1
|
Paul S, Verma S, Chen YC. Peptide Dendrimer-Based Antibacterial Agents: Synthesis and Applications. ACS Infect Dis 2024; 10:1034-1055. [PMID: 38428037 PMCID: PMC11019562 DOI: 10.1021/acsinfecdis.3c00624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
Pathogenic bacteria cause the deaths of millions of people every year. With the development of antibiotics, hundreds and thousands of people's lives have been saved. Nevertheless, bacteria can develop resistance to antibiotics, rendering them insensitive to antibiotics over time. Peptides containing specific amino acids can be used as antibacterial agents; however, they can be easily degraded by proteases in vivo. To address these issues, branched peptide dendrimers are now being considered as good antibacterial agents due to their high efficacy, resistance to protease degradation, and low cytotoxicity. The ease with which peptide dendrimers can be synthesized and modified makes them accessible for use in various biological and nonbiological fields. That is, peptide dendrimers hold a promising future as antibacterial agents with prolonged efficacy without bacterial resistance development. Their in vivo stability and multivalence allow them to effectively target multi-drug-resistant strains and prevent biofilm formation. Thus, it is interesting to have an overview of the development and applications of peptide dendrimers in antibacterial research, including the possibility of employing machine learning approaches for the design of AMPs and dendrimers. This review summarizes the synthesis and applications of peptide dendrimers as antibacterial agents. The challenges and perspectives of using peptide dendrimers as the antibacterial agents are also discussed.
Collapse
Affiliation(s)
- Suchita Paul
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sandeep Verma
- Department
of Chemistry, Indian Institute of Technology
Kanpur, Kanpur 208016, Uttar Pradesh, India
- Gangwal
School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Yu-Chie Chen
- Institute
of Semiconductor Technology, National Yang
Ming Chiao Tung University, Hsinchu 300, Taiwan
- Department
of Applied Chemistry, National Yang Ming
Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
2
|
Skrzyniarz K, Kuc-Ciepluch D, Lasak M, Arabski M, Sanchez-Nieves J, Ciepluch K. Dendritic systems for bacterial outer membrane disruption as a method of overcoming bacterial multidrug resistance. Biomater Sci 2023; 11:6421-6435. [PMID: 37605901 DOI: 10.1039/d3bm01255g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The alarming rise of multi-drug resistant microorganisms has increased the need for new approaches through the development of innovative agents that are capable of attaching to the outer layers of bacteria and causing permanent damage by penetrating the bacterial outer membrane. The permeability (disruption) of the outer membrane of Gram-negative bacteria is now considered to be one of the main ways to overcome multidrug resistance in bacteria. Natural and synthetic permeabilizers such as AMPs and dendritic systems seem promising. However, due to their advantages in terms of biocompatibility, antimicrobial capacity, and wide possibilities for modification and synthesis, highly branched polymers and dendritic systems have gained much more interest in recent years. Various forms of arrangement, and structure of the skeleton, give dendritic systems versatile applications, especially the possibility of attaching other ligands to their surface. This review will focus on the mechanisms used by different types of dendritic polymers, and their complexes with macromolecules to enhance their antimicrobial effect, and to permeabilize the bacterial outer membrane. In addition, future challenges and potential prospects are illustrated in the hope of accelerating the advancement of nanomedicine in the fight against resistant pathogens.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | | | - Magdalena Lasak
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | - Michał Arabski
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| | - Javier Sanchez-Nieves
- Dpto. de Química Orgánica y Química Inorgánica, Universidad de Alcalá (UAH), Campus Universitario, E-28871 Alcalá de Henares, Madrid, Spain
- Instituto de Investigación Química "Andrés M. del Río" (IQAR, UAH), Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
- Institute for Health Research Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, Kielce, Poland.
