1
|
Antifouling coating based on biopolymers (PCL/ PLA) and bioactive extract from the sea cucumber Stichopus herrmanni. AMB Express 2022; 12:24. [PMID: 35220496 PMCID: PMC8882500 DOI: 10.1186/s13568-022-01364-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
An important challenge to decrease the toxic effects of the common biocides in marine environments and to achieve suitable ecofriendly natural antifouling coatings is to find effective natural antifoulants and efficient biodegradable coatings. In this study, antifouling activities of nine bioactive extracts (non-polar to polar) from different organs of the sea cucumber Stichopus herrmanni were tested against five bacterial strains, barnacle and brine shrimp larvae. The ethyl acetate extract of the body wall showed the highest in-vitro antifouling activity including high antibacterial and anti-barnacle activities and low toxicity against the brine shrimp as non-target organism. Based on these results, 10 phr of the ethyl acetate extract from S.herrmanni was added to different coatings consisting of polycaprolactone (PCL)/polylactic acid (PLA) blends containing various compositions of PLA (0, 10, and 20 wt.%). Polyvinyl chloride panels were coated with the prepared antifouling coatings and immersed in seawater for three months. Panel coated with PCL 80% /PLA 20% containing 10 phr of the antifoulant (panel-5), showed the highest resistance against fouling settlement with fouling coverage of 41.66% (P < 0.05). In addition, the lowest fouling weight was measured in panel-5 as well (81.00 ± 9.85 g) (P < 0.05). These findings indicate the antibacterial and antifouling potential of semi-polar bioactive extracts from the S. herrmanni body wall as natural antifoulants, as well as the enhanced antifouling performance of PCL/the natural antifoulant coatings by adding PLA.
Collapse
|
2
|
Faisal MR, Kellermann MY, Rohde S, Putra MY, Murniasih T, Risdian C, Mohr KI, Wink J, Praditya DF, Steinmann E, Köck M, Schupp PJ. Ecological and Pharmacological Activities of Polybrominated Diphenyl Ethers (PBDEs) from the Indonesian Marine Sponge Lamellodysidea herbacea. Mar Drugs 2021; 19:md19110611. [PMID: 34822482 PMCID: PMC8621810 DOI: 10.3390/md19110611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/27/2022] Open
Abstract
Two known Polybrominated Diphenyl Ethers (PBDEs), 3,4,5-tribromo-2-(2′,4′-dibromophenoxy)phenol (1d) and 3,4,5,6-tetrabromo-2-(2′,4′-dibromophenoxy)phenol (2b), were isolated from the Indonesian marine sponge Lamellodysidea herbacea. The structure was confirmed using 13C chemical shift average deviation and was compared to the predicted structures and recorded chemical shifts in previous studies. We found a wide range of bioactivities from the organic crude extract, such as (1) a strong deterrence against the generalist pufferfish Canthigaster solandri, (2) potent inhibition against environmental and human pathogenic bacterial and fungal strains, and (3) the inhibition of the Hepatitis C Virus (HCV). The addition of a bromine atom into the A-ring of compound 2b resulted in higher fish feeding deterrence compared to compound 1d. On the contrary, compound 2b showed only more potent inhibition against the Gram-negative bacteria Rhodotorula glutinis (MIC 2.1 μg/mL), while compound 1d showed more powerful inhibition against the other human pathogenic bacteria and fungi. The first report of a chemical defense by compounds 1d and 2b against fish feeding and environmental relevant bacteria, especially pathogenic bacteria, might be one reason for the widespread occurrence of the shallow water sponge Lamellodysidea herbacea in Indonesia and the Indo-Pacific.
Collapse
Affiliation(s)
- Muhammad R. Faisal
- Environmental Biochemistry, Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany; (M.R.F.); (M.Y.K.); (S.R.)
| | - Matthias Y. Kellermann
- Environmental Biochemistry, Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany; (M.R.F.); (M.Y.K.); (S.R.)
| | - Sven Rohde
- Environmental Biochemistry, Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany; (M.R.F.); (M.Y.K.); (S.R.)
| | - Masteria Y. Putra
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; (M.Y.P.); (T.M.); (D.F.P.)
| | - Tutik Murniasih
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; (M.Y.P.); (T.M.); (D.F.P.)
| | - Chandra Risdian
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.R.); (K.I.M.); (J.W.)
