1
|
Kolade SO, Izunobi JU, Gordon AT, Hosten EC, Olasupo IA, Ogunlaja AS, Asekun OT, Familoni OB. N-Cycloamino substituent effects on the packing architecture of ortho-sulfanilamide molecular crystals and their in silico carbonic anhydrase II and IX inhibitory activities. Acta Crystallogr C Struct Chem 2022; 78:730-742. [PMID: 36468556 PMCID: PMC9720883 DOI: 10.1107/s2053229622010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
In the search for new `sulfa drugs' with therapeutic properties, o-nitrosulfonamides and N-cycloamino-o-sulfanilamides were synthesized and characterized using techniques including 1H NMR, 13C NMR and FT-IR spectroscopy, and single-crystal X-ray diffraction (SC-XRD). The calculated density functional theory (DFT)-optimized geometry of the molecules showed similar conformations to those obtained by SC-XRD. Molecular docking of N-piperidinyl-o-sulfanilamide and N-indolinyl-o-sulfanilamide supports the notion that o-sulfanilamides are able to bind to human carbonic anhydrase II and IX inhibitors (hCA II and IX; PDB entries 4iwz and 5fl4). Hirshfeld surface analyses and DFT studies of three o-nitrosulfonamides {1-[(2-nitrophenyl)sulfonyl]pyrrolidine, C10H12N2O4S, 1, 1-[(2-nitrophenyl)sulfonyl]piperidine, C11H14N2O4S, 2, and 1-[(2-nitrophenyl)sulfonyl]-2,3-dihydro-1H-indole, C14H12N2O4S, 3} and three N-cycloamino-o-sulfanilamides [2-(pyrrolidine-1-sulfonyl)aniline, C10H14N2O2S, 4, 2-(piperidine-1-sulfonyl)aniline, C11H16N2O2S, 5, and 2-(2,3-dihydro-1H-indole-1-sulfonyl)aniline, C14H14N2O2S, 6] suggested that forces such as hydrogen bonding and π-π interactions hold molecules together and further showed that charge transfer could promote bioactivity and the ability to form biological interactions at the piperidinyl and phenyl moieties.
Collapse
Affiliation(s)
- Sherif O. Kolade
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | | | - Allen T. Gordon
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Eric C. Hosten
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Idris A. Olasupo
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | - Adeniyi S. Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, 6031, South Africa
| | - Olayinka T. Asekun
- Department of Chemistry, University of Lagos, Akoka-Yaba, Lagos, Nigeria
| | | |
Collapse
|
2
|
Güleç Ö, Türkeş C, Arslan M, Demir Y, Yeni Y, Hacımüftüoğlu A, Ereminsoy E, Küfrevioğlu Öİ, Beydemir Ş. Cytotoxic effect, enzyme inhibition, and in silico studies of some novel N-substituted sulfonyl amides incorporating 1,3,4-oxadiazol structural motif. Mol Divers 2022; 26:2825-2845. [PMID: 35397086 PMCID: PMC8994094 DOI: 10.1007/s11030-022-10422-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/21/2022] [Indexed: 12/14/2022]
Abstract
Abstract The acetylcholinesterase and carbonic anhydrase inhibitors (AChEIs and hCAIs) remain key therapeutic agents for many bioactivities such as anti-Alzheimer and antiobesity antiepileptic, anticancer, antiinfective, antiglaucoma, and diuretic effects. Here, it has been attempted to discover novel multi-target AChEIs and hCAIs that are highly potent, orally bioavailable, may be brain penetrant, and have higher effectiveness at lower doses than tacrine and acetazolamide. After detailed investigations both in vitro and in silico, novel N-substituted sulfonyl amide derivatives (6a–j) were determined to be highly potent inhibitors for AChE and hCAs (KIs are in the range of 23.11–52.49 nM, 18.66–59.62 nM, and 9.33–120.80 nM for AChE, hCA I, and hCA II, respectively). Moreover, according to the cytotoxic effect studies, such as the ADME-Tox, cortex neuron cells, and neuroblastoma SH-SY5Y cell line, compounds 6a, 6d, and 6h, which are the most potent representative versus the target enzymes, were identified as orally bioavailable, highly selective, and brain preferentially distributed AChEIs and hCAIs. The docking studies revealed precise binding modes between 6a, 6d, and 6h and hCA II, hCA I, and AChE, respectively. The results presented here might provide a solid basis for further investigation into more potent AChEIs and hCAIs. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s11030-022-10422-8.