| |
Collapse
|
3
|
Grassi L, Pompilio A, Kaya E, Rinaldi AC, Sanjust E, Maisetta G, Crabbé A, Di Bonaventura G, Batoni G, Esin S. The Anti-Microbial Peptide (Lin-SB056-1) 2-K Reduces Pro-Inflammatory Cytokine Release through Interaction with Pseudomonas aeruginosa Lipopolysaccharide. Antibiotics (Basel) 2020; 9:antibiotics9090585. [PMID: 32911618 PMCID: PMC7557804 DOI: 10.3390/antibiotics9090585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 01/09/2023] Open
Abstract
The ability of many anti-microbial peptides (AMPs) to modulate the host immune response has highlighted their possible therapeutic use to reduce uncontrolled inflammation during chronic infections. In the present study, we examined the anti-inflammatory potential of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K, which were previously found to have anti-microbial activity against Pseudomonas aeruginosa in in vivo-like models mimicking the challenging environment of chronically infected lungs (i.e., artificial sputum medium and 3-D lung mucosa model). The dendrimeric derivative exerted a stronger anti-inflammatory activity than its monomeric counterpart towards lung epithelial- and macrophage-cell lines stimulated with P. aeruginosa lipopolysaccharide (LPS), based on a marked decrease (up to 80%) in the LPS-induced production of different pro-inflammatory cytokines (i.e., IL-1β, IL-6 and IL-8). Accordingly, (lin-SB056-1)2-K exhibited a stronger LPS-binding affinity than its monomeric counterpart, thereby suggesting a role of peptide/LPS neutralizing interactions in the observed anti-inflammatory effect. Along with the anti-bacterial and anti-biofilm properties, the anti-inflammatory activity of (lin-SB056-1)2-K broadens its therapeutic potential in the context of chronic (biofilm-associated) infections.
Collapse
Affiliation(s)
- Lucia Grassi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
| | - Arianna Pompilio
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti CH, Italy; (A.P.); (G.D.B.)
| | - Esingül Kaya
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, 09142 Monserrato CA, Italy; (A.C.R.); (E.S.)
| | - Enrico Sanjust
- Department of Biomedical Sciences, University of Cagliari, 09142 Monserrato CA, Italy; (A.C.R.); (E.S.)
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, 9000 Gent, Belgium;
| | - Giovanni Di Bonaventura
- Department of Medical, Oral and Biotechnological Sciences, and Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti CH, Italy; (A.P.); (G.D.B.)
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
- Correspondence: (G.B.); (S.E.)
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56123 Pisa PI, Italy; (L.G.); (E.K.); (G.M.)
- Correspondence: (G.B.); (S.E.)
| |
Collapse
|
4
|
Morawiak M, Stolarska M, Cieślak M, Urbanczyk‐Lipkowska Z. Interactions of rationally designed small peptide dendrons functionalized with valine or sinapic acid with α‐helix and β‐sheet structures of poly‐
l
‐lysine and poly‐
l
‐glutamic acid. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maja Morawiak
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| | | | - Maciej Cieślak
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| | | |
Collapse
|
5
|
Sanz del Olmo N, Carloni R, Ortega P, García-Gallego S, de la Mata FJ. Metallodendrimers as a promising tool in the biomedical field: An overview. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2020. [DOI: 10.1016/bs.adomc.2020.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
Ciepluch K, Maciejewska B, Gałczyńska K, Kuc-Ciepluch D, Bryszewska M, Appelhans D, Drulis-Kawa Z, Arabski M. The influence of cationic dendrimers on antibacterial activity of phage endolysin against P. aeruginosa cells. Bioorg Chem 2019; 91:103121. [DOI: 10.1016/j.bioorg.2019.103121] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 06/28/2019] [Accepted: 07/11/2019] [Indexed: 01/21/2023]
|
7
|
Moretti A, Weeks RM, Chikindas M, Uhrich KE. Cationic Amphiphiles with Specificity against Gram-Positive and Gram-Negative Bacteria: Chemical Composition and Architecture Combat Bacterial Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5557-5567. [PMID: 30888181 PMCID: PMC6832706 DOI: 10.1021/acs.langmuir.9b00110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Small-molecule cationic amphiphiles (CAms) were designed to combat the rapid rise in drug-resistant bacteria. CAms were designed to target and compromise the structural integrity of bacteria membranes, leading to cell rupture and death. Discrete structural features of CAms were varied, and structure-activity relationship studies were performed to guide the rational design of potent antimicrobials with desirable selectivity and cytocompatibility profiles. In particular, the effects of cationic conformational flexibility, hydrophobic domain flexibility, and hydrophobic domain architecture were evaluated. Their influence on antimicrobial efficacy in Gram-positive and Gram-negative bacteria was determined, and their safety profiles were established by assessing their impact on mammalian cells. All CAms have a potent activity against bacteria, and hydrophobic domain rigidity and branched architecture contribute to specificity. The insights gained from this project will aid in the optimization of CAm structures.
