cell culture medium. P2 gel beads adsorbed 30–42 mg/g of bovine serum albumin (BSA) depending on pH. P2-Car0.2, P2-Car0.5, and P1.5-Car0.5 beads reduced BSA adsorption by 3.1, 5.2, and 4.0 times compared to P2 beads, respectively, at pH 7. The P1.5-Car0.5 beads activated complement and induced the haemolysis less than gel beads of pure pectin. Moreover, P1.5-Car0.5 gel beads allowed less adhesion of mouse peritoneal macrophages, TNF-α production, and NF-κB activation than the pure pectin gel beads. There were no differences in TLR4 and ICAM-1 levels in macrophages treated with P and P-Car gel beads. P2-Car0.5 hydrogel demonstrated lower adhesion to serous membrane than P2 hydrogel. Thus, the data obtained indicate that the inclusion of κ-carrageenan in the apple pectin gel improves its biocompatibility.
Collapse
|
6
|
Rincón E, Espinosa E, García-Domínguez MT, Balu AM, Vilaplana F, Serrano L, Jiménez-Quero A. Bioactive pectic polysaccharides from bay tree pruning waste: Sequential subcritical water extraction and application in active food packaging. Carbohydr Polym 2021; 272:118477. [PMID: 34420736 DOI: 10.1016/j.carbpol.2021.118477] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/27/2021] [Accepted: 07/20/2021] [Indexed: 01/03/2023]
Abstract
The potential isolation of bio-active polysaccharides from bay tree pruning waste was studied using sequential subcritical water extraction using different time-temperature combinations. The extracted polysaccharides were highly enriched in pectins while preserving their high molecular mass (10-100 kDa), presenting ideal properties for its application as additive in food packaging. Pectin-enriched chitosan films were prepared, improving the optical properties (≥95% UV-light barrier capacity), antioxidant capacity (˃95% radical scavenging activity) and water vapor permeability (≤14 g·Pa-1·s-1·m-1·10-7) in comparison with neat chitosan-based films. Furthermore, the antimicrobial activity of chitosan was maintained in the hybrid films. Addition of 10% of pectins improved mechanical properties, increasing the Young's modulus 12%, and the stress resistance in 51%. The application of pectin-rich fractions from bay tree pruning waste as an additive in active food packaging applications, with triple action as antioxidant, barrier, and antimicrobial has been demonstrated.
Collapse
Affiliation(s)
- E Rincón
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain; Departamento de Química Inorgánica e Ingeniería Química, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain
| | - E Espinosa
- Departamento de Química Inorgánica e Ingeniería Química, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain
| | - M T García-Domínguez
- Departamento de Ingeniería Química, Química Física y Ciencia de los Materiales, Universidad de Huelva, Campus "El Carmen", Av. De las Fuerzas Armadas. S/N, 21007 Huelva, Spain
| | - A M Balu
- Departamento de Química Orgánica, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain
| | - F Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Alba Nova University Centre, Roslagstullsbacken 21, 114 21, Stockholm, Sweden
| | - L Serrano
- Departamento de Química Inorgánica e Ingeniería Química, Universidad de Córdoba, Campus de Rabanales, Edificio Marie-Curie (C-3), CTRA. IV-A, Km 396, E-14014 Córdoba, Spain
| | - A Jiménez-Quero
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Alba Nova University Centre, Roslagstullsbacken 21, 114 21, Stockholm, Sweden.
| |
Collapse
|
7
|
Saeidy S, Petera B, Pierre G, Fenoradosoa TA, Djomdi D, Michaud P, Delattre C. Plants arabinogalactans: From structures to physico-chemical and biological properties. Biotechnol Adv 2021; 53:107771. [PMID: 33992708 DOI: 10.1016/j.biotechadv.2021.107771] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/10/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Arabinogalactans (AGs) are plant heteropolysaccharides with complex structures occasionally attached to proteins (AGPs). AGs in cell matrix of different parts of plant are freely available or chemically bound to pectin rhamnogalactan. Type I with predominantly β-d-(1 → 4)-galactan and type II with β-d-(1 → 3) and/or (1 → 6)-galactan structural backbones construct the two main groups of AGs. In the current review, the chemical structure of AGs is firstly discussed focusing on non-traditional plant sources and not including well known industrial gums. After that, processes for their extraction and purification are considered and finally their techno-functional and biological properties are highlighted. The role of AG structure and function on health advantages such as anti-tumor, antioxidant, anti-ulcer- anti-diabetic and other activites and also the immunomodulatory effects on in-vivo model systems are overviewed.
