1
|
Giaccio M, Monaco A, Galiano L, Parente A, Borzacchiello L, Rubino R, Klärner FG, Killa D, Perna C, Piccolo P, Marotta M, Pan X, Khijniak M, Siddique I, Schrader T, Pshezhetsky AV, Sorrentino NC, Bitan G, Fraldi A. Anti-amyloid treatment is broadly effective in neuronopathic mucopolysaccharidoses and synergizes with gene therapy in MPS-IIIA. Mol Ther 2024; 32:4108-4121. [PMID: 39342429 PMCID: PMC11573617 DOI: 10.1016/j.ymthe.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are childhood diseases caused by inherited deficiencies in glycosaminoglycan degradation. Most MPSs involve neurodegeneration, which to date is untreatable. Currently, most therapeutic strategies aim at correcting the primary genetic defect. Among these strategies, gene therapy has shown great potential, although its clinical application is challenging. We have shown previously in an MPS-IIIA mouse model that the molecular tweezer (MT) CLR01, a potent, broad-spectrum anti-amyloid small molecule, inhibits secondary amyloid storage, facilitates amyloid clearance, and protects against neurodegeneration. Here, we demonstrate that combining CLR01 with adeno-associated virus (AAV)-mediated gene therapy, targeting both the primary and secondary pathologic storage in MPS-IIIA mice, results in a synergistic effect that improves multiple therapeutic outcomes compared to each monotherapy. Moreover, we demonstrate that CLR01 is effective therapeutically in mouse models of other forms of neuronopathic MPS, MPS-I, and MPS-IIIC. These strongly support developing MTs as an effective treatment option for neuronopathic MPSs, both on their own and in combination with gene therapy, to improve therapeutic efficacy and translation into clinical application.
Collapse
Affiliation(s)
- Marianna Giaccio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Antonio Monaco
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Laura Galiano
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Andrea Parente
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Luigi Borzacchiello
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Scienze Mediche Traslazionali, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Riccardo Rubino
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy
| | - Frank-Gerrit Klärner
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Dennis Killa
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Claudia Perna
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy
| | - Pasquale Piccolo
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy
| | - Marcello Marotta
- Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Xuefang Pan
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Marie Khijniak
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ibrar Siddique
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Thomas Schrader
- Department of Chemistry, University of Duisburg-Essen, Universitaetsstrasse 7, 45117 Essen, Germany
| | - Alexey V Pshezhetsky
- Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine Research Center, University of Montreal, Montreal, QC, Canada
| | - Nicolina Cristina Sorrentino
- Telethon Institute of Genetics and Medicine (TIGEM), Via C. Flegrei, 34, Pozzuoli, Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy
| | - Gal Bitan
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Brain Research Institute and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alessandro Fraldi
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore, 486 Napoli, Italy; Dipartimento di Medicina Clinica e Chirurgia, Università Degli Studi di Napoli "Federico II" Via S. Pansini, 5, Napoli, Italy.
| |
Collapse
|
2
|
Guo Q, Ping L, Dammer EB, Duong DM, Yin L, Xu K, Shantaraman A, Fox EJ, Golde TE, Johnson ECB, Roberts BR, Lah JJ, Levey AI, Seyfried NT. Heparin-enriched plasma proteome is significantly altered in Alzheimer's disease. Mol Neurodegener 2024; 19:67. [PMID: 39380021 PMCID: PMC11460197 DOI: 10.1186/s13024-024-00757-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024] Open
Abstract
INTRODUCTION Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to β-amyloid (Aβ) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. METHODS We employed heparin-affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to enrich HBPs from plasma obtained from AD (n = 62) and control (n = 47) samples. These profiles were then correlated to Aβ, tau and phosphorylated tau (pTau) CSF biomarkers and plasma pTau181 from the same individuals, as well as a consensus brain proteome network to assess the overlap with AD brain pathophysiology. RESULTS Heparin enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundant proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude in abundance, were measured across 109 samples. Compared to the consensus AD brain protein co-expression network, we observed that specific plasma proteins exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes, highlighting the complex interplay between the two compartments. Elevated proteins in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate with Aβ deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and the APOE4 proteoform. Additionally, heparin-enriched proteins in plasma demonstrated significant correlations with conventional AD CSF biomarkers, including Aβ, total tau, pTau, and plasma pTau181. A panel of five plasma proteins classified AD from control individuals with an area under the curve (AUC) of 0.85. When combined with plasma pTau181, the panel significantly improved the classification performance of pTau181 alone, increasing the AUC from 0.93 to 0.98. This suggests that the heparin-enriched plasma proteome captures additional variance in cognitive dementia beyond what is explained by pTau181. CONCLUSION These findings support the utility of a heparin-affinity approach coupled with TMT-MS for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
Collapse
Affiliation(s)
- Qi Guo
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Lingyan Ping
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Luming Yin
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Kaiming Xu
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anantharaman Shantaraman
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Edward J Fox
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Todd E Golde
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - Erik C B Johnson
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Blaine R Roberts
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - James J Lah
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Allan I Levey
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Nicholas T Seyfried
- Department of Biochemistry, School of Medicine, Emory School of Medicine, 505J Whitehead Biomedical Research Building, 615 Michael St, Atlanta, GA, 30322, USA.
- Center for Neurodegenerative Disease Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Nudrat S, Maity B, Quraishi S, Karankumar I, Kumari K, Jana M, Singha Roy A. Binding Interaction of Coumarin Derivative Daphnetin with Ovalbumin: Molecular Insights into the Complexation Process and Effects of Metal Ions and pH in the Binding and Antifibrillation Studies. Mol Pharm 2024; 21:4708-4725. [PMID: 39115967 DOI: 10.1021/acs.molpharmaceut.4c00675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This study investigates the interaction between daphnetin and ovalbumin (OVA) as well as its potential to inhibit OVA fibrillation using both spectroscopic and computational analysis. A moderate binding affinity of 1 × 104 M-1 was observed between OVA and daphnetin, with a static quenched mechanism identified during the fluorescence quenching processes. Metal ions' (Cu2+ and Zn2+) presence led to an increase in the binding affinities of daphnetin toward OVA, mirroring a similar trend observed with the pH variation. Synchronous and 3D fluorescence studies indicated an increase in the polarity of the microenvironment surrounding the Trp residues during binding. Interestingly, circular dichroism and Fourier transform infrared studies showed a significant change in the secondary structure of OVA upon binding with daphnetin. The efficacy of daphnetin in inhibiting protein fibrillation was confirmed through thioflavin T and Congo Red binding assays along with fluorescence microscopic imaging analysis. The thermodynamic assessment showed positive ΔH° [+(29.34 ± 1.526) kJ mol-1] and ΔS° [+(181.726 ± 5.465) J mol-1] values, indicating the presence of the hydrophobic forces, while negative ΔG° signifies spontaneous binding interactions. These experimental findings were further correlated with computational analysis, revealing daphnetin dynamics within the binding site of OVA.