- Research Unit for Clean Technology, Indonesian Institute of Sciences (LIPI), Bandung 40135, Indonesia
| | - Kathrin I. Mohr
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.R.); (K.I.M.); (J.W.)
| | - Joachim Wink
- Microbial Strain Collection (MISG), Helmholtz Centre for Infection Research, Inhoffenstraße 7, 38124 Braunschweig, Germany; (C.R.); (K.I.M.); (J.W.)
| | - Dimas F. Praditya
- Research Center for Biotechnology, Research Organization for Life Science, National Research and Innovation Agency (BRIN), Cibinong 16911, Indonesia; (M.Y.P.); (T.M.); (D.F.P.)
- TWINCORE-Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7–9, 30625 Hannover, Germany;
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Eike Steinmann
- TWINCORE-Centre for Experimental and Clinical Infection Research, Institute of Experimental Virology, Feodor-Lynen-Str. 7–9, 30625 Hannover, Germany;
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Matthias Köck
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany;
| | - Peter J. Schupp
- Environmental Biochemistry, Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University of Oldenburg, Schleusenstr. 1, 26382 Wilhelmshaven, Germany; (M.R.F.); (M.Y.K.); (S.R.)
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Ammerländer Heerstraße 231, 26129 Oldenburg, Germany
- Correspondence: ; Tel.: +49-4421-944-100
| |
Collapse
|
3
|
Freitas e Silva KS, C. Silva L, Gonçales RA, Neves BJ, Soares CM, Pereira M. Setting New Routes for Antifungal Drug Discovery Against Pathogenic Fungi. Curr Pharm Des 2020; 26:1509-1520. [DOI: 10.2174/1381612826666200317125956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
:Fungal diseases are life-threatening to human health and responsible for millions of deaths around the world. Fungal pathogens lead to a high number of morbidity and mortality. Current antifungal treatment comprises drugs, such as azoles, echinocandins, and polyenes and the cure is not guaranteed. In addition, such drugs are related to severe side effects and the treatment lasts for an extended period. Thus, setting new routes for the discovery of effective and safe antifungal drugs should be a priority within the health care system. The discovery of alternative and efficient antifungal drugs showing fewer side effects is time-consuming and remains a challenge. Natural products can be a source of antifungals and used in combinatorial therapy. The most important natural products are antifungal peptides, antifungal lectins, antifungal plants, and fungi secondary metabolites. Several proteins, enzymes, and metabolic pathways could be targets for the discovery of efficient inhibitor compounds and recently, heat shock proteins, calcineurin, salinomycin, the trehalose biosynthetic pathway, and the glyoxylate cycle have been investigated in several fungal species. HSP protein inhibitors and echinocandins have been shown to have a fungicidal effect against azole-resistant fungi strains. Transcriptomic and proteomic approaches have advanced antifungal drug discovery and pointed to new important specific-pathogen targets. Certain enzymes, such as those from the glyoxylate cycle, have been a target of antifungal compounds in several fungi species. Natural and synthetic compounds inhibited the activity of such enzymes and reduced the ability of fungal cells to transit from mycelium to yeast, proving to be promisor antifungal agents. Finally, computational biology has developed effective approaches, setting new routes for early antifungal drug discovery since normal approaches take several years from discovery to clinical use. Thus, the development of new antifungal strategies might reduce the therapeutic time and increase the quality of life of patients.