Collapse
Affiliation(s)
- Alysha Moretti
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Richard M. Weeks
- Department of Microbiology and Biochemistry and School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Michael Chikindas
- Department of Microbiology and Biochemistry and School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Kathryn E. Uhrich
- Department of Chemistry, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry, University of California, 501 Big Springs Rd., Riverside, California 92521, United States
- Corresponding Author:
| |
Collapse
|
8
|
Grassi L, Batoni G, Ostyn L, Rigole P, Van den Bossche S, Rinaldi AC, Maisetta G, Esin S, Coenye T, Crabbé A. The Antimicrobial Peptide lin-SB056-1 and Its Dendrimeric Derivative Prevent Pseudomonas aeruginosa Biofilm Formation in Physiologically Relevant Models of Chronic Infections. Front Microbiol 2019; 10:198. [PMID: 30800115 PMCID: PMC6376900 DOI: 10.3389/fmicb.2019.00198] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/24/2019] [Indexed: 12/11/2022] Open
Abstract
Antimicrobial peptides (AMPs) are promising templates for the development of novel antibiofilm drugs. Despite the large number of studies on screening and optimization of AMPs, only a few of these evaluated the antibiofilm activity in physiologically relevant model systems. Potent in vitro activity of AMPs often does not translate into in vivo effectiveness due to the interference of the host microenvironment with peptide stability/availability. Hence, mimicking the complex environment found in biofilm-associated infections is essential to predict the clinical potential of novel AMP-based antimicrobials. In the present study, we examined the antibiofilm activity of the semi-synthetic peptide lin-SB056-1 and its dendrimeric derivative (lin-SB056-1)2-K against Pseudomonas aeruginosa in an in vivo-like three-dimensional (3-D) lung epithelial cell model and an in vitro wound model (consisting of an artificial dermis and blood components at physiological levels). Although moderately active when tested alone, lin-SB056-1 was effective in reducing P. aeruginosa biofilm formation in association with 3-D lung epithelial cells in combination with the chelating agent EDTA. The dimeric derivative (lin-SB056-1)2-K demonstrated an enhanced biofilm-inhibitory activity as compared to both lin-SB056-1 and the lin-SB056-1/EDTA combination, reducing the number of biofilm-associated bacteria up to 3-Log units at concentrations causing less than 20% cell death. Biofilm inhibition by (lin-SB056-1)2-K was reported both for the reference strain PAO1 and cystic fibrosis lung isolates of P. aeruginosa. In addition, using fluorescence microscopy, a significant decrease in biofilm-like structures associated with 3-D cells was observed after peptide exposure. Interestingly, effectiveness of (lin-SB056-1)2-K was also demonstrated in the wound model with a reduction of up to 1-Log unit in biofilm formation by P. aeruginosa PAO1 and wound isolates. Overall, combination treatment and peptide dendrimerization emerged as promising strategies to improve the efficacy of AMPs, especially under challenging host-mimicking conditions. Furthermore, the results of the present study underlined the importance of evaluating the biological properties of novel AMPs in in vivo-like model systems representative of specific infectious sites in order to make a more realistic prediction of their therapeutic success, and avoid the inclusion of unpromising peptides in animal studies and clinical trials.