Collapse
Affiliation(s)
- Özcan Güleç
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye
| | - Cüneyt Türkeş
- Department of Biochemistry, Faculty of Pharmacy, Erzincan Binali Yıldırım University, 24002, Erzincan, Türkiye.
| | - Mustafa Arslan
- Department of Chemistry, Faculty of Arts and Science, Sakarya University, 54187, Serdivan, Sakarya, Türkiye.
| | - Yeliz Demir
- Department of Pharmacy Services, Nihat Delibalta Göle Vocational High School, Ardahan University, 75700, Ardahan, Türkiye
| | - Yeşim Yeni
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ahmet Hacımüftüoğlu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240, Erzurum, Türkiye
| | - Ergün Ereminsoy
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Ömer İrfan Küfrevioğlu
- Department of Chemistry, Faculty of Science, Atatürk University, 25240, Erzurum, Türkiye
| | - Şükrü Beydemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskişehir, Türkiye.,The Rectorate of Bilecik Şeyh Edebali University, 11230, Bilecik, Türkiye
| |
Collapse
|
3
|
Urbelytė L, Bagdonas M, Grybaitė B, Vaickelionienė R, Mickevičiūtė A, Michailovienė V, Matulis D, Mickevičius V, Zubrienė A. Design and Synthesis of Hydrazone‐Bearing Benzenesulfonamides as Carbonic Anhydrase VB Inhibitors. ChemistrySelect 2021. [DOI: 10.1002/slct.202103636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liucija Urbelytė
- Department of Organic Chemistry Kaunas University of Technology Radvilėnų pl. 19 Kaunas LT-50254 Lithuania
| | - Martynas Bagdonas
- Department of Biothermodynamics and Drug Design Institute of Biotechnology, Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT-10257 Lithuania
| | - Birutė Grybaitė
- Department of Organic Chemistry Kaunas University of Technology Radvilėnų pl. 19 Kaunas LT-50254 Lithuania
| | - Rita Vaickelionienė
- Department of Organic Chemistry Kaunas University of Technology Radvilėnų pl. 19 Kaunas LT-50254 Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug Design Institute of Biotechnology, Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT-10257 Lithuania
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design Institute of Biotechnology, Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT-10257 Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design Institute of Biotechnology, Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT-10257 Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry Kaunas University of Technology Radvilėnų pl. 19 Kaunas LT-50254 Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design Institute of Biotechnology, Life Sciences Center Vilnius University Saulėtekio 7 Vilnius LT-10257 Lithuania
| |
Collapse
|
4
|
Skvarnavičius G, Toleikis Z, Michailovienė V, Roumestand C, Matulis D, Petrauskas V. Protein-Ligand Binding Volume Determined from a Single 2D NMR Spectrum with Increasing Pressure. J Phys Chem B 2021; 125:5823-5831. [PMID: 34032445 PMCID: PMC8279561 DOI: 10.1021/acs.jpcb.1c02917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Proteins
undergo changes in their partial volumes in numerous biological
processes such as enzymatic catalysis, unfolding–refolding,
and ligand binding. The change in the protein volume upon ligand binding—a
parameter termed the protein–ligand binding volume—can
be extensively studied by high-pressure NMR spectroscopy. In this
study, we developed a method to determine the protein–ligand
binding volume from a single two-dimensional (2D) 1H–15N heteronuclear single quantum coherence (HSQC) spectrum
at different pressures, if the exchange between ligand-free and ligand-bound
states of a protein is slow in the NMR time-scale. This approach required
a significantly lower amount of protein and NMR time to determine
the protein–ligand binding volume of two carbonic anhydrase
isozymes upon binding their ligands. The proposed method can be used
in other protein–ligand systems and expand the knowledge about
protein volume changes upon small-molecule binding.