Collapse
Affiliation(s)
- Kleber S. Freitas e Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Lívia C. Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Relber A. Gonçales
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno J. Neves
- LabMol - Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, GO, 74605-510, Brazil
| | - Célia M.A. Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| |
Collapse
|
4
|
Hasan I, Ozeki Y. Histochemical localization of N-acetylhexosamine-binding lectin HOL-18 in Halichondria okadai (Japanese black sponge), and its antimicrobial and cytotoxic anticancer effects. Int J Biol Macromol 2018; 124:819-827. [PMID: 30496858 DOI: 10.1016/j.ijbiomac.2018.11.222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 11/25/2018] [Accepted: 11/25/2018] [Indexed: 10/27/2022]
Abstract
We studied localization and physiological activities of a lectin showing specific binding to N-acetylhexosamines, termed HOL-18, purified from Japanese black sponge (Halichondria okadai). Antiserum against the lectin was generated in rabbit and applied for immunohistochemical analyses. HOL-18 was expressed specifically around water pores and on spicules of sponge tissues. It showed strong binding to a variety of N-acetylhexosamines: N-acetyl D-glucosamine, N-acetyl D-galactosamine, N-acetyl mannosamine, N-acetyl muramic acid, and N-acetyl neuraminic acid. Hemagglutination induced by the lectin was inhibited by lipopolysaccharides and a peptidoglycan. HOL-18 inhibited growth of a gram-positive bacterium (Listeria monocytogenes), gram-negative bacteria (Escherichia coli, Shigella boydii, Pseudomonas aeruginosa), and a fungus (Aspergillus niger). It displayed anti-biofilm activity against P. aeruginosa. HOL-18 was internalized into conidiophores of A. niger, and displayed notable antifungal activity. Fluorescence microscopy revealed binding and incorporation of the lectin into human cancer cell lines HeLa, MCF-7, and T47D, but not Caco-2. HOL-18 displayed dose-dependent cytotoxic effects against HeLa, MCF-7, and T47D, with respective IC50 values 40, 52, and 63 μg/mL. In HeLa cells, it activated phosphorylation of MAPK pathway molecule (ERK1/2) and activated caspase-3 to trigger apoptosis. HOL-18 thus has the potential to upregulate metabolic pathways in higher animal cells through binding to N-acetylhexosamines.
Collapse
Affiliation(s)
- Imtiaj Hasan
- Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan; Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Yasuhiro Ozeki
- Laboratory of Glycobiology and Marine Biochemistry, Department of Life and Environmental System Science, Graduate School of NanoBiosciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
5
|
St-Pierre Y, Doucet N, Chatenet D. A New Approach to Inhibit Prototypic Galectins. TRENDS GLYCOSCI GLYC 2018. [DOI: 10.4052/tigg.1730.1se] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yves St-Pierre
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| | - Nicolas Doucet
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| | - David Chatenet
- Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Université du Québec
| |
Collapse
|
6
|
Mioso R, Marante FJT, Bezerra RDS, Borges FVP, Santos BVDO, Laguna IHBD. Cytotoxic Compounds Derived from Marine Sponges. A Review (2010-2012). Molecules 2017; 22:E208. [PMID: 28134844 PMCID: PMC6155849 DOI: 10.3390/molecules22020208] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Abstract: This extensive review covers research published between 2010 and 2012 regarding new compounds derived from marine sponges, including 62 species from 60 genera belonging to 33 families and 13 orders of the Demospongia class (Porifera). The emphasis is on the cytotoxic activity that bioactive metabolites from sponges may have on cancer cell lines. At least 197 novel chemical structures from 337 compounds isolated have been found to support this work. Details on the source and taxonomy of the sponges, their geographical occurrence, and a range of chemical structures are presented. The compounds discovered from the reviewed marine sponges fall into mainly four chemical classes: terpenoids (41.9%), alkaloids (26.2%), macrolides (8.9%) and peptides (6.3%) which, along with polyketides, sterols, and others show a range of biological activities. The key sponge orders studied in the reviewed research were Dictyoceratida, Haplosclerida, Tetractinellida, Poecilosclerida, and Agelasida. Petrosia, Haliclona (Haplosclerida), Rhabdastrella (Tetractinellida), Coscinoderma and Hyppospongia (Dictyioceratida), were found to be the most promising genera because of their capacity for producing new bioactive compounds. Several of the new compounds and their synthetic analogues have shown in vitro cytotoxic and pro-apoptotic activities against various tumor/cancer cell lines, and some of them will undergo further in vivo evaluation.