Collapse
Affiliation(s)
- S Saeidy
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - B Petera
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar; Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - G Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - T A Fenoradosoa
- Faculté des Sciences de l'Université d'Antsiranana, BP O 201 Antsiranana, Madagascar
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, Cameroon
| | - P Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | - C Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| |
Collapse
|
8
|
Zaitseva O, Khudyakov A, Sergushkina M, Solomina O, Polezhaeva T. Pectins as a universal medicine. Fitoterapia 2020; 146:104676. [DOI: 10.1016/j.fitote.2020.104676] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/19/2020] [Accepted: 06/10/2020] [Indexed: 02/06/2023]
|
9
|
Wu D, Zheng J, Mao G, Hu W, Ye X, Linhardt RJ, Chen S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit Rev Food Sci Nutr 2019; 60:2938-2960. [PMID: 31607142 DOI: 10.1080/10408398.2019.1672037] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhamnogalacturonan I (RG-I) pectin is composed of backbone of repeating disaccharide units →2)-α-L-Rhap-(1→4)-α-D-GalpA-(1→ and neutral sugar side-chains mainly consisting of arabinose and galactose having variable types of linkages. However, since traditional pectin extraction methods damages the RG-I structure, the characteristics and health effects of RG-I remains unclear. Recently, many studies have focused on RG-I, which is often more active than the homogalacturonan (HG) portion of pectic polysaccharides. In food products, RG-I is common to fruits and vegetables and possesses many health benefits. This timely and comprehensive review describes the many different facets of RG-I, including its dietary sources, history, metabolism and potential functionalities, all of which have been compiled to establish a platform for taking full advantage of the functional value of RG-I pectin.
Collapse
Affiliation(s)
- Dongmei Wu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Jiaqi Zheng
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Guizhu Mao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Weiwei Hu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Xingqian Ye
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Jeong HK, Lee D, Kim HP, Baek SH. Structure analysis and antioxidant activities of an amylopectin-type polysaccharide isolated from dried fruits of Terminalia chebula. Carbohydr Polym 2019; 211:100-108. [DOI: 10.1016/j.carbpol.2019.01.097] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/22/2019] [Accepted: 01/27/2019] [Indexed: 01/03/2023]
|
11
|
Chemical characterization and complement modulating activities of an arabinogalactan-protein-rich fraction from an aqueous extract of avocado leaves. Int J Biol Macromol 2018; 120:513-521. [DOI: 10.1016/j.ijbiomac.2018.08.072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/11/2018] [Accepted: 08/14/2018] [Indexed: 02/01/2023]
|
12
|
Yin HM, Wang SN, Nie SP, Xie MY. Coix polysaccharides: Gut microbiota regulation and immunomodulatory. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bcdf.2018.04.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Ethnopharmacology, Chemistry and Biological Properties of Four Malian Medicinal Plants. PLANTS 2017; 6:plants6010011. [PMID: 28230801 PMCID: PMC5371770 DOI: 10.3390/plants6010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
The ethnopharmacology, chemistry and pharmacology of four Malian medicinal plants, Biophytum umbraculum, Burkea africana, Lannea velutina and Terminalia macroptera are reviewed. These plants are used by traditional healers against numerous ailments: malaria, gastrointestinal diseases, wounds, sexually transmitted diseases, insect bites and snake bites, etc. The scientific evidence for these uses is, however, limited. From the chemical and pharmacological evidence presented here, it seems possible that the use in traditional medicine of these plants may have a rational basis, although more clinical studies are needed.