Collapse
Affiliation(s)
- Sadia Nudrat
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Bilash Maity
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Sana Quraishi
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Irungbam Karankumar
- Department of Chemistry, National Institute of Technology Manipur, Imphal, Manipur 795004, India
| | - Kalpana Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Madhurima Jana
- Department of Chemistry, National Institute of Technology Rourkela, Rourkela, Odisha 769008, India
| | - Atanu Singha Roy
- Department of Chemical and Biological Sciences, National Institute of Technology Meghalaya, Shillong 793003, India
| |
Collapse
|
4
|
Dai Z, Ben-Younis A, Vlachaki A, Raleigh D, Thalassinos K. Understanding the structural dynamics of human islet amyloid polypeptide: Advancements in and applications of ion-mobility mass spectrometry. Biophys Chem 2024; 312:107285. [PMID: 38941872 PMCID: PMC11260546 DOI: 10.1016/j.bpc.2024.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
Human islet amyloid polypeptide (hIAPP) forms amyloid deposits that contribute to β-cell death in pancreatic islets and are considered a hallmark of Type II diabetes Mellitus (T2DM). Evidence suggests that the early oligomers of hIAPP formed during the aggregation process are the primary pathological agent in islet amyloid induced β-cell death. The self-assembly mechanism of hIAPP, however, remains elusive, largely due to limitations in conventional biophysical techniques for probing the distribution or capturing detailed structures of the early, structurally dynamic oligomers. The advent of Ion-mobility Mass Spectrometry (IM-MS) has enabled the characterisation of hIAPP early oligomers in the gas phase, paving the way towards a deeper understanding of the oligomerisation mechanism and the correlation of structural information with the cytotoxicity of the oligomers. The sensitivity and the rapid structural characterisation provided by IM-MS also show promise in screening hIAPP inhibitors, categorising their modes of inhibition through "spectral fingerprints". This review delves into the application of IM-MS to the dissection of the complex steps of hIAPP oligomerisation, examining the inhibitory influence of metal ions, and exploring the characterisation of hetero-oligomerisation with different hIAPP variants. We highlight the potential of IM-MS as a tool for the high-throughput screening of hIAPP inhibitors, and for providing insights into their modes of action. Finally, we discuss advances afforded by recent advancements in tandem IM-MS and the combination of gas phase spectroscopy with IM-MS, which promise to deliver a more sensitive and higher-resolution structural portrait of hIAPP oligomers. Such information may help facilitate a new era of targeted therapeutic strategies for islet amyloidosis in T2DM.
Collapse
Affiliation(s)
- Zijie Dai
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Aisha Ben-Younis
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK
| | - Anna Vlachaki
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Forvie Site, Robinson Way, Cambridge CB2 0PY, UK
| | - Daniel Raleigh
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States.
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Bioscience, University College London, London WC1E 6BT, UK; Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, UK.
| |
Collapse
|
5
|
Kamburova K, Dimitrov IL, Hodzhaoglu F, Milkova V. Investigation of the Aggregation of Aβ Peptide (1-40) in the Presence of κ-Carrageenan-Stabilised Liposomes Loaded with Homotaurine. Molecules 2024; 29:3460. [PMID: 39124866 PMCID: PMC11313970 DOI: 10.3390/molecules29153460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The kinetics of amyloid aggregation was studied indirectly by monitoring the changes in the polydispersity of mixed dispersion of amyloid β peptide (1-40) and composite liposomes. The liposomes were prepared from the 1,2-dioleoyl-sn-glicero-3-phoshocholine (DOPC) phospholipid and stabilised by the electrostatic adsorption of κ-carrageenan. The produced homotaurine-loaded and unloaded liposomes had a highly negative electrokinetic potential and remarkable stability in phosphate buffer (pH 4 and 7.4). For the first time, the appearance and evolution of the aggregation of Aβ were presented through the variation in the standard percentile readings (D10, D50, and D90) obtained from the particle size distribution analysis. The kinetic experiments indicated the appearance of the first aggregates almost 30 min after mixing the liposomes and peptide solution. It was observed that by adding unloaded liposomes, the size of 90% of the particles in the dispersion (D90) increased. In contrast, the addition of homotaurine-loaded liposomes had almost minimal impact on the size of the fractions of larger particles during the kinetic experiments. Despite the specific bioactivity of homotaurine in the presence of natural cell membranes, this study reported an additional inhibitory effect of the compound on the amyloid peptide aggregation due to the charge effects and 'molecular crowding'.
Collapse
Affiliation(s)
| | | | | | - Viktoria Milkova
- Institute of Physical Chemistry ‘Acad. R. Kaischew’, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (K.K.); (I.L.D.); (F.H.)
| |
Collapse
|
6
|
Wagner WJ, Gross ML. Using mass spectrometry-based methods to understand amyloid formation and inhibition of alpha-synuclein and amyloid beta. MASS SPECTROMETRY REVIEWS 2024; 43:782-825. [PMID: 36224716 PMCID: PMC10090239 DOI: 10.1002/mas.21814] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Amyloid fibrils, insoluble β-sheets structures that arise from protein misfolding, are associated with several neurodegenerative disorders. Many small molecules have been investigated to prevent amyloid fibrils from forming; however, there are currently no therapeutics to combat these diseases. Mass spectrometry (MS) is proving to be effective for studying the high order structure (HOS) of aggregating proteins and for determining structural changes accompanying protein-inhibitor interactions. When combined with native MS (nMS), gas-phase ion mobility, protein footprinting, and chemical cross-linking, MS can afford regional and sometimes amino acid spatial resolution of the aggregating protein. The spatial resolution is greater than typical low-resolution spectroscopic, calorimetric, and the traditional ThT fluorescence methods used in amyloid research today. High-resolution approaches can struggle when investigating protein aggregation, as the proteins exist as complex oligomeric mixtures of many sizes and several conformations or polymorphs. Thus, MS is positioned to complement both high- and low-resolution approaches to studying amyloid fibril formation and protein-inhibitor interactions. This review covers basics in MS paired with ion mobility, continuous hydrogen-deuterium exchange (continuous HDX), pulsed hydrogen-deuterium exchange (pulsed HDX), fast photochemical oxidation of proteins (FPOP) and other irreversible labeling methods, and chemical cross-linking. We then review the applications of these approaches to studying amyloid-prone proteins with a focus on amyloid beta and alpha-synuclein. Another focus is the determination of protein-inhibitor interactions. The expectation is that MS will bring new insights to amyloid formation and thereby play an important role to prevent their formation.
Collapse
Affiliation(s)
- Wesley J Wagner
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Monteiro C, Gomes MC, Bharmoria P, Freire MG, Coutinho JA, Custódio CA, Mano JF. Human Platelet Lysate-Derived Nanofibrils as Building Blocks to Produce Free-Standing Membranes for Cell Self-Aggregation. ACS NANO 2024; 18:15815-15830. [PMID: 38833572 PMCID: PMC11191744 DOI: 10.1021/acsnano.4c02790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Amyloid-like fibrils are garnering keen interest in biotechnology as supramolecular nanofunctional units to be used as biomimetic platforms to control cell behavior. Recent insights into fibril functionality have highlighted their importance in tissue structure, mechanical properties, and improved cell adhesion, emphasizing the need for scalable and high-kinetics fibril synthesis. In this study, we present the instantaneous and bulk formation of amyloid-like nanofibrils from human platelet lysate (PL) using the ionic liquid cholinium tosylate as a fibrillating agent. The instant fibrillation of PL proteins upon supramolecular protein-ionic liquid interactions was confirmed from the protein conformational transition toward cross-β-sheet-rich structures. These nanofibrils were utilized as building blocks for the formation of thin and flexible free-standing membranes via solvent casting to support cell self-aggregation. These PL-derived fibril membranes reveal a nanotopographically rough surface and high stability over 14 days under cell culture conditions. The culture of mesenchymal stem cells or tumor cells on the top of the membrane demonstrated that cells are able to adhere and self-organize in a three-dimensional (3D) spheroid-like microtissue while tightly folding the fibril membrane. Results suggest that nanofibril membrane incorporation in cell aggregates can improve cell viability and metabolic activity, recreating native tissues' organization. Altogether, these PL-derived nanofibril membranes are suitable bioactive platforms to generate 3D cell-guided microtissues, which can be explored as bottom-up strategies to faithfully emulate native tissues in a fully human microenvironment.
Collapse
Affiliation(s)
- Cátia
F. Monteiro
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Maria C. Gomes
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | | | - Mara G. Freire
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - João A.
