1
|
Schäfter D, Wischnat J, Tesi L, De Sousa JA, Little E, McGuire J, Mas-Torrent M, Rovira C, Veciana J, Tuna F, Crivillers N, van Slageren J. Molecular One- and Two-Qubit Systems with Very Long Coherence Times. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302114. [PMID: 37289574 DOI: 10.1002/adma.202302114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Indexed: 06/10/2023]
Abstract
General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.
Collapse
Affiliation(s)
- Dennis Schäfter
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Jonathan Wischnat
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - J Alejandro De Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
- Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida, 5101, Venezuela
| | - Edmund Little
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jake McGuire
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
2
|
Rogers CJ, Asthana D, Brookfield A, Chiesa A, Timco GA, Collison D, Natrajan LS, Carretta S, Winpenny REP, Bowen AM. Modelling Conformational Flexibility in a Spectrally Addressable Molecular Multi‐Qubit Model System. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ciarán J. Rogers
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Deepak Asthana
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
- Department of Chemistry Ashoka University Sonipat Haryana India
| | - Adam Brookfield
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Alessandro Chiesa
- Dipartimento di Scienze Matematiche Fisiche e Informatiche Università di Parma 43124 Parma Italy
- INFN–Sezione di Milano-Bicocca Gruppo Collegato di Parma I-43124 Parma Italy
- UdR Parma INSTM I-43124 Parma Italy
| | - Grigore A. Timco
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - David Collison
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Louise S. Natrajan
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stefano Carretta
- Dipartimento di Scienze Matematiche Fisiche e Informatiche Università di Parma 43124 Parma Italy
- INFN–Sezione di Milano-Bicocca Gruppo Collegato di Parma I-43124 Parma Italy
- UdR Parma INSTM I-43124 Parma Italy
| | - Richard E. P. Winpenny
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Alice M. Bowen
- National Research Facility for Electron Paramagnetic Resonance Spectroscopy Department of Chemistry and Photon Science Institute The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
3
|
Rogers CJ, Asthana D, Brookfield A, Chiesa A, Timco GA, Collison D, Natrajan LS, Carretta S, Winpenny REP, Bowen AM. Modelling Conformational Flexibility in a Spectrally Addressable Molecular Multi-Qubit Model System. Angew Chem Int Ed Engl 2022; 61:e202207947. [PMID: 36222278 PMCID: PMC9828767 DOI: 10.1002/anie.202207947] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 11/11/2022]
Abstract
Dipolar coupled multi-spin systems have the potential to be used as molecular qubits. Herein we report the synthesis of a molecular multi-qubit model system with three individually addressable, weakly interacting, spin1 / 2 ${{ 1/2 }}$ centres of differing g-values. We use pulsed Electron Paramagnetic Resonance (EPR) techniques to characterise and separately address the individual electron spin qubits; CuII , Cr7 Ni ring and a nitroxide, to determine the strength of the inter-qubit dipolar interaction. Orientation selective Relaxation-Induced Dipolar Modulation Enhancement (os-RIDME) detecting across the CuII spectrum revealed a strongly correlated CuII -Cr7 Ni ring relationship; detecting on the nitroxide resonance measured both the nitroxide and CuII or nitroxide and Cr7 Ni ring correlations, with switchability of the interaction based on differing relaxation dynamics, indicating a handle for implementing EPR-based quantum information processing (QIP) algorithms.