Collapse
Affiliation(s)
- Lucia Grassi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Lisa Ostyn
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Petra Rigole
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | - Andrea C Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Semih Esin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Manzo G, Serra I, Pira A, Pintus M, Ceccarelli M, Casu M, Rinaldi AC, Scorciapino MA. The singular behavior of a β-type semi-synthetic two branched polypeptide: three-dimensional structure and mode of action. Phys Chem Chem Phys 2018; 18:30998-31011. [PMID: 27805179 DOI: 10.1039/c6cp05464a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dendrimeric peptides make a versatile group of bioactive peptidomimetics and a potential new class of antimicrobial agents to tackle the pressing threat of multi-drug resistant pathogens. These are branched supramolecular assemblies where multiple copies of the bioactive unit are linked to a central core. Beyond their antimicrobial activity, dendrimeric peptides could also be designed to functionalize the surface of nanoparticles or materials for other medical uses. Despite these properties, however, little is known about the structure-function relationship of such compounds, which is key to unveil the fundamental physico-chemical parameters and design analogues with desired attributes. To close this gap, we focused on a semi-synthetic, two-branched peptide, SB056, endowed with remarkable activity against both Gram-positive and Gram-negative bacteria and limited cytotoxicity. SB056 can be considered the smallest prototypical dendrimeric peptide, with the core restricted to a single lysine residue and only two copies of the same highly cationic 10-mer polypeptide; an octanamide tail is present at the C-terminus. Combining NMR and Molecular Dynamics simulations, we have determined the 3D structure of two analogues. Fluorescence spectroscopy was applied to investigate the water-bilayer partition in the presence of vesicles of variable charge. Vesicle leakage assays were also performed and the experimental data were analyzed by applying an iterative Monte Carlo scheme to estimate the minimum number of bound peptides needed to achieve the release. We unveiled a singular beta hairpin-type structure determined by the peptide chains only, with the octanamide tail available for further functionalization to add new potential properties without affecting the structure.
Collapse
Affiliation(s)
- Giorgia Manzo
- Department of Biomedical Sciences - Biochemistry Unit, University of Cagliari, Monserrato, CA, Italy.
| | - Ilaria Serra
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Alessandro Pira
- Department of Chemical and Geological Sciences, University of Cagliari, Monserrato, CA, Italy
| | - Manuela Pintus
- Department of Biomedical Sciences - Biochemistry Unit, University of Cagliari, Monserrato, CA, Italy.
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Monserrato, CA, Italy
| | - Mariano Casu
- Department of Physics, University of Cagliari, Monserrato, CA, Italy
| | - Andrea C Rinaldi
- Department of Biomedical Sciences - Biochemistry Unit, University of Cagliari, Monserrato, CA, Italy.
| | | |
Collapse
|
10
|
Stenbæk J, Löf D, Falkman P, Jensen B, Cárdenas M. An alternative anionic bio-sustainable anti-fungal agent: Investigation of its mode of action on the fungal cell membrane. J Colloid Interface Sci 2017; 497:242-248. [PMID: 28285052 DOI: 10.1016/j.jcis.2017.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 10/20/2022]
Abstract
The potential of a lactylate (the sodium caproyl lactylate or C10 lactylate), a typical food grade emulsifier, as an anionic environmental friendly anti-fungal additive was tested in growth medium and formulated in a protective coating for exterior wood. Different laboratory growth tests on the blue stain fungus Aureobasidium pullulans were performed and its interactions on a model fungal cell membrane were studied. Promising short term anti-fungal effects in growth tests were observed, although significant but less dramatic effects took place in coating test on wood panels. Scanning electron microscope analysis shows clear differences in the amount of fungal slime on the mycelium of Aureobasidium pullulans when the fungus was exposed of C10 lactylate. This could indicate an effect on the pullulan and melanin production by the fungus. Moreover, the interaction studies on model fungal cell membranes show that C10 lactylate affects the phospholipid bilayer in a similar manner to other negative charged detergents.