P. Coutinho
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Catarina A. Custódio
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - João F. Mano
- CICECO − Aveiro Institute
of Materials, Department of Chemistry, University
of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| |
Collapse
|
8
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
10
|
Guo Q, Ping L, Dammer EB, Yin L, Xu K, Shantaraman A, Fox EJ, Golde TE, Johnson ECB, Roberts BR, Lah JJ, Levey AI, Seyfried NT. Heparin-enriched plasma proteome is significantly altered in Alzheimer's Disease. RESEARCH SQUARE 2024:rs.3.rs-3933136. [PMID: 38464223 PMCID: PMC10925398 DOI: 10.21203/rs.3.rs-3933136/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Introduction Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to β-amyloid (Aβ) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aβ, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aβ deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aβ, total tau, pTau, and plasma pTau from the same individuals. Conclusion These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
Collapse
Affiliation(s)
- Qi Guo
- Emory University School of Medicine
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pfeiffer PB, Ugrina M, Schwierz N, Sigurdson CJ, Schmidt M, Fändrich M. Cryo-EM Analysis of the Effect of Seeding with Brain-derived Aβ Amyloid Fibrils. J Mol Biol 2024; 436:168422. [PMID: 38158175 DOI: 10.1016/j.jmb.2023.168422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/05/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024]
Abstract
Aβ amyloid fibrils from Alzheimer's brain tissue are polymorphic and structurally different from typical in vitro formed Aβ fibrils. Here, we show that brain-derived (ex vivo) fibril structures can be proliferated by seeding in vitro. The proliferation reaction is only efficient for one of the three abundant ex vivo Aβ fibril morphologies, which consists of two peptide stacks, while the inefficiently proliferated fibril morphologies contain four or six peptide stacks. In addition to the seeded fibril structures, we find that de novo nucleated fibril structures can emerge in seeded samples if the seeding reaction is continued over multiple generations. These data imply a competition between de novo nucleation and seed extension and suggest further that seeding favours the outgrowth of fibril morphologies that contain fewer peptide stacks.
Collapse
Affiliation(s)
| | - Marijana Ugrina
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| | - Nadine Schwierz
- Institute of Physics, University of Augsburg, Universitätsstraße 1, 86159 Augsburg, Germany
| | - Christina J Sigurdson
- Department of Pathology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0612, USA
| | - Matthias Schmidt
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Helmholtzstraße 8/1, 89081 Ulm, Germany
| |
Collapse
|
12
|
Rosú SA, Aguilar J, Urbano BF, Tarraga WA, Ramella NA, Longo GS, Finarelli GS, Sanchez Donoso SA, Tricerri MA. Interactions of variants of human apolipoprotein A-I with biopolymeric model matrices. Effect of collagen and heparin. Arch Biochem Biophys 2023; 750:109805. [PMID: 37913855 DOI: 10.1016/j.abb.2023.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
BACKGROUND The extracellular matrix (ECM) is a complex tridimensional scaffold that actively participates in physiological and pathological events. The objective of this study was to test whether structural proteins of the ECM and glycosaminoglycans (GAGs) may favor the retention of human apolipoprotein A-I (apoA-I) variants associated with amyloidosis and atherosclerosis. METHODS Biopolymeric matrices containing collagen type I (Col, a main macromolecular component of the ECM) with or without heparin (Hep, a model of GAGs) were constructed and characterized, and used to compare the binding of apoA-I having the native sequence (Wt) or Arg173Pro, a natural variant inducing cardiac amyloidosis. Protein binding was observed by fluorescence microscopy and unbound proteins quantified by a colorimetric assay. RESULTS Both, Wt and Arg173Pro bound to the scaffolds containing Col, but the presence of Hep diminished the binding efficiency. Col-Hep matrices retained Arg173Pro more than the Wt. The retained protein was only partially removed from the matrices with saline solutions, indicating that electrostatic interactions may occur but are not the main driving force. Using in addition thermodynamic molecular simulations and size exclusion chromatography approaches, we suggest that the binding of apoA-I variants to the biopolymeric matrices is driven by many low affinity interactions. CONCLUSIONS Under this scenario Col-Hep scaffolds contribute to the binding of Arg173Pro, as a cooperative platform which could modify the native protein conformation affecting protein folding. GENERAL SIGNIFICANCE We show that the composition of the ECM is key to the protein retention, and well characterized biosynthetic matrices offer an invaluable in vitro model to mimic the hallmark of pathologies with interstitial infiltration such as cardiac amyloidosis.
Collapse
Affiliation(s)
- Silvana A Rosú
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET. Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Joao Aguilar
- Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Bruno F Urbano
- Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile
| | - Wilson A Tarraga
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, La Plata, Buenos Aires, Argentina
| | - Nahuel A Ramella
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET. Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Universidad Nacional de La Plata-CONICET, La Plata, Buenos Aires, Argentina
| | - Gabriela S Finarelli
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET. Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Buenos Aires, Argentina
| | - Susana A Sanchez Donoso
- Laboratorio de Interacciones Macromoleculares (LIMM), Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Concepción, Chile.
| | - M Alejandra Tricerri
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET. Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, La Plata, Buenos Aires, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Smorodina E, Kav B, Fatafta H, Strodel B. Effects of ion type and concentration on the structure and aggregation of the amyloid peptide A β 16 - 22 $$ {\boldsymbol{\beta}}_{16-22} $$. Proteins 2023. [PMID: 37964477 DOI: 10.1002/prot.26635] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/16/2023]
Abstract
Among the various factors controlling the amyloid aggregation process, the influences of ions on the aggregation rate and the resulting structures are important aspects to consider, which can be studied by molecular simulations. There is a wide variety of protein force fields and ion models, raising the question of which model to use in such studies. To address this question, we perform molecular dynamics simulations of Aβ16-22 , a fragment of the Alzheimer's amyloid β peptide, using different protein force fields, AMBER99SB-disp (A99-d) and CHARMM36m (C36m), and different ion parameters. The influences of NaCl and CaCl2 at various concentrations are studied and compared with the systems without the addition of ions. Our results indicate a sensitivity of the peptide-ion interactions to the different ion models. In particular, we observe a strong binding of Ca2+ to residue E22 with C36m and also with the Åqvist ion model used together with A99-d, which slightly affects the monomeric Aβ16-22 structures and the aggregation rate, but significantly affects the oligomer structures formed in the aggregation simulations. For example, at high Ca2+ concentrations, there was a switch from an antiparallel to a parallel β-sheet. Such ionic influences are of biological relevance because local ion concentrations can change in vivo and could help explain the polymorphism of amyloid fibrils.
Collapse
Affiliation(s)
- Eva Smorodina
- Institute of Biological Information Processing: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Batuhan Kav
- Institute of Biological Information Processing: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
| | - Hebah Fatafta
- Institute of Biological Information Processing: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Strodel
- Institute of Biological Information Processing: Structural Biochemistry, Forschungszentrum Jülich, Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
14
|
Makshakova ON, Bogdanova LR, Faizullin DA, Ermakova EA, Zuev YF. Sulfated Polysaccharides as a Fighter with Protein Non-Physiological Aggregation: The Role of Polysaccharide Flexibility and Charge Density. Int J Mol Sci 2023; 24:16223. [PMID: 38003413 PMCID: PMC10671430 DOI: 10.3390/ijms242216223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Proteins can lose native functionality due to non-physiological aggregation. In this work, we have shown the power of sulfated polysaccharides as a natural assistant to restore damaged protein structures. Protein aggregates enriched by cross-β structures are a characteristic of amyloid fibrils related to different health disorders. Our recent studies demonstrated that model fibrils of hen egg white lysozyme (HEWL) can be disaggregated and renatured by some negatively charged polysaccharides. In the current work, using the same model protein system and FTIR spectroscopy, we studied the role of conformation and charge distribution along the polysaccharide chain in the protein secondary structure conversion. The effects of three carrageenans (κ, ι, and λ) possessing from one to three sulfate groups per disaccharide unit were shown to be different. κ-Carrageenan was able to fully eliminate cross-β structures and complete the renaturation process. ι-Carrageenan only initiated the formation of native-like β-structures in HEWL, retaining most of the cross-β structures. In contrast, λ-carrageenan even increased the content of amyloid cross-β structures. Furthermore, κ-carrageenan in rigid helical conformation loses its capability to restore protein native structures, largely increasing the amount of amyloid cross-β structures. Our findings create a platform for the design of novel natural chaperons to counteract protein unfolding.