Collapse
Affiliation(s)
- Ciarán J. Rogers
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Deepak Asthana
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
- Department of ChemistryAshoka UniversitySonipatHaryanaIndia
| | - Adam Brookfield
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alessandro Chiesa
- Dipartimento di Scienze Matematiche Fisiche e InformaticheUniversità di Parma43124ParmaItaly
- INFN–Sezione di Milano-BicoccaGruppo Collegato di ParmaI-43124ParmaItaly
- UdR ParmaINSTMI-43124ParmaItaly
| | - Grigore A. Timco
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - David Collison
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Louise S. Natrajan
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Stefano Carretta
- Dipartimento di Scienze Matematiche Fisiche e InformaticheUniversità di Parma43124ParmaItaly
- INFN–Sezione di Milano-BicoccaGruppo Collegato di ParmaI-43124ParmaItaly
- UdR ParmaINSTMI-43124ParmaItaly
| | - Richard E. P. Winpenny
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alice M. Bowen
- National Research Facility for Electron Paramagnetic Resonance SpectroscopyDepartment of Chemistry and Photon Science InstituteThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
4
|
Ackermann K, Chapman A, Bode BE. A Comparison of Cysteine-Conjugated Nitroxide Spin Labels for Pulse Dipolar EPR Spectroscopy. Molecules 2021; 26:7534. [PMID: 34946616 PMCID: PMC8706713 DOI: 10.3390/molecules26247534] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/23/2022] Open
Abstract
The structure-function and materials paradigms drive research on the understanding of structures and structural heterogeneity of molecules and solids from materials science to structural biology. Functional insights into complex architectures are often gained from a suite of complementary physicochemical methods. In the context of biomacromolecular structures, the use of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) has become increasingly popular. The main interest in PDS is providing long-range nanometre distance distributions that allow for identifying macromolecular topologies, validating structural models and conformational transitions as well as docking of quaternary complexes. Most commonly, cysteines are introduced into protein structures by site-directed mutagenesis and modified site-specifically to a spin-labelled side-chain such as a stable nitroxide radical. In this contribution, we investigate labelling by four different commercial labelling agents that react through different sulfur-specific reactions. Further, the distance distributions obtained are between spin-bearing moieties and need to be related to the protein structure via modelling approaches. Here, we compare two different approaches to modelling these distributions for all four side-chains. The results indicate that there are significant differences in the optimum labelling procedure. All four spin-labels show differences in the ease of labelling and purification. Further challenges arise from the different tether lengths and rotamers of spin-labelled side-chains; both influence the modelling and translation into structures. Our comparison indicates that the spin-label with the shortest tether in the spin-labelled side-group, (bis-(2,2,5,5-Tetramethyl-3-imidazoline-1-oxyl-4-yl) disulfide, may be underappreciated and could increase the resolution of structural studies by PDS if labelling conditions are optimised accordingly.
Collapse
Affiliation(s)
| | | | - Bela E. Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK; (K.A.); (A.C.)
| |
Collapse
|
5
|
Wort JL, Ackermann K, Norman DG, Bode BE. A general model to optimise Cu II labelling efficiency of double-histidine motifs for pulse dipolar EPR applications. Phys Chem Chem Phys 2021; 23:3810-3819. [PMID: 33533341 DOI: 10.1039/d0cp06196d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Electron paramagnetic resonance (EPR) distance measurements are making increasingly important contributions to studies of biomolecules underpinning health and disease by providing highly accurate and precise geometric constraints. Combining double-histidine (dH) motifs with CuII spin labels shows promise for further increasing the precision of distance measurements, and for investigating subtle conformational changes. However, non-covalent coordination-based spin labelling is vulnerable to low binding affinity. Dissociation constants of dH motifs for CuII-nitrilotriacetic acid were previously investigated via relaxation induced dipolar modulation enhancement (RIDME), and demonstrated the feasibility of exploiting the dH motif for EPR applications at sub-μM protein concentrations. Herein, the feasibility of using modulation depth quantitation in CuII-CuII RIDME to simultaneously estimate a pair of non-identical independent KD values in such a tetra-histidine model protein is addressed. Furthermore, we develop a general speciation model to optimise CuII labelling efficiency, depending upon pairs of identical or disparate KD values and total CuII label concentration. We find the dissociation constant estimates are in excellent agreement with previously determined values, and empirical modulation depths support the proposed model.
Collapse
Affiliation(s)
- Joshua L Wort
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| | - Katrin Ackermann
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| | - David G Norman
- School of Life Sciences, University of Dundee, Medical Sciences Institute, Dundee, DD1 5EH, UK
| | - Bela E Bode
- EaStCHEM School of Chemistry, Biomedical Sciences Research Complex, and Centre of Magnetic Resonance, University of St Andrews North Haugh, St Andrews KY16 9ST, UK.