Collapse
Affiliation(s)
- Gediminas Skvarnavičius
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Zigmantas Toleikis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania.,Latvian Institute of Organic Synthesis, Aizkraukles 21, 1006 Riga, Latvia
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Christian Roumestand
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, Université s de Montpellier, 34000 Montpellier, France
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, 10257 Vilnius, Lithuania
| |
Collapse
|
5
|
Smirnovienė J, Smirnov A, Zakšauskas A, Zubrienė A, Petrauskas V, Mickevičiūtė A, Michailovienė V, Čapkauskaitė E, Manakova E, Gražulis S, Baranauskienė L, Chen W, Ladbury JE, Matulis D. Switching the Inhibitor-Enzyme Recognition Profile via Chimeric Carbonic Anhydrase XII. ChemistryOpen 2021; 10:567-580. [PMID: 33945229 PMCID: PMC8095314 DOI: 10.1002/open.202100042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/08/2021] [Indexed: 01/02/2023] Open
Abstract
A key part of the optimization of small molecules in pharmaceutical inhibitor development is to vary the molecular design to enhance complementarity of chemical features of the compound with the positioning of amino acids in the active site of a target enzyme. Typically this involves iterations of synthesis, to modify the compound, and biophysical assay, to assess the outcomes. Selective targeting of the anti-cancer carbonic anhydrase isoform XII (CA XII), this process is challenging because the overall fold is very similar across the twelve CA isoforms. To enhance drug development for CA XII we used a reverse engineering approach where mutation of the key six amino acids in the active site of human CA XII into the CA II isoform was performed to provide a protein chimera (chCA XII) which is amenable to structure-based compound optimization. Through determination of structural detail and affinity measurement of the interaction with over 60 compounds we observed that the compounds that bound CA XII more strongly than CA II, switched their preference and bound more strongly to the engineered chimera, chCA XII, based on CA II, but containing the 6 key amino acids from CA XII, behaved as CA XII in its compound recognition profile. The structures of the compounds in the chimeric active site also resembled those determined for complexes with CA XII, hence validating this protein engineering approach in the development of new inhibitors.
Collapse
Affiliation(s)
- Joana Smirnovienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Alexey Smirnov
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Audrius Zakšauskas
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Vytautas Petrauskas
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Aurelija Mickevičiūtė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Vilma Michailovienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Edita Čapkauskaitė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Elena Manakova
- Department of Protein-DNA InteractionsInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Saulius Gražulis
- Department of Protein-DNA InteractionsInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Lina Baranauskienė
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| | - Wen‐Yih Chen
- Department of Chemical and Materials EngineeringInstitute of Systems Biology and BioinformaticsNational Central UniversityTaiwan
| | - John E. Ladbury
- School of Molecular and Cellular BiologyUniversity of LeedsLC Miall BuildingLeedsLS2 9JTUK
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug DesignInstitute of BiotechnologyLife Sciences CenterVilnius UniversitySaulėtekio 7Vilnius10257Lithuania
| |
Collapse
|
6
|
Tumosienė I, Kantminienė K, Klevinskas A, Petrikaitė V, Jonuškienė I, Mickevičius V. Antioxidant and Anticancer Activity of Novel Derivatives of 3-[(4-Methoxyphenyl)amino]propane-hydrazide. Molecules 2020; 25:molecules25132980. [PMID: 32610506 PMCID: PMC7412228 DOI: 10.3390/molecules25132980] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
Series of novel 3-[(4-methoxyphenyl)amino]propanehydrazide derivatives bearing semicarbazide, thiosemicarbazide, thiadiazole, triazolone, triazolethione, thiophenyltriazole, furan, thiophene, naphthalene, pyrrole, isoindoline-1,3-dione, oxindole, etc. moieties were synthesized and their molecular structures were confirmed by IR, 1H-, 13C-NMR spectroscopy and mass spectrometry data. The antioxidant activity of the synthesized compounds was screened by DPPH radical scavenging method. The antioxidant activity of N-(1,3-dioxoisoindolin-2-yl)-3-((4-methoxyphenyl)amino)propanamide and 3-((4-methoxyphenyl)amino)-N’-(1-(naphthalen-1-yl)-ethylidene)propanehydrazide has been tested to be ca. 1.4 times higher than that of a well-known antioxidant ascorbic acid. Anticancer activity was tested by MTT assay against human glioblastoma U-87 and triple-negative breast cancer MDA-MB-231 cell lines. In general, the tested compounds were more cytotoxic against U-87 than MDA-MB-231 cell line. 1-(4-Fluorophenyl)-2-((5-(2-((4-methoxyphenyl)amino)ethyl)-4-phenyl-4H-1,2,4-triazol-3-yl)thio)ethanone has been identified as the most active compound against the glioblastoma U-87 cell line.