Collapse
Affiliation(s)
- Olga N. Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, 420111 Kazan, Russia
| | | | | | | | | |
Collapse
|
15
|
Schäffler M, Samantray S, Strodel B. Transition Networks Unveil Disorder-to-Order Transformations in A β Caused by Glycosaminoglycans or Lipids. Int J Mol Sci 2023; 24:11238. [PMID: 37510997 PMCID: PMC10380057 DOI: 10.3390/ijms241411238] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
The aggregation of amyloid-β (Aβ) peptides, particularly of Aβ1-42, has been linked to the pathogenesis of Alzheimer's disease. In this study, we focus on the conformational change of Aβ1-42 in the presence of glycosaminoglycans (GAGs) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids using molecular dynamics simulations. We analyze the conformational changes that occur in Aβ by extracting the key structural features that are then used to generate transition networks. Using the same three features per network highlights the transitions from intrinsically disordered states ubiquitous in Aβ1-42 in solution to more compact states arising from stable β-hairpin formation when Aβ1-42 is in the vicinity of a GAG molecule, and even more compact states characterized by a α-helix or β-sheet structures when Aβ1-42 interacts with a POPC lipid cluster. We show that the molecular mechanisms underlying these transitions from disorder to order are different for the Aβ1-42/GAG and Aβ1-42/POPC systems. While in the latter the hydrophobicity provided by the lipid tails facilitates the folding of Aβ1-42, in the case of GAG there are hardly any intermolecular Aβ1-42-GAG interactions. Instead, GAG removes sodium ions from the peptide, allowing stronger electrostatic interactions within the peptide that stabilize a β-hairpin. Our results contribute to the growing knowledge of the role of GAGs and lipids in the conformational preferences of the Aβ peptide, which in turn influences its aggregation into toxic oligomers and amyloid fibrils.
Collapse
Affiliation(s)
- Moritz Schäffler
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Suman Samantray
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Birgit Strodel
- Institute of Biological Information Processing, Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
16
|
Sebastiao M, Babych M, Quittot N, Kumar K, Arnold AA, Marcotte I, Bourgault S. Development of a novel fluorescence assay for studying lipid bilayer perturbation induced by amyloidogenic peptides using cell plasma membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184118. [PMID: 36621762 DOI: 10.1016/j.bbamem.2022.184118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/22/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
Numerous pathophysiological conditions are associated with the misfolding and aggregation of proteins into insoluble amyloid fibrils. The mechanisms by which this process leads to cellular dysfunction remain elusive, though several hypotheses point toward the perturbation of the cell plasma membrane by pre-fibrillar intermediates and/or amyloid growth. However, current models to study membrane perturbations are largely limited to synthetic lipid vesicles and most of experimental approaches cannot be transposed to complex cell-derived plasma membrane systems. Herein, vesicles originating from the plasma membrane of erythrocytes and β-pancreatic cells were used to study the perturbations induced by an amyloidogenic peptide, the islet amyloid polypeptide (IAPP). These biologically relevant lipid vesicles displayed a characteristic clustering in the presence of the amyloidogenic peptide, which was able to rupture membranes. By exploiting Förster resonance energy transfer (FRET), a rapid, simple, and potentially high-throughput assay to detect membrane perturbations of intact mammalian cell plasma membrane vesicles was implemented. The FRET kinetics of membrane perturbations closely correlated with the kinetics of thioflavin-T fluorescence associated with amyloid formation. This novel kinetics assay expands the toolbox available to study amyloid-associated membrane damage, bridging the gap between synthetic lipid vesicles and living cells.
Collapse
Affiliation(s)
- Mathew Sebastiao
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Margaryta Babych
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Noé Quittot
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Kiran Kumar
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Alexandre A Arnold
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada.
| | - Steve Bourgault
- Department of Chemistry, Université du Québec à Montréal, Montreal, QC, Canada; Quebec Network for Research on Protein Function, Engineering, and Applications, PROTEO, Quebec, QC, Canada.
| |
Collapse
|
17
|
The Ability of Some Polysaccharides to Disaggregate Lysozyme Amyloid Fibrils and Renature the Protein. Pharmaceutics 2023; 15:pharmaceutics15020624. [PMID: 36839946 PMCID: PMC9962556 DOI: 10.3390/pharmaceutics15020624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The deposition of proteins in the form of insoluble amyloid fibril aggregates is linked to a range of diseases. The supramolecular architecture of such deposits is governed by the propagation of β-strands in the direction of protofilament growth. In the present study, we analyze the structural changes of hen egg-white lysozyme fibrils upon their interactions with a range of polysaccharides, using AFM and FTIR spectroscopy. Linear anionic polysaccharides, such as κ-carrageenan and sodium alginate, are shown to be capable to disaggregate protofilaments with eventual protein renaturation. The results help to understand the mechanism of amyloid disaggregation and create a platform for both the development of new therapeutic agents for amyloidose treatment, and the design of novel functional protein-polysaccharide complex-based nanomaterials.
Collapse
|
18
|
Arguelles J, Lee J, Cardenas LV, Govind S, Singh S. In Silico Analysis of a Drosophila Parasitoid Venom Peptide Reveals Prevalence of the Cation-Polar-Cation Clip Motif in Knottin Proteins. Pathogens 2023; 12:pathogens12010143. [PMID: 36678491 PMCID: PMC9865768 DOI: 10.3390/pathogens12010143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
As generalist parasitoid wasps, Leptopilina heterotoma are highly successful on many species of fruit flies of the genus Drosophila. The parasitoids produce specialized multi-strategy extracellular vesicle (EV)-like structures in their venom. Proteomic analysis identified several immunity-associated proteins, including the knottin peptide, LhKNOT, containing the structurally conserved inhibitor cysteine knot (ICK) fold, which is present in proteins from diverse taxa. Our structural and docking analysis of LhKNOT's 36-residue core knottin fold revealed that in addition to the knottin motif itself, it also possesses a Cation-Polar-Cation (CPC) clip. The CPC clip motif is thought to facilitate antimicrobial activity in heparin-binding proteins. Surprisingly, a majority of ICKs tested also possess the CPC clip motif, including 75 bona fide plant and arthropod knottin proteins that share high sequence and/or structural similarity with LhKNOT. Like LhKNOT and these other 75 knottin proteins, even the Drosophila Drosomycin antifungal peptide, a canonical target gene of the fly's Toll-NF-kappa B immune pathway, contains this CPC clip motif. Together, our results suggest a possible defensive function for the parasitoid LhKNOT. The prevalence of the CPC clip motif, intrinsic to the cysteine knot within the knottin proteins examined here, suggests that the resultant 3D topology is important for their biochemical functions. The CPC clip is likely a highly conserved structural motif found in many diverse proteins with reported heparin binding capacity, including amyloid proteins. Knottins are targets for therapeutic drug development, and insights into their structure-function relationships will advance novel drug design.
Collapse
Affiliation(s)
- Joseph Arguelles
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Jenny Lee
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
| | - Lady V. Cardenas
- Department of Biology, The City College of New York, New York, NY 10031, USA
| | - Shubha Govind
- Department of Biology, The City College of New York, New York, NY 10031, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, Brooklyn, NY 11210, USA
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
- PhD Program in Biology, The Graduate Center of the City University of New York, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
19
|
The New General Biological Property of Stem-like Tumor Cells (Part II: Surface Molecules, Which Belongs to Distinctive Groups with Particular Functions, Form a Unique Pattern Characteristic of a Certain Type of Tumor Stem-like Cells). Int J Mol Sci 2022; 23:ijms232415800. [PMID: 36555446 PMCID: PMC9785054 DOI: 10.3390/ijms232415800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions. Firm contacts with cell envelope proteins are then formed, followed by internalization into the cell of the complex formed between the factor and the dsDNA probe bound to it. The key binding sites were found to be the heparin-binding domains, which are constituents of various cell surface proteins of TSCs-either the C1q domain, the collagen-binding domain, or domains of positively charged amino acids. These results imply that the interaction between extracellular dsDNA fragments and the cell, as well as their internalization, took place with the involvement of glycocalyx components (proteoglycans/glycoproteins (PGs/GPs) and glycosylphosphatidylinositol-anchored proteins (GPI-APs)) and the system of scavenger receptors (SRs), which are characteristic of TSCs and form functional clusters of cell surface proteins in TSCs. The key provisions of the concept characterizing the principle of organization of the "group-specific" cell surface factors of TSCs of various geneses were formulated. These factors belong to three protein clusters: GPs/PGs, GIP-APs, and SRs. For TSCs of different tumors, these clusters were found to be represented by different members with homotypic functions corresponding to the general function of the cluster to which they belong.