Collapse
Affiliation(s)
- Jonas Stenbæk
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark; Danish Technological Institute, Wood and Biomaterials, Gregersensvej 3, 2630 Taastrup, Denmark.
| | - David Löf
- Perstorp AB, Industriparken, 284 91 Perstorp, Sweden.
| | - Peter Falkman
- Department of Biomedical Science, Biofilm - Research Center for Biointerfaces, Malmö University, Malmö, Sweden.
| | - Bo Jensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.
| | - Marité Cárdenas
- Department of Biomedical Science, Biofilm - Research Center for Biointerfaces, Malmö University, Malmö, Sweden.
| |
Collapse
|
11
|
Griffith M, Islam MM, Edin J, Papapavlou G, Buznyk O, Patra HK. The Quest for Anti-inflammatory and Anti-infective Biomaterials in Clinical Translation. Front Bioeng Biotechnol 2016; 4:71. [PMID: 27668213 PMCID: PMC5016531 DOI: 10.3389/fbioe.2016.00071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 08/26/2016] [Indexed: 12/13/2022] Open
Abstract
Biomaterials are now being used or evaluated clinically as implants to supplement the severe shortage of available human donor organs. To date, however, such implants have mainly been developed as scaffolds to promote the regeneration of failing organs due to old age or congenital malformations. In the real world, however, infection or immunological issues often compromise patients. For example, bacterial and viral infections can result in uncontrolled immunopathological damage and lead to organ failure. Hence, there is a need for biomaterials and implants that not only promote regeneration but also address issues that are specific to compromised patients, such as infection and inflammation. Different strategies are needed to address the regeneration of organs that have been damaged by infection or inflammation for successful clinical translation. Therefore, the real quest is for multifunctional biomaterials with combined properties that can combat infections, modulate inflammation, and promote regeneration at the same time. These strategies will necessitate the inclusion of methodologies for management of the cellular and signaling components elicited within the local microenvironment. In the development of such biomaterials, strategies range from the inclusion of materials that have intrinsic anti-inflammatory properties, such as the synthetic lipid polymer, 2-methacryloyloxyethyl phosphorylcholine (MPC), to silver nanoparticles that have antibacterial properties, to inclusion of nano- and micro-particles in biomaterials composites that deliver active drugs. In this present review, we present examples of both kinds of materials in each group along with their pros and cons. Thus, as a promising next generation strategy to aid or replace tissue/organ transplantation, an integrated smart programmable platform is needed for regenerative medicine applications to create and/or restore normal function at the cell and tissue levels. Therefore, now it is of utmost importance to develop integrative biomaterials based on multifunctional biopolymers and nanosystem for their practical and successful clinical translation.