Collapse
Affiliation(s)
- Roberto Mioso
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Francisco J Toledo Marante
- Department of Chemistry, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria 35017, Spain.
| | - Ranilson de Souza Bezerra
- Laboratory of Enzymology - LABENZ, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil.
| | - Flávio Valadares Pereira Borges
- Post-Graduation Program in Natural Products and Synthetic Bioactives, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil.
| | - Bárbara V de Oliveira Santos
- Post-Graduation Program in Development and Technological Innovation in Medicines, Department of Pharmaceutical Sciences, Federal University of Paraiba, João Pessoa 58051-900, Paraíba, Brazil.
| | | |
Collapse
|
7
|
Christensen A, Martin GDA. Identification and bioactive potential of marine microorganisms from selected Florida coastal areas. Microbiologyopen 2017; 6. [PMID: 28127894 PMCID: PMC5552912 DOI: 10.1002/mbo3.448] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/15/2016] [Accepted: 12/27/2016] [Indexed: 12/01/2022] Open
Abstract
The ocean, with its rich untapped chemical biodiversity, continues to serve as a source of potentially new therapeutic agents. The evaluation of the diversity of cultivable microorganisms from the marine sponge Halichondria panicea and ocean sediment samples were examined and their potential as sources of antimicrobial and antiproliferative agents were investigated. The marine sponge and sediments were collected at different depths (0.9–6 meters) and locations in Florida, including Florida Keys, Port St. Joe in Pensacola, Pensacola Bay, Pensacola Beach, and Fort Pickens. Twenty‐one cultivatable isolates were grouped according to their morphology and identified using 16S rRNA molecular taxonomy. The bacterial community identified consisted of members belonging to the Actinobacteria, Bacteroidetes, Proteobacteria (Alpha‐ and Gamma‐classes) and Firmicutes phylogeny. Seven of the microbes exhibited mild to significant cytotoxic activities against five microbial indicators but no significant cytotoxic activities were observed against the pancreatic (PANC‐1) nor the multidrug‐resistant ovarian cancer cell lines (NCI/ADR). This work reaffirms the phyla Actinobacteria and Proteobacteria as sources of potential bioactive natural product candidates for drug discovery and development.
Collapse
Affiliation(s)
- Anna Christensen
- College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Glenroy D A Martin
- Department of Life and Physical Sciences, Fisk University, Nashville, TN, USA
| |
Collapse
|
8
|
Surya S, Geethanandan K, Sadasivan C, Haridas M. Gallic acid binding to Spatholobus parviflorus lectin provides insight to its quaternary structure forming. Int J Biol Macromol 2016; 91:696-702. [PMID: 27283232 DOI: 10.1016/j.ijbiomac.2016.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 06/02/2016] [Accepted: 06/05/2016] [Indexed: 11/25/2022]
Abstract
Therapeutic effects of gallic acid (GA) have already been extensively studied. However, its interaction with lectins has not gained much attention. It is of interest to validate the binding profile of GA with Spatholobus parviflorus seed lectin. A combination of Isothermal Titration Calorimetry (ITC), haemagglutination assay and molecular docking was applied on SPL-GA interaction. ITC results showed four binding sites, stoichiometry, n=4, irrespective of the ratio of SPL:GA taken for titration. Difference among the four binding sites of a single molecule of SPL with regard to GA binding kinetic parameters was consistently varying. Similarly, the glide scores obtained for GA in the four different binding clefts of SPL were also conformed to the ITC. The binding of GA on SPL without affecting its sugar binding property could be considered as a boon for glycobiological research. From the presented studies, it could be proposed that the SPL-GA interactions may facilitate drug delivery by specific targeting/attachment by profiling of cell-surface glycans, followed by controlled release of drugs.