Collapse
|
20
|
Esmaeilpour D, Broscheit JA, Shityakov S. Cyclodextrin-Based Polymeric Materials Bound to Corona Protein for Theranostic Applications. Int J Mol Sci 2022; 23:13505. [PMID: 36362293 PMCID: PMC9656986 DOI: 10.3390/ijms232113505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/27/2023] Open
Abstract
Cyclodextrins (CDs) are cyclic oligosaccharide structures that could be used for theranostic applications in personalized medicine. These compounds have been widely utilized not only for enhancing drug solubility, stability, and bioavailability but also for controlled and targeted delivery of small molecules. These compounds can be complexed with various biomolecules, such as peptides or proteins, via host-guest interactions. CDs are amphiphilic compounds with water-hating holes and water-absorbing surfaces. Architectures of CDs allow the drawing and preparation of CD-based polymers (CDbPs) with optimal pharmacokinetic and pharmacodynamic properties. These polymers can be cloaked with protein corona consisting of adsorbed plasma or extracellular proteins to improve nanoparticle biodistribution and half-life. Besides, CDs have become famous in applications ranging from biomedicine to environmental sciences. In this review, we emphasize ongoing research in biomedical fields using CD-based centered, pendant, and terminated polymers and their interactions with protein corona for theranostic applications. Overall, a perusal of information concerning this novel approach in biomedicine will help to implement this methodology based on host-guest interaction to improve therapeutic and diagnostic strategies.
Collapse
Affiliation(s)
- Donya Esmaeilpour
- Department of Chemistry, University of Isfahan, Isfahan 8174673441, Iran
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Science, Shiraz 713451583, Iran
| | - Jens Albert Broscheit
- Department of Anesthesiology and Critical Care, University of Wuerzburg, Oberduerrbacher Str. 6, 97080 Wurzburg, Germany
| | - Sergey Shityakov
- Laboratory of Chemoinformatics, Infochemistry Scientific Center, ITMO University, 191002 Saint-Petersburg, Russia
| |
Collapse
|
21
|
Aksenova AY, Likhachev IV, Grishin SY, Galzitskaya OV. The Increased Amyloidogenicity of Spike RBD and pH-Dependent Binding to ACE2 May Contribute to the Transmissibility and Pathogenic Properties of SARS-CoV-2 Omicron as Suggested by In Silico Study. Int J Mol Sci 2022; 23:13502. [PMID: 36362302 PMCID: PMC9655063 DOI: 10.3390/ijms232113502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
SARS-CoV-2 is a rapidly evolving pathogen that has caused a global pandemic characterized by several consecutive waves. Based on epidemiological and NGS data, many different variants of SARS-CoV-2 were described and characterized since the original variant emerged in Wuhan in 2019. Notably, SARS-CoV-2 variants differ in transmissibility and pathogenicity in the human population, although the molecular basis for this difference is still debatable. A significant role is attributed to amino acid changes in the binding surface of the Spike protein to the ACE2 receptor, which may facilitate virus entry into the cell or contribute to immune evasion. We modeled in silico the interaction between Spike RBDs of Wuhan-Hu-1, Delta, and Omicron BA.1 variants and ACE2 at different pHs (pH 5 and pH 7) and showed that the strength of this interaction was higher for the Omicron BA.1 RBD compared to Wuhan-Hu-1 or Delta RBDs and that the effect was more profound at pH 5. This finding is strikingly related to the increased ability of Omicron variants to spread in the population. We also noted that during its spread in the population, SARS-CoV-2 evolved to a more charged, basic composition. We hypothesize that the more basic surface of the Omicron variant may facilitate its spread in the upper respiratory tract but not in the lower respiratory tract, where pH estimates are different. We calculated the amyloidogenic properties of Spike RBDs in different SARS-CoV-2 variants and found eight amyloidogenic regions in the Spike RBDs for each of the variants predicted by the FoldAmyloid program. Although all eight regions were almost identical in the Wuhan to Gamma variants, two of them were significantly longer in both Omicron variants, making the Omicron RBD more amyloidogenic. We discuss how the increased predicted amyloidogenicity of the Omicron variants RBDs may be important for protein stability, influence its interaction with ACE2 and contribute to immune evasion.
Collapse
Affiliation(s)
- Anna Y. Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia
| | - Ilya V. Likhachev
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Mathematical Problems of Biology RAS, The Branch of Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sergei Y. Grishin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia
| |
Collapse
|
22
|
Uchimura K, Nishitsuji K, Chiu L, Ohgita T, Saito H, Allain F, Gannedi V, Wong C, Hung S. Design and Synthesis of 6-O-Phosphorylated Heparan Sulfate Oligosaccharides to Inhibit Amyloid β Aggregation. Chembiochem 2022; 23:e202200191. [PMID: 35585797 PMCID: PMC9401075 DOI: 10.1002/cbic.202200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Dysregulation of amyloidogenic proteins and their abnormal processing and deposition in tissues cause systemic and localized amyloidosis. Formation of amyloid β (Aβ) fibrils that deposit as amyloid plaques in Alzheimer's disease (AD) brains is an earliest pathological hallmark. The polysulfated heparan sulfate (HS)/heparin (HP) is one of the non-protein components of Aβ deposits that not only modulates Aβ aggregation, but also acts as a receptor for Aβ fibrils to mediate their cytotoxicity. Interfering with the interaction between HS/HP and Aβ could be a therapeutic strategy to arrest amyloidosis. Here we have synthesized the 6-O-phosphorylated HS/HP oligosaccharides and reported their competitive effects on the inhibition of HP-mediated Aβ fibril formation in vitro using a thioflavin T fluorescence assay and a tapping mode atomic force microscopy.
Collapse
Affiliation(s)
- Kenji Uchimura
- Univ. Lille, CNRSUMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | - Kazuchika Nishitsuji
- Department of BiochemistryWakayama Medical University811–1 KimiideraWakayama641-8509Japan
| | - Li‐Ting Chiu
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
| | - Takashi Ohgita
- Department of Biophysical ChemistryKyoto Pharmaceutical University, 5Misasagi-Nakauchi-choYamashina-kuKyoto607-8414Japan
| | - Hiroyuki Saito
- Department of Biophysical ChemistryKyoto Pharmaceutical University, 5Misasagi-Nakauchi-choYamashina-kuKyoto607-8414Japan
| | - Fabrice Allain
- Univ. Lille, CNRSUMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle59000LilleFrance
| | | | - Chi‐Huey Wong
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
- Department of ChemistryThe Scripps Research Institute10550 North Torrey Pines Road BCC 338La JollaCA 92037USA
| | - Shang‐Cheng Hung
- Genomics Research CenterAcademia Sinica, 128, Section 2 Academia RoadTaipei11529Taiwan
- Department of Applied ScienceNational Taitung University369, Section 2 University RoadTaitung95092Taiwan
| |
Collapse
|
23
|
Wu L, Jiang W, Zhao N, Wang F. Heparan sulfate from porcine mucosa promotes amyloid-beta clearance in APP/PS1 mice and alleviates Alzheimer's pathology. Carbohydr Polym 2022; 285:119205. [DOI: 10.1016/j.carbpol.2022.119205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
|
24
|
Makshakova ON, Zuev YF. Interaction-Induced Structural Transformations in Polysaccharide and Protein-Polysaccharide Gels as Functional Basis for Novel Soft-Matter: A Case of Carrageenans. Gels 2022; 8:287. [PMID: 35621585 PMCID: PMC9141914 DOI: 10.3390/gels8050287] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/01/2023] Open
Abstract
Biocompatible, nontoxic, and biodegradable polysaccharides are considered as a promising base for bio-inspired materials, applicable as scaffolds in regenerative medicine, coatings in drug delivery systems, etc. The tunable macroscopic properties of gels should meet case-dependent requirements. The admixture of proteins to polysaccharides and their coupling in more sophisticated structures opens an avenue for gel property tuning via physical cross-linking of components and the modification of gel network structure. In this review recent success in the conformational studies of binary protein-polysaccharide gels is summarized with the main focus upon carrageenans. Future perspectives and challenges in rational design of novel polysaccharide-based materials are outlined.