Collapse
Affiliation(s)
- Ingrida Tumosienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-37-300178
| | - Arnas Klevinskas
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania
| | - Vilma Petrikaitė
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, Sukilėlių pr. 13, LT-50162 Kaunas, Lithuania;
- Institute of Physiology and Pharmacology, Faculty of Medicine, Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| | - Ilona Jonuškienė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, LT-50254 Kaunas, Lithuania; (I.T.); (A.K.); (I.J.); (V.M.)
| |
Collapse
|
7
|
Thermodynamic, kinetic, and structural parameterization of human carbonic anhydrase interactions toward enhanced inhibitor design. Q Rev Biophys 2019; 51:e10. [PMID: 30912486 DOI: 10.1017/s0033583518000082] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The aim of rational drug design is to develop small molecules using a quantitative approach to optimize affinity. This should enhance the development of chemical compounds that would specifically, selectively, reversibly, and with high affinity interact with a target protein. It is not yet possible to develop such compounds using computational (i.e., in silico) approach and instead the lead molecules are discovered in high-throughput screening searches of large compound libraries. The main reason why in silico methods are not capable to deliver is our poor understanding of the compound structure-thermodynamics and structure-kinetics correlations. There is a need for databases of intrinsic binding parameters (e.g., the change upon binding in standard Gibbs energy (ΔGint), enthalpy (ΔHint), entropy (ΔSint), volume (ΔVintr), heat capacity (ΔCp,int), association rate (ka,int), and dissociation rate (kd,int)) between a series of closely related proteins and a chemically diverse, but pharmacophoric group-guided library of compounds together with the co-crystal structures that could help explain the structure-energetics correlations and rationally design novel compounds. Assembly of these data will facilitate attempts to provide correlations and train data for modeling of compound binding. Here, we report large datasets of the intrinsic thermodynamic and kinetic data including over 400 primary sulfonamide compound binding to a family of 12 catalytically active human carbonic anhydrases (CA). Thermodynamic parameters have been determined by the fluorescent thermal shift assay, isothermal titration calorimetry, and by the stopped-flow assay of the inhibition of enzymatic activity. Kinetic measurements were performed using surface plasmon resonance. Intrinsic thermodynamic and kinetic parameters of binding were determined by dissecting the binding-linked protonation reactions of the protein and sulfonamide. The compound structure-thermodynamics and kinetics correlations reported here helped to discover compounds that exhibited picomolar affinities, hour-long residence times, and million-fold selectivities over non-target CA isoforms. Drug-lead compounds are suggested for anticancer target CA IX and CA XII, antiglaucoma CA IV, antiobesity CA VA and CA VB, and other isoforms. Together with 85 X-ray crystallographic structures of 60 compounds bound to six CA isoforms, the database should be of help to continue developing the principles of rational target-based drug design.