Collapse
Affiliation(s)
- May Griffith
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
- Department of Ophthalmology, Maisonneuve-Rosemont Hospital Research Center, University of Montreal, Montreal, QC, Canada
| | - Mohammad M. Islam
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Joel Edin
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Georgia Papapavlou
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| | - Oleksiy Buznyk
- Department of Eye Burns, Ophthalmic Reconstructive Surgery, Keratoplasty and Keratoprosthesis, Filatov Institute of Eye diseases and Tissue Therapy of the NAMS of Ukraine, Odessa, Ukraine
| | - Hirak K. Patra
- Department of Clinical and Experimental Medicine (IKE), Linköping University, Linköping, Sweden
| |
Collapse
|
12
|
Rai M, Ingle A, Gaikwad S, Gupta I, Gade A, Silvério da Silva S. Nanotechnology based anti-infectives to fight microbial intrusions. J Appl Microbiol 2016; 120:527-42. [DOI: 10.1111/jam.13010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/26/2015] [Accepted: 08/29/2015] [Indexed: 12/14/2022]
Affiliation(s)
- M. Rai
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
| | - A.P. Ingle
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
| | - S. Gaikwad
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
- Department of Biotechnology; Engineering School of Lorena; Estrada municipal do Campinho; University of Sao Paulo; Lorena SP Brazil
| | - I. Gupta
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
- Department of Biotechnology; Institute of Science; Aurangabad Maharashtra India
| | - A. Gade
- Nanobiotechnology Laboratory; Department of Biotechnology; S.G.B. Amravati University; Amravati Maharashtra India
| | - S. Silvério da Silva
- Department of Biotechnology; Engineering School of Lorena; Estrada municipal do Campinho; University of Sao Paulo; Lorena SP Brazil
| |
Collapse
|
13
|
Szwed A, Milowska K, Ionov M, Shcharbin D, Moreno S, Gomez-Ramirez R, de la Mata FJ, Majoral JP, Bryszewska M, Gabryelak T. Interaction between dendrimers and regulatory proteins. Comparison of effects of carbosilane and carbosilane–viologen–phosphorus dendrimers. RSC Adv 2016. [DOI: 10.1039/c6ra16558c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
For nanoparticles to be used successfully in biomedical application, their interactions with biological fluids need to be investigated, in which they will react with proteins and other macromolecules.
Collapse
|
14
|
Batoni G, Casu M, Giuliani A, Luca V, Maisetta G, Mangoni ML, Manzo G, Pintus M, Pirri G, Rinaldi AC, Scorciapino MA, Serra I, Ulrich AS, Wadhwani P. Rational modification of a dendrimeric peptide with antimicrobial activity: consequences on membrane-binding and biological properties. Amino Acids 2015; 48:887-900. [PMID: 26614437 DOI: 10.1007/s00726-015-2136-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/08/2015] [Indexed: 01/05/2023]
Abstract
Peptide-based antibiotics might help containing the rising tide of antimicrobial resistance. We developed SB056, a semi-synthetic peptide with a dimeric dendrimer scaffold, active against both Gram-negative and Gram-positive bacteria. Being the mechanism of SB056 attributed to disruption of bacterial membranes, we enhanced the amphiphilic profile of the original, empirically derived sequence [WKKIRVRLSA-NH2] by interchanging the first two residues [KWKIRVRLSA-NH2], and explored the effects of this modification on the interaction of peptide, both in linear and dimeric forms, with model membranes and on antimicrobial activity. Results obtained against Escherichia coli and Staphylococcus aureus planktonic strains, with or without salts at physiological concentrations, confirmed the added value of dendrimeric structure over the linear one, especially at physiological ionic strength, and the impact of the higher amphipathicity obtained through sequence modification on enhancing peptide performances. SB056 peptides also displayed intriguing antibiofilm properties. Staphylococcus epidermidis was the most susceptible strain in sessile form, notably to optimized linear analog lin-SB056-1 and the wild-type dendrimer den-SB056. Membrane affinity of all peptides increased with the percentage of negatively charged lipids and was less influenced by the presence of salt in the case of dendrimeric peptides. The analog lin-SB056-1 displayed the highest overall affinity, even for zwitterionic PC bilayers. Thus, in addition to electrostatics, distribution of charged/polar and hydrophobic residues along the sequence might have a significant role in driving peptide-lipid interaction. Supporting this view, dendrimeric analog den-SB056-1 retained greater membrane affinity in the presence of salt than den-SB056, despite the fact that they bear exactly the same net positive charge.