Collapse
Affiliation(s)
- Olga N. Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia;
- A. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia;
- A. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia
| |
Collapse
|
25
|
Khurshid B, Rehman AU, Luo R, Khan A, Wadood A, Anwar J. Heparin-Assisted Amyloidogenesis Uncovered through Molecular Dynamics Simulations. ACS OMEGA 2022; 7:15132-15144. [PMID: 35572757 PMCID: PMC9089684 DOI: 10.1021/acsomega.2c01034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/11/2022] [Indexed: 05/14/2023]
Abstract
Glycosaminoglycans (GAGs), in particular, heparan sulfate and heparin, are found colocalized with Aβ amyloid. They have been shown to enhance fibril formation, suggesting a possible pathological connection. We have investigated heparin's assembly of the KLVFFA peptide fragment using molecular dynamics simulation, to gain a molecular-level mechanistic understanding of how GAGs enhance fibril formation. The simulations reveal an exquisite process wherein heparin accelerates peptide assembly by first "gathering" the peptide molecules and then assembling them. Heparin does not act as a mere template but is tightly coupled to the peptides, yielding a composite protofilament structure. The strong intermolecular interactions suggest composite formation to be a general feature of heparin's interaction with peptides. Heparin's chain flexibility is found to be essential to its fibril promotion activity, and the need for optimal heparin chain length and concentration has been rationalized. These insights yield design rules (flexibility; chain-length) and protocol guidance (heparin:peptide molar ratio) for developing effective heparin mimetics and other functional GAGs.
Collapse
Affiliation(s)
- Beenish Khurshid
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Ashfaq Ur Rehman
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697, United States
| | - Ray Luo
- Department
of Molecular Biology and Biochemistry, University
of California, Irvine, California 92697, United States
| | - Alamzeb Khan
- Department
of Pediatrics, Yale School of Medicine, Yale University, New Haven, Connecticut 06511, United States
| | - Abdul Wadood
- Department
of Biochemistry, Abdul Wali Khan University
Mardan, Mardan 23200, Pakistan
| | - Jamshed Anwar
- Department
of Chemistry, University of Lancaster, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
26
|
Synthetic Sulfated Polymers Control Amyloid Aggregation of Ovine Prion Protein and Decrease Its Toxicity. Polymers (Basel) 2022; 14:polym14071478. [PMID: 35406350 PMCID: PMC9002794 DOI: 10.3390/polym14071478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
Amyloid aggregation, including aggregation and propagation of prion protein, is a key factor in numerous human diseases, so-called amyloidosis, with a very poor ability for treatment or prevention. The present work describes the effect of sulfated or sulfonated polymers (sodium dextran sulfate, polystyrene sulfonate, polyanethole sulfonate, and polyvinyl sulfate) on different stages of amyloidogenic conversion and aggregation of the prion protein, which is associated with prionopathies in humans and animals. All tested polymers turned out to induce amyloid conversion of the ovine prion protein. As suggested from molecular dynamics simulations, this effect probably arises from destabilization of the native prion protein structure by the polymers. Short polymers enhanced its further aggregation, whereas addition of high-molecular poly(styrene sulfonate) inhibited amyloid fibrils formation. According to the seeding experiments, the protein–polymer complexes formed after incubation with poly(styrene sulfonate) exhibited significantly lower amyloidogenic capacity compared with the control fibrils of the free prion protein. The cytotoxicity of soluble oligomers was completely inhibited by treatment with poly(styrene sulfonate). To summarize, sulfonated polymers are a promising platform for the formulation of a new class of anti-prion and anti-amyloidosis therapeutics.
Collapse
|
27
|
Ezzat K, Sturchio A, Espay AJ. Proteins Do Not Replicate, They Precipitate: Phase Transition and Loss of Function Toxicity in Amyloid Pathologies. BIOLOGY 2022; 11:biology11040535. [PMID: 35453734 PMCID: PMC9031251 DOI: 10.3390/biology11040535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/11/2022]
Abstract
Protein aggregation into amyloid fibrils affects many proteins in a variety of diseases, including neurodegenerative disorders, diabetes, and cancer. Physicochemically, amyloid formation is a phase transition process, where soluble proteins are transformed into solid fibrils with the characteristic cross-β conformation responsible for their fibrillar morphology. This phase transition proceeds via an initial, rate-limiting nucleation step followed by rapid growth. Several well-defined nucleation pathways exist, including homogenous nucleation (HON), which proceeds spontaneously; heterogeneous nucleation (HEN), which is catalyzed by surfaces; and seeding via preformed nuclei. It has been hypothesized that amyloid aggregation represents a protein-only (nucleic-acid free) replication mechanism that involves transmission of structural information via conformational templating (the prion hypothesis). While the prion hypothesis still lacks mechanistic support, it is also incompatible with the fact that proteins can be induced to form amyloids in the absence of a proteinaceous species acting as a conformational template as in the case of HEN, which can be induced by lipid membranes (including viral envelopes) or polysaccharides. Additionally, while amyloids can be formed from any protein sequence and via different nucleation pathways, they invariably adopt the universal cross-β conformation; suggesting that such conformational change is a spontaneous folding event that is thermodynamically favorable under the conditions of supersaturation and phase transition and not a templated replication process. Finally, as the high stability of amyloids renders them relatively inert, toxicity in some amyloid pathologies might be more dependent on the loss of function from protein sequestration in the amyloid state rather than direct toxicity from the amyloid plaques themselves.
Collapse
Affiliation(s)
- Kariem Ezzat
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden
- Correspondence:
| | - Andrea Sturchio
- Department of Clinical Neuroscience, Neuro Svenningsson, Karolinska Institutet, 171 76 Stockholm, Sweden;
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Alberto J. Espay
- James J. and Joan A. Gardner Family Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH 45221, USA;
| |
Collapse
|
28
|
Muronetz VI, Kudryavtseva SS, Leisi EV, Kurochkina LP, Barinova KV, Schmalhausen EV. Regulation by Different Types of Chaperones of Amyloid Transformation of Proteins Involved in the Development of Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052747. [PMID: 35269889 PMCID: PMC8910861 DOI: 10.3390/ijms23052747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
The review highlights various aspects of the influence of chaperones on amyloid proteins associated with the development of neurodegenerative diseases and includes studies conducted in our laboratory. Different sections of the article are devoted to the role of chaperones in the pathological transformation of alpha-synuclein and the prion protein. Information about the interaction of the chaperonins GroE and TRiC as well as polymer-based artificial chaperones with amyloidogenic proteins is summarized. Particular attention is paid to the effect of blocking chaperones by misfolded and amyloidogenic proteins. It was noted that the accumulation of functionally inactive chaperones blocked by misfolded proteins might cause the formation of amyloid aggregates and prevent the disassembly of fibrillar structures. Moreover, the blocking of chaperones by various forms of amyloid proteins might lead to pathological changes in the vital activity of cells due to the impaired folding of newly synthesized proteins and their subsequent processing. The final section of the article discusses both the little data on the role of gut microbiota in the propagation of synucleinopathies and prion diseases and the possible involvement of the bacterial chaperone GroE in these processes.
Collapse
Affiliation(s)
- Vladimir I. Muronetz
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.P.K.); (K.V.B.); (E.V.S.)