Collapse
|
14
|
Bovo F, Lenzi RM, Yamassaki FT, Messias-Reason IJ, Campestrini LH, Stevan FR, Zawadzki-Baggio SF, Maurer JBB. Modulating Effects of Arabinogalactans from Plant Gum Exudates on Human Complement System. Scand J Immunol 2016; 83:314-20. [DOI: 10.1111/sji.12427] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 03/01/2016] [Indexed: 12/28/2022]
Affiliation(s)
- F. Bovo
- NUPPLAMED; Department of Biochemistry and Molecular Biology; Federal University of Paraná; Curitiba Brazil
- Department of Medical Pathology; Federal University of Paraná; Curitiba Brazil
| | - R. M. Lenzi
- NUPPLAMED; Department of Biochemistry and Molecular Biology; Federal University of Paraná; Curitiba Brazil
| | - F. T. Yamassaki
- NUPPLAMED; Department of Biochemistry and Molecular Biology; Federal University of Paraná; Curitiba Brazil
| | | | - L. H. Campestrini
- NUPPLAMED; Department of Biochemistry and Molecular Biology; Federal University of Paraná; Curitiba Brazil
- Agri-Food Industry, Food and Nutrition Department; ‘Luiz de Queiroz’ College of Agriculture; University of São Paulo; Piracicaba Brazil
| | - F. R. Stevan
- NUPPLAMED; Department of Biochemistry and Molecular Biology; Federal University of Paraná; Curitiba Brazil
- Centers of Biology and Healthy Sciences; Positivo University; Curitiba Brazil
| | - S. F. Zawadzki-Baggio
- NUPPLAMED; Department of Biochemistry and Molecular Biology; Federal University of Paraná; Curitiba Brazil
| | - J. B. B. Maurer
- NUPPLAMED; Department of Biochemistry and Molecular Biology; Federal University of Paraná; Curitiba Brazil
| |
Collapse
|
15
|
Wangensteen H, Diallo D, Paulsen BS. Medicinal plants from Mali: Chemistry and biology. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:429-437. [PMID: 26596257 DOI: 10.1016/j.jep.2015.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mali is one of the countries in West Africa where the health system rely the most on traditional medicine. The healers are mainly using medicinal plants for their treatments. The studies performed being the basis for this review is of importance as they will contribute to sustaining the traditional knowledge. They contribute to evaluate and improve locally produced herbal remedies, and the review gives also an overview of the plant preparations that will have the most potential to be evaluated for new Improved Traditional Medicines. AIM OF THE REVIEW The aim of this review is to give an overview of the studies performed related to medicinal plants from Mali in the period 1995-2015. These studies include ethnopharmacology, chemistry and biological studies of the plants that were chosen based on our interviews with the healers in different regions of Mali, and contribute to sustainable knowledge on the medicinal plants. The Department of Traditional Medicine, Bamako, Mali, is responsible for registering the knowledge of the traditional healers on their use of medicinal plants and also identifying compounds in the plants responsible for the bioactivities claimed. The studies reported aimed at getting information from the healers on the use of medicinal plants, and study the biology and chemistry of selected plants for the purpose of verifying the traditional use of the plants. These studies should form the basis for necessary knowledge for the development of registered Improved Traditional Medicines in Mali. MATERIALS AND METHODS The healers were the ethnopharmacological informants. Questions asked initially were related to wound healing. This was because the immune system is involved when wounds are healed, and additionally the immune system is involved in the majority of the illnesses common in Mali. Based on the results of the interviews the plant material for studies was selected. Studies were performed on the plant parts the healers were using when treating their patients. Conventional chromatographic and spectroscopic methods were used for the isolation and structural elucidation of compounds. The compounds to study were selected based on the bioassays performed concomitant with the fractionation. RESULTS Our results show that plants traditionally used as wound healing agents contain polysaccharides basically of pectin nature with immunomodulating activities. These pectins all have different and new structures. Several of the plants also contain compounds with effects related to antioxidant properties. These compounds are mainly of polyphenolic nature. Three of these are new compounds from Nature, while 32 was for the first time described from the plant they were isolated from. This review gives an overview of the most important results obtained during the 20 year long collaboration between Department of Traditional Medicine, Bamako, Mali, and Department of Pharmacognosy, School of Pharmacy, University of Oslo, Norway. CONCLUSION Our studies showed that ethnopharmacological information is important for the determination of screening and chemical methods to be used for studies of plants used in traditional medicine.
Collapse
Affiliation(s)
- Helle Wangensteen
- School of Pharmacy, Department of Pharmaceutical Chemistry, division Pharmacognosy, University of Oslo, Oslo, Norway.
| | | | - Berit Smestad Paulsen
- School of Pharmacy, Department of Pharmaceutical Chemistry, division Pharmacognosy, University of Oslo, Oslo, Norway.
| |
Collapse
|