| |
Collapse
|
6
|
Jackl MK, Gordon CP, Copéret C, Bode JW. Spirocyclic Nitroxide Biradicals: Synthesis and Evaluation as Dynamic Nuclear Polarizing Agents. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Moritz K. Jackl
- Department of Chemistry and Applied Bioscience ETH Zürich CH-8093 Zürich Switzerland
| | - Christopher P. Gordon
- Department of Chemistry and Applied Bioscience ETH Zürich CH-8093 Zürich Switzerland
| | - Christophe Copéret
- Department of Chemistry and Applied Bioscience ETH Zürich CH-8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Department of Chemistry and Applied Bioscience ETH Zürich CH-8093 Zürich Switzerland
| |
Collapse
|
7
|
Kuzhelev AA, Krumkacheva OA, Shevelev GY, Yulikov M, Fedin MV, Bagryanskaya EG. Room-temperature distance measurements using RIDME and the orthogonal spin labels trityl/nitroxide. Phys Chem Chem Phys 2018; 20:10224-10230. [PMID: 29594278 DOI: 10.1039/c8cp01093e] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron paramagnetic resonance (EPR) based nanometer distance measurements at ambient temperatures are of particular interest for structural biology applications. The nitroxide spin labels commonly used in EPR reveal relatively short transverse relaxation under these conditions, which limits their use for detecting static dipolar interactions. At the same time, the longitudinal relaxation of nitroxide spin labels is still long enough to allow using them as 'pumped' species in the relaxation induced dipolar modulation enhancement (RIDME) experiment where the detection is carried out on the slower relaxing triarylmethyl (TAM) spin labels. In the present study, we report the first demonstration of room-temperature RIDME distance measurements in nucleic acids using TAM as the slow-relaxing detected species and traditional nitroxide as the fast-relaxing partner spin. Two types of immobilizers, glassy trehalose and the modified silica gel Nucleosil, were used for immobilization of the spin-labeled biomolecules. The room-temperature RIDME-based distance distributions are in good agreement with those measured at 80 K by other techniques. Room-temperature RIDME on the spin pairs trityl/nitroxide may become a useful method for the structural characterization of biomacromolecules and biomolecular complexes at near physiological temperatures.
Collapse
Affiliation(s)
- Andrey A Kuzhelev
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
8
|
Giannoulis A, Motion CL, Oranges M, Bühl M, Smith GM, Bode BE. Orientation selection in high-field RIDME and PELDOR experiments involving low-spin CoII ions. Phys Chem Chem Phys 2018; 20:2151-2154. [DOI: 10.1039/c7cp07248a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Orientation selective pulse dipolar electron paramagnetic resonance unravels relative geometries of spin centres from RIDME and PELDOR data.
Collapse
Affiliation(s)
- Angeliki Giannoulis
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews
- UK
- Biomedical Sciences Research Complex, University of St Andrews
- UK
| | | | - Maria Oranges
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews
- UK
- Biomedical Sciences Research Complex, University of St Andrews
- UK
| | - Michael Bühl
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews
- UK
| | - Graham M. Smith
- SUPA, School of Physics & Astronomy, University of St Andrews
- UK
| | - Bela E. Bode
- EaStCHEM School of Chemistry and Centre of Magnetic Resonance, University of St Andrews
- UK
- Biomedical Sciences Research Complex, University of St Andrews
- UK
| |
Collapse
|
9
|
Qi M, Hülsmann M, Godt A. Spacers for Geometrically Well-Defined Water-Soluble Molecular Rulers and Their Application. J Org Chem 2016; 81:2549-71. [DOI: 10.1021/acs.joc.6b00125] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mian Qi
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Miriam Hülsmann
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| | - Adelheid Godt
- Faculty of Chemistry and
Center for Molecular Materials (MC2), Bielefeld University, Universitätsstraße
25, 33615 Bielefeld, Germany
| |
Collapse
|
10
|
Valera S, Ackermann K, Pliotas C, Huang H, Naismith JH, Bode BE. Accurate Extraction of Nanometer Distances in Multimers by Pulse EPR. Chemistry 2016; 22:4700-3. [PMID: 26865468 PMCID: PMC4848767 DOI: 10.1002/chem.201505143] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Indexed: 12/15/2022]
Abstract
Pulse electron paramagnetic resonance (EPR) is gaining increasing importance in structural biology. The PELDOR (pulsed electron–electron double resonance) method allows extracting distance information on the nanometer scale. Here, we demonstrate the efficient extraction of distances from multimeric systems such as membrane‐embedded ion channels where data analysis is commonly hindered by multi‐spin effects.
Collapse
Affiliation(s)
- Silvia Valera
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Katrin Ackermann
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Christos Pliotas
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Hexian Huang
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - James H Naismith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK
| | - Bela E Bode
- Centre of Magnetic Resonance, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK. .,Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9ST, UK.
| |
Collapse
|