Collapse
Affiliation(s)
- Giovanna Batoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Mariano Casu
- Department of Chemical and Geological Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Andrea Giuliani
- Research and Development Unit, Spider Biotech S.r.l., Colleretto Giacosa (TO), Italy
| | - Vincenzo Luca
- Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Giuseppantonio Maisetta
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maria Luisa Mangoni
- Dipartimento di Scienze Biochimiche, "A. Rossi Fanelli", Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Giorgia Manzo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Manuela Pintus
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Giovanna Pirri
- Research and Development Unit, Spider Biotech S.r.l., Colleretto Giacosa (TO), Italy
| | - Andrea C Rinaldi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy.
| | - Mariano A Scorciapino
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Ilaria Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato (CA), Italy
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Organic Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Parvesh Wadhwani
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
15
|
Grabchev I, Yordanova S, Vasileva-Tonkova E, Bosch P, Stoyanov S. Poly(propylenamine) dendrimers modified with 4-amino-1,8-naphthalimide: Synthesis, characterization and in vitro microbiological tests of their Cu(II) and Zn(II) complexes. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Zielińska P, Staniszewska M, Bondaryk M, Koronkiewicz M, Urbańczyk-Lipkowska Z. Design and studies of multiple mechanism of anti-Candida activity of a new potent Trp-rich peptide dendrimers. Eur J Med Chem 2015; 105:106-19. [PMID: 26479030 DOI: 10.1016/j.ejmech.2015.10.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Eight peptide dendrimers were designed as structural mimics of natural cationic amphiphilic peptides with antifungal activity and evaluated for their anti-Candida potential against the wild type strains and mutants. METHODS Dendrimer 14 containing four Trp residues and dodecyl tail and a slightly smaller dendrimer 9 decorated with four N-methylated Trp that displayed 100 and 99.7% of growth inhibition at 16 μg/mL respectively, were selected for evaluation against the Candida albicans mutants with disabled biosynthesis of aspartic proteases responsible for host tissue colonization and morphogenesis during biofilm formation (sessile model). Flow cytometry method was employed to detect apoptotic cells with membrane alterations (phosphatidylserine translocation), and differentiation of apoptotic from necrotic cells was also performed. Simultaneous staining of cell surface phosphatidylserine with Annexin-V-Fluorescein and necrotic cells with propidium iodide was conducted. RESULTS 14 at 16 μg/mL caused C. albicans cells to undergo cellular apoptosis but its increasing concentrations induced necrosis. 14 influenced C. albicans biofilm viability as well as hyphal and cell wall morphology. Confocal microscopy and cell wall staining with calcofluor white revealed that in epithelial model the cell surface structure was perturbed at MIC of peptide dendrimer. It appears that tryptophan or 1-methyltryptophan groups displayed at the surface and positive charges hidden in the dendrimer tree along with hydrocarbon tail located at C-terminus are important for the anti-Candida activity since dendrimers containing tryptamine at C-terminus showed only a moderate activity. CONCLUSIONS Our results suggest that membranolytic dendrimer 14, targeting cellular apoptotic pathway and impairing the cell wall formation in mature biofilm, may be a potential multifunctional antifungal lead compound for the control of C. albicans infections.
Collapse
Affiliation(s)
| | - Monika Staniszewska
- National Institute of Public Health - National Institute of Hygiene, 00-791, Warsaw, Poland.
| | - Małgorzata Bondaryk
- National Institute of Public Health - National Institute of Hygiene, 00-791, Warsaw, Poland
| | | | | |
Collapse
|
17
|
In Vitro Activity of the Novel Antimicrobial Peptide Dendrimer G3KL against Multidrug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2015; 59:7915-8. [PMID: 26459893 DOI: 10.1128/aac.01853-15] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/03/2015] [Indexed: 01/28/2023] Open
Abstract
The in vitro activity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32 Acinetobacter baumannii (including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35 Pseudomonas aeruginosa (including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collections showed MIC50/90 values of 8/8 μg/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC50/90) of 8/8 μg/ml. G3KL is a promising molecule with antibacterial activity against multidrug-resistant and extensively drug-resistant A. baumannii and P. aeruginosa isolates.
Collapse
|