Collapse
|
8
|
Sannino A, Gabriele E, Bigatti M, Mulatto S, Piazzi J, Scheuermann J, Neri D, Donckele EJ, Samain F. Quantitative Assessment of Affinity Selection Performance by Using DNA‐Encoded Chemical Libraries. Chembiochem 2019; 20:955-962. [DOI: 10.1002/cbic.201800766] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Indexed: 12/14/2022]
Affiliation(s)
| | - Elena Gabriele
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | | | - Sara Mulatto
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | - Jacopo Piazzi
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| | - Jörg Scheuermann
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | - Dario Neri
- Department of Chemistry and Applied BiosciencesSwiss Federal Institute of Technology (ETH Zürich) Vladimir-Prelog-Weg 3 8093 Zürich Switzerland
| | | | - Florent Samain
- Philochem AG Libernstrasse 3 8112 Otelfingen Switzerland
| |
Collapse
|
9
|
Hassan AA, Mohamed NK, Aly AA, Tawfeek HN, Bräse S, Nieger M. Synthesis and crystallographic evaluation of diazenyl- and hydrazothiazoles. [5.5] sigmatropic rearrangement and formation of thiazolium bromide dihydrate derivatives. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.08.106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Vaškevičienė I, Paketurytė V, Pajanok N, Žukauskas Š, Sapijanskaitė B, Kantminienė K, Mickevičius V, Zubrienė A, Matulis D. Pyrrolidinone-bearing methylated and halogenated benzenesulfonamides as inhibitors of carbonic anhydrases. Bioorg Med Chem 2018; 27:322-337. [PMID: 30553625 DOI: 10.1016/j.bmc.2018.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/19/2022]
Abstract
Two series of benzenesulfonamides bearing methyl groups at ortho/ortho or meta/ortho positions and a pyrrolidinone moiety at para position were synthesized and tested as inhibitors of the twelve catalytically active human carbonic anhydrase (CA) isoforms. Observed binding affinities were determined by fluorescent thermal shift assay and intrinsic binding affinities representing the binding of benzenesulfonamide anion to the Zn(II)-bound water form of CA were calculated. Introduction of dimethyl groups into benzenesulfonamide ring decreased the binding affinity to almost all CA isoforms, but gained in selectivity towards one CA isoform. A chloro group at the meta position of 2,6-dimethylbenzenesulfonamide derivatives did not influence the binding to CA I, but it increased the affinity to all other CAs, especially, CA VII and CA XIII (up to 500 fold). The compounds may be used for further development of CA inhibitors with higher selectivity to particular CA isoforms.
Collapse
Affiliation(s)
- Irena Vaškevičienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Vaida Paketurytė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Nikita Pajanok
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Šarūnas Žukauskas
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Birutė Sapijanskaitė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania.
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| |
Collapse
|
11
|
Rasti B, Heravi YE. Probing the chemical interaction space governed by 4-aminosubstituted benzenesulfonamides and carbonic anhydrase isoforms. Res Pharm Sci 2018; 13:192-204. [PMID: 29853929 PMCID: PMC5921400 DOI: 10.4103/1735-5362.228940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Isoform diversity, critical physiological roles and involvement in major diseases/disorders such as glaucoma, epilepsy, Alzheimer's disease, obesity, and cancers have made carbonic anhydrase (CA), one of the most interesting case studies in the field of computer aided drug design. Since applying non-selective inhibitors can result in major side effects, there have been considerable efforts so far to achieve selective inhibitors for different isoforms of CA. Using proteochemometrics approach, the chemical interaction space governed by a group of 4-amino-substituted benzenesulfonamides and human CAs has been explored in the present study. Several validation methods have been utilized to assess the validity, robustness and predictivity power of the proposed proteochemometric model. Our model has offered major structural information that can be applied to design new selective inhibitors for distinct isoforms of CA. To prove the applicability of the proposed model, new compounds have been designed based on the offered discriminative structural features.
Collapse
Affiliation(s)
- Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, I.R. Iran
| | | |
Collapse
|
12
|
Chiaramonte N, Romanelli MN, Teodori E, Supuran CT. Amino Acids as Building Blocks for Carbonic Anhydrase Inhibitors. Metabolites 2018; 8:E36. [PMID: 29795039 PMCID: PMC6027070 DOI: 10.3390/metabo8020036] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023] Open
Abstract
Carbonic anhydrases (CAs) are a superfamily of metalloenzymes widespread in all life, classified into seven genetically different families (α⁻θ). These enzymes catalyse the reversible hydration of carbonic anhydride (CO₂), generating bicarbonate (HCO₃-) and protons (H⁺). Fifteen isoforms of human CA (hCA I⁻XV) have been isolated, their presence being fundamental for the regulation of many physiological processes. In addition, overexpression of some isoforms has been associated with the outbreak or progression of several diseases. For this reason, for a long time CA inhibitors (CAIs) have been used in the control of glaucoma and as diuretics. Furthermore, the search for new potential CAIs for other pharmacological applications is a very active field. Amino acids constitute the smallest fundamental monomers of protein and, due to their useful bivalent chemical properties, are widely used in organic chemistry. Both proteinogenic and non-proteinogenic amino acids have been extensively used to synthesize CAIs. This article provides an overview of the different strategies that have been used to design new CAIs containing amino acids, and how these bivalent molecules influence the properties of the inhibitors.