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Correspondence:
| | - Sofia S. Kudryavtseva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Evgeniia V. Leisi
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Lidia P. Kurochkina
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.P.K.); (K.V.B.); (E.V.S.)
| | - Kseniya V. Barinova
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.P.K.); (K.V.B.); (E.V.S.)
| | - Elena V. Schmalhausen
- Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (L.P.K.); (K.V.B.); (E.V.S.)
| |
Collapse
|
29
|
Clark GT, Yu Y, Urban CA, Fu G, Wang C, Zhang F, Linhardt RJ, Hurley JM. Circadian control of heparan sulfate levels times phagocytosis of amyloid beta aggregates. PLoS Genet 2022; 18:e1009994. [PMID: 35143487 PMCID: PMC8830681 DOI: 10.1371/journal.pgen.1009994] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/14/2021] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's Disease (AD) is a neuroinflammatory disease characterized partly by the inability to clear, and subsequent build-up, of amyloid-beta (Aβ). AD has a bi-directional relationship with circadian disruption (CD) with sleep disturbances starting years before disease onset. However, the molecular mechanism underlying the relationship of CD and AD has not been elucidated. Myeloid-based phagocytosis, a key component in the metabolism of Aβ, is circadianly-regulated, presenting a potential link between CD and AD. In this work, we revealed that the phagocytosis of Aβ42 undergoes a daily circadian oscillation. We found the circadian timing of global heparan sulfate proteoglycan (HSPG) biosynthesis was the molecular timer for the clock-controlled phagocytosis of Aβ and that both HSPG binding and aggregation may play a role in this oscillation. These data highlight that circadian regulation in immune cells may play a role in the intricate relationship between the circadian clock and AD.
Collapse
Affiliation(s)
- Gretchen T. Clark
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Yanlei Yu
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
| | - Cooper A. Urban
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
| | - Guo Fu
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Now at the Innovation and Integration Center of New Laser Technology, Chinese Academy of Sciences, Shanghai, China
| | - Chunyu Wang
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Robert J. Linhardt
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemistry and Chemical Biology, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Rensselaer Polytechnic Institute, Chemical and Biological Engineering, Troy, New York, United States of America
| | - Jennifer M. Hurley
- Rensselaer Polytechnic Institute, Biological Sciences, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| |
Collapse
|
30
|
Iakovleva I, Hall M, Oelker M, Sandblad L, Anan I, Sauer-Eriksson AE. Structural basis for transthyretin amyloid formation in vitreous body of the eye. Nat Commun 2021; 12:7141. [PMID: 34880242 PMCID: PMC8654999 DOI: 10.1038/s41467-021-27481-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022] Open
Abstract
Amyloid transthyretin (ATTR) amyloidosis is characterized by the abnormal accumulation of ATTR fibrils in multiple organs. However, the structure of ATTR fibrils from the eye is poorly understood. Here, we used cryo-EM to structurally characterize vitreous body ATTR fibrils. These structures were distinct from previously characterized heart fibrils, even though both have the same mutation and type A pathology. Differences were observed at several structural levels: in both the number and arrangement of protofilaments, and the conformation of the protein fibril in each layer of protofilaments. Thus, our results show that ATTR protein structure and its assembly into protofilaments in the type A fibrils can vary between patients carrying the same mutation. By analyzing and matching the interfaces between the amino acids in the ATTR fibril with those in the natively folded TTR, we are able to propose a mechanism for the structural conversion of TTR into a fibrillar form.
Collapse
Affiliation(s)
- Irina Iakovleva
- Department of Chemistry, Umeå University, SE-901 87, Umeå, Sweden.
| | - Michael Hall
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Melanie Oelker
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Linda Sandblad
- grid.12650.300000 0001 1034 3451Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Intissar Anan
- grid.12650.300000 0001 1034 3451Department of Public Health and Clinical Medicine, Umeå University, SE-901 87 Umeå, Sweden ,grid.12650.300000 0001 1034 3451Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | | |
Collapse
|
31
|
Ahmad W, Ebert PR. Suppression of a core metabolic enzyme dihydrolipoamide dehydrogenase ( dld) protects against amyloid beta toxicity in C. elegans model of Alzheimer's disease. Genes Dis 2021; 8:849-866. [PMID: 34522713 PMCID: PMC8427249 DOI: 10.1016/j.gendis.2020.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/24/2020] [Accepted: 08/14/2020] [Indexed: 01/24/2023] Open
Abstract
A decrease in energy metabolism is associated with Alzheimer's disease (AD), but it is not known whether the observed decrease exacerbates or protects against the disease. The importance of energy metabolism in AD is reinforced by the observation that variants of dihydrolipoamide dehydrogenase (DLD), is genetically linked to late-onset AD. To determine whether DLD is a suitable therapeutic target, we suppressed the dld-1 gene in Caenorhabditis elegans that express human Aβ peptide in either muscles or neurons. Suppression of the dld-1 gene resulted in significant restoration of vitality and function that had been degraded by Aβ pathology. This included protection of neurons and muscles cells. The observed decrease in proteotoxicity was associated with a decrease in the formation of toxic oligomers rather than a decrease in the abundance of the Aβ peptide. The mitochondrial uncoupler, carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP), which like dld-1 gene expression inhibits ATP synthesis, had no significant effect on Aβ toxicity. Proteomics data analysis revealed that beneficial effects after dld-1 suppression could be due to change in energy metabolism and activation of the pathways associated with proteasomal degradation, improved cell signaling and longevity. Thus, some features unique to dld-1 gene suppression are responsible for the therapeutic benefit. By direct genetic intervention, we have shown that acute inhibition of dld-1 gene function may be therapeutically beneficial. This result supports the hypothesis that lowering energy metabolism protects against Aβ pathogenicity and that DLD warrants further investigation as a therapeutic target.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Paul R. Ebert
- School of Biological Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
32
|
Tseng WB, Chou YS, Lu CZ, Madhu M, Lu CY, Tseng WL. Fluorescence sensing of heparin and heparin-like glycosaminoglycans by stabilizing intramolecular charge transfer state of dansyl acid-labeled AG73 peptides with glutathione-capped gold nanoclusters. Biosens Bioelectron 2021; 193:113522. [PMID: 34315066 DOI: 10.1016/j.bios.2021.113522] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022]
Abstract
Sensors that can specifically and accurately detect glycosaminoglycans are rare. Here, a dual-mode platform for fluorescence intensity and lifetime sensing of plasma heparin and fluorescence imaging of heparan sulfate proteoglycan-expressed cancer cells was developed by stabilizing the intramolecular charge transfer (ICT) state of dansyl acid-labeling AG73 (DA-AG73) peptide with glutathione-capped gold nanoclusters (GSH-AuNCs). DA-AG73 peptides, including an electron-donor dimethylamino group and an electron-withdrawing sulfonamide moiety in the labeled DA molecules, emitted weak fluorescence due to the formation of the twisted ICT excited state. The complexation of heparin with DA-AG73 peptides followed by interacting with the GSH-AuNCs could restrict the rotation of the dimethylamino groups of the labeled DA molecules, triggering the transition from their twisted ICT state to ICT excited state. As a result, the fluorescence intensity and lifetime of the labeled DA molecules in DA-AG73 peptides were gradually enhanced with increasing the heparin concentration. The proposed platform provided excellent selectivity toward heparin and heparan sulfate and exhibited two linear calibration curves for quantifying 20-800 nM and 20-1000 nM heparin in the fluorescence intensity and lifetime modes, respectively. The proposed platform was practically applied for the fluorescence intensity and lifetime determination of plasma heparin and for the selective imaging of heparan sulfate proteoglycan-expressed cells.
Collapse
Affiliation(s)
- Wei-Bin Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Yi-Shiuan Chou
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Cheng-Zong Lu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Manivannan Madhu
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, National Sun Yat-sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan; School of Pharmacy, Kaohsiung Medical University, No. 100, Shiquan 1st Road, Sanmin District, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
33
|
Bacterial Extracellular DNA Promotes β-Amyloid Aggregation. Microorganisms 2021; 9:microorganisms9061301. [PMID: 34203755 PMCID: PMC8232312 DOI: 10.3390/microorganisms9061301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/05/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease is associated with prion-like aggregation of the amyloid β (Aβ) peptide and the subsequent accumulation of misfolded neurotoxic aggregates in the brain. Therefore, it is critical to clearly identify the factors that trigger the cascade of Aβ misfolding and aggregation. Numerous studies have pointed out the association between microorganisms and their virulence factors and Alzheimer’s disease; however, their exact mechanisms of action remain unclear. Recently, we discovered a new pathogenic role of bacterial extracellular DNA, triggering the formation of misfolded Tau aggregates. In this study, we investigated the possible role of DNA extracted from different bacterial and eukaryotic cells in triggering Aβ aggregation in vitro. Interestingly, we found that the extracellular DNA of some, but not all, bacteria is an effective trigger of Aβ aggregation. Furthermore, the acceleration of Aβ nucleation and elongation can vary based on the concentration of the bacterial DNA and the bacterial strain from which this DNA had originated. Our findings suggest that bacterial extracellular DNA might play a previously overlooked role in the Aβ protein misfolding associated with Alzheimer’s disease pathogenesis. Moreover, it highlights a new mechanism of how distantly localized bacteria can remotely contribute to protein misfolding and diseases associated with this process. These findings might lead to the use of bacterial DNA as a novel therapeutic target for the prevention and treatment of Alzheimer’s disease.
Collapse
|
34
|
Li G, Zhou Y, Yang WY, Zhang C, Hong L, Jia L. Inhibitory Effects of Sulfated Polysaccharides from the Sea Cucumber Cucumaria Frondosa against Aβ40 Aggregation and Cytotoxicity. ACS Chem Neurosci 2021; 12:1854-1859. [PMID: 33999600 DOI: 10.1021/acschemneuro.1c00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Abnormal aggregation and deposition of Aβ is one of the causative agents for Alzheimer's disease. The development of inhibitors for Aβ aggregation has been considered a possible method to prevent and treat Alzheimer's disease. Edible sea cucumbers contain many bioactive molecules, including saponins, phospholipids, peptides, and polysaccharides. Herein, we report that polysaccharides extracted from sea cucumber Cucumaria frondosa could reduce the aggregation and cytotoxicity of Aβ40. By utilizing multiple biochemical and biophysical instruments, we found that the polysaccharides could inhibit the aggregation of Aβ40. A chemical kinetics analysis further suggested that the major inhibitory effects of the polysaccharides were achieved by disassembling mature fibrils, which in turn reduced the cytotoxicity of Aβ. These results suggested that the polysaccharides extracted from sea cucumber could be used as an effective inhibitor for Aβ.
Collapse
Affiliation(s)
- Gao Li
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Yu Zhou
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Wu-Yue Yang
- Yau Mathematical Sciences Center, Tsinghua University, Beijing, Beijing 100084, China
| | - Chen Zhang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| | - Liu Hong
- School of Mathematics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, China
| |
Collapse
|
35
|
Samantray S, Strodel B. The Effects of Different Glycosaminoglycans on the Structure and Aggregation of the Amyloid-β (16-22) Peptide. J Phys Chem B 2021; 125:5511-5525. [PMID: 34027669 DOI: 10.1021/acs.jpcb.1c00868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aggregates of the amyloid-β (Aβ) peptide are implicated as a causative substance in Alzheimer's disease. Molecular dynamics simulations provide valuable contributions for elucidating the conformational transitions of monomeric and aggregated forms of Aβ be it in solution or in the presence of other molecules. Here, we study the effects of four different glycosaminoglycans (GAGs), three sulfated ones and a nonsulfated one, on the aggregation of Aβ16-22. From experiments, it has been suggested that GAGs, which belong to the main components of the brain's extracellular space, favor amyloid fibril formation. Our simulation results reveal that the binding of Aβ16-22 to the GAGs is driven by electrostatic attraction between the negative GAG charges and the positively charged K16 of Aβ16-22. While these interactions have only minor effects on the GAG and Aβ16-22 conformations at the 1 Aβ16-22/1 GAG ratio, at the 2:2 stoichiometry the aggregation of Aβ16-22 is considerably changed. In solution, the aggregation of Aβ16-22 is strongly influenced by K16-E22 attraction, leading to antiparallel β-sheets. In the presence of GAGs, on the other hand, the interaction of K16 with the GAGs increases the importance of the hydrophobic interactions during Aβ16-22 aggregation, which in turn yields parallel alignments. A templating and ordering effect of the GAGs on the Aβ16-22 aggregates is observed. In summary, this study provides new insight at the atomic level on GAG-amyloid interactions, strengthening the view that sulfation of the GAGs plays a major role in this context.
Collapse
Affiliation(s)
- Suman Samantray
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany.,AICES Graduate School, RWTH Aachen University, Schinkelstraße 2, 52062 Aachen, Germany
| | - Birgit Strodel
- Institute of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Araújo AR, Castro VI, Reis RL, Pires RA. Glucosamine and Its Analogues as Modulators of Amyloid-β Toxicity. ACS Med Chem Lett 2021; 12:548-554. [PMID: 33859794 PMCID: PMC8040036 DOI: 10.1021/acsmedchemlett.0c00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 03/17/2021] [Indexed: 01/04/2023] Open
Abstract
In Alzheimer's disease (AD), amyloid-β (Aβ) oligomers are considered key mediators of synaptic dysfunction and cognitive impairment. These unstable intermediate Aβ species can interfere with different cellular organelles, leading to neuronal cell death, through the formation of Ca2+-permeable membrane pores, impairment in the levels of acetylcholine neurotransmitters, increased insulin resistance, promotion of pro-inflammatory cascades, among others. Based on a series of evidences that indicate the key role of glycosaminoglycans (GAGs) in amyloid plaque formation, we evaluated the capacity of four monosaccharides, i.e., glucosamine (GlcN), N-acetyl glucosamine (GlcNAc), glucosamine-6-sulfate (GlcN6S), and glucosamine-6-phosphate (GlcN6P), to reduce the Aβ-mediated pathological hallmarks. The tested monosaccharides, in particular, GlcN6S and GlcN6P, were able to interact with Aβ aggregates, reducing neuronal cell death, Aβ-mediated damage to the cellular membrane, acetylcholinesterase activity, insulin resistance, and pro-inflammation levels.
Collapse
Affiliation(s)
- Ana R. Araújo
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables and Biomimetics, University
of Minho, Headquarters of the European
Institute of Excellence on Tissue Engineering and Regenerative Medicine,
AvePark, Parque de Ciência e Tecnologia, Zona Industrial da
Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Vânia I.
B. Castro
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables and Biomimetics, University
of Minho, Headquarters of the European
Institute of Excellence on Tissue Engineering and Regenerative Medicine,
AvePark, Parque de Ciência e Tecnologia, Zona Industrial da
Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables and Biomimetics, University
of Minho, Headquarters of the European
Institute of Excellence on Tissue Engineering and Regenerative Medicine,
AvePark, Parque de Ciência e Tecnologia, Zona Industrial da
Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Ricardo A. Pires
- 3B’s
Research Group, I3Bs − Research Institute on Biomaterials,
Biodegradables and Biomimetics, University
of Minho, Headquarters of the European
Institute of Excellence on Tissue Engineering and Regenerative Medicine,
AvePark, Parque de Ciência e Tecnologia, Zona Industrial da
Gandra, 4805-017 Barco, Portugal
- ICVS/3B’s
− PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| |
Collapse
|
37
|
Michiels E, Rousseau F, Schymkowitz J. Mechanisms and therapeutic potential of interactions between human amyloids and viruses. Cell Mol Life Sci 2021; 78:2485-2501. [PMID: 33244624 PMCID: PMC7690653 DOI: 10.1007/s00018-020-03711-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
The aggregation of specific proteins and their amyloid deposition in affected tissue in disease has been studied for decades assuming a sole pathogenic role of amyloids. It is now clear that amyloids can also encode important cellular functions, one of which involves the interaction potential of amyloids with microbial pathogens, including viruses. Human expressed amyloids have been shown to act both as innate restriction molecules against viruses as well as promoting agents for viral infectivity. The underlying molecular driving forces of such amyloid-virus interactions are not completely understood. Starting from the well-described molecular mechanisms underlying amyloid formation, we here summarize three non-mutually exclusive hypotheses that have been proposed to drive amyloid-virus interactions. Viruses can indirectly drive amyloid depositions by affecting upstream molecular pathways or induce amyloid formation by a direct interaction with the viral surface or specific viral proteins. Finally, we highlight the potential of therapeutic interventions using the sequence specificity of amyloid interactions to drive viral interference.
Collapse
Affiliation(s)
- Emiel Michiels
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
38
|
Chowdhary S, Moschner J, Mikolajczak DJ, Becker M, Thünemann AF, Kästner C, Klemczak D, Stegemann A, Böttcher C, Metrangolo P