Collapse
Affiliation(s)
- Sukumaran Surya
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| | - Krishnan Geethanandan
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| | - Chittalakkottu Sadasivan
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India
| | - Madhathilkovilakathu Haridas
- Inter University Centre for Bioscience and Department of Biotechnology and Microbiology, Kannur University, Thalassery Campus, Kannur 670661, India.
| |
Collapse
|
9
|
Gardères J, Domart-Coulon I, Marie A, Hamer B, Batel R, Müller WEG, Bourguet-Kondracki ML. Purification and partial characterization of a lectin protein complex, the clathrilectin, from the calcareous sponge Clathrina clathrus. Comp Biochem Physiol B Biochem Mol Biol 2016; 200:17-27. [PMID: 27113336 DOI: 10.1016/j.cbpb.2016.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 11/26/2022]
Abstract
Carbohydrate-binding proteins were purified from the marine calcareous sponge Clathrina clathrus via affinity chromatography on lactose and N-acetyl glucosamine-agarose resins. Proteomic analysis of acrylamide gel separated protein subunits obtained in reducing conditions pointed out several candidates for lectins. Based on amino-acid sequence similarity, two peptides displayed homology with the jack bean lectin Concanavalin A, including a conserved domain shared by proteins in the L-type lectin superfamily. An N-acetyl glucosamine - binding protein complex, named clathrilectin, was further purified via gel filtration chromatography, bioguided with a diagnostic rabbit erythrocyte haemagglutination assay, and its activity was found to be calcium dependent. Clathrilectin, a protein complex of 3200kDa estimated by gel filtration, is composed of monomers with apparent molecular masses of 208 and 180kDa estimated on 10% SDS-PAGE. Nine internal peptides were identified using proteomic analyses, and compared to protein libraries from the demosponge Amphimedon queenslandica and a calcareous sponge Sycon sp. from the Adriatic Sea. The clathrilectin is the first lectin isolated from a calcareous sponge and displays homologies with predicted sponge proteins potentially involved in cell aggregation and interaction with bacteria.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France; Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Isabelle Domart-Coulon
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Arul Marie
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Werner E G Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS-MNHN, Sorbonne Universités, Muséum National d'Histoire Naturelle, CP 54, 57 rue Cuvier, 75005 Paris, France.
| |
Collapse
|
10
|
Gardères J, Bourguet-Kondracki ML, Hamer B, Batel R, Schröder HC, Müller WEG. Porifera Lectins: Diversity, Physiological Roles and Biotechnological Potential. Mar Drugs 2015; 13:5059-101. [PMID: 26262628 PMCID: PMC4557014 DOI: 10.3390/md13085059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/09/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022] Open
Abstract
An overview on the diversity of 39 lectins from the phylum Porifera is presented, including 38 lectins, which were identified from the class of demosponges, and one lectin from the class of hexactinellida. Their purification from crude extracts was mainly performed by using affinity chromatography and gel filtration techniques. Other protocols were also developed in order to collect and study sponge lectins, including screening of sponge genomes and expression in heterologous bacterial systems. The characterization of the lectins was performed by Edman degradation or mass spectrometry. Regarding their physiological roles, sponge lectins showed to be involved in morphogenesis and cell interaction, biomineralization and spiculogenesis, as well as host defense mechanisms and potentially in the association between the sponge and its microorganisms. In addition, these lectins exhibited a broad range of bioactivities, including modulation of inflammatory response, antimicrobial and cytotoxic activities, as well as anticancer and neuromodulatory activity. In view of their potential pharmacological applications, sponge lectins constitute promising molecules of biotechnological interest.
Collapse
Affiliation(s)
- Johan Gardères
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, Paris 75005, France; E-Mails: (J.G.); (M.-L.B.-K.)
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| | - Marie-Lise Bourguet-Kondracki
- Unité Molécules de Communication et Adaptation des Microorganismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, CP 54, 57 rue Cuvier, Paris 75005, France; E-Mails: (J.G.); (M.-L.B.-K.)
| | - Bojan Hamer
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
| | - Renato Batel
- Laboratory for Marine Molecular Biology, Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia; E-Mails: (B.H.); (R.B.)
| | - Heinz C. Schröder
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| | - Werner E. G. Müller
- ERC Advanced Investigator Grant Research Group at Institute for Physiological Chemistry, University Medical Center of Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz D-55128, Germany; E-Mail:
| |
Collapse
|