Collapse
Affiliation(s)
- Niccolò Chiaramonte
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Maria Novella Romanelli
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Elisabetta Teodori
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| | - Claudiu T Supuran
- Department of Neuroscience, Psychology, Drug Research and Child's Health, Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
13
|
Kazokaitė J, Aspatwar A, Parkkila S, Matulis D. An update on anticancer drug development and delivery targeting carbonic anhydrase IX. PeerJ 2017; 5:e4068. [PMID: 29181278 PMCID: PMC5702504 DOI: 10.7717/peerj.4068] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/30/2017] [Indexed: 12/15/2022] Open
Abstract
The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors.
Collapse
Affiliation(s)
- Justina Kazokaitė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Ashok Aspatwar
- Faculty of Medicine and Life sciences, University of Tampere, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Seppo Parkkila
- Faculty of Medicine and Life sciences, University of Tampere, Tampere, Finland.,Fimlab Ltd, Tampere, Finland
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
14
|
Vaškevičienė I, Paketurytė V, Zubrienė A, Kantminienė K, Mickevičius V, Matulis D. N-Sulfamoylphenyl- and N-sulfamoylphenyl-N-thiazolyl-β-alanines and their derivatives as inhibitors of human carbonic anhydrases. Bioorg Chem 2017; 75:16-29. [PMID: 28888097 DOI: 10.1016/j.bioorg.2017.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/12/2022]
Abstract
A series of N-substituted and N,N-disubstituted β-amino acids and their derivatives bearing benzenesulfonamide moiety were designed and synthesized in search of compounds that would be high-affinity and selective inhibitors of human carbonic anhydrases (CA). There are 12 catalytically active human CA isoforms, the cytosolic CA I, CA II, CA III, CA VII, and CA XIII, secreted CA VI, the mitochondrial CA VA and CA VB, membrane-associated CA IV, and transmembrane CA IX, CA XII, and CA XIV. The di-bromo meta-substituted compounds exhibited low nanomolar dissociation constants and over 10-fold selectivity for mitochondrial isozyme CA VB, implicated in diseases of the central nervous system and obesity. These compounds can be used for further development as inhibitors of significant binding affinity and selectivity towards CA VB isozyme.
Collapse
Affiliation(s)
- Irena Vaškevičienė
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Vaida Paketurytė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Asta Zubrienė
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania
| | - Kristina Kantminienė
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Vytautas Mickevičius
- Department of Organic Chemistry, Kaunas University of Technology, LT-50254, Radvilėnų pl. 19, Kaunas, Lithuania
| | - Daumantas Matulis
- Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Life Sciences Center, Vilnius University, Saulėtekio 7, Vilnius LT-10257, Lithuania.
| |
Collapse
|
15
|
Picomolar inhibitors of carbonic anhydrase: Importance of inhibition and binding assays. Anal Biochem 2017; 522:61-72. [PMID: 28153585 DOI: 10.1016/j.ab.2017.01.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/15/2022]
Abstract
The Ki of carbonic anhydrase (CA) inhibitors is often determined by the stopped- flow CO2 hydration assay, the method that directly follows the inhibition of CA enzymatic activity. However, the assay has limitations, such as largely unknown concentration of CO2 and the inability to determine the Ki below several nM. The widely used direct binding assay, isothermal titration calorimetry, also does not determine the Kd below several nM. In contrast, the thermal shift assay can accurately determine picomolar affinities. New equations estimating CO2 concentration were developed for the determination of kcat and KM of CA I and CA II. The inhibitor dose-response curves were analyzed using Hill and Morrison equations demonstrating that only the Morrison model is applicable for the determination of tight-binding inhibitor Ki. The measurements of interactions between ten inhibitors and seven CA isoforms showed the limitations and advantages of all three techniques. Inhibitor 6 exhibited the Kd of 50 pM and was highly selective towards human CA IX, an isoform which is nearly absent in healthy human, but highly overexpressed in numerous cancers. Combination of inhibition and binding techniques was necessary for precise determination of CA-high-affinity inhibitor interactions and future drug design.
Collapse
|
16
|
Rutkauskas K, Zubrienė A, Tumosienė I, Kantminienė K, Mickevičius V, Matulis D. Benzenesulfonamides bearing pyrrolidinone moiety as inhibitors of carbonic anhydrase IX: synthesis and binding studies. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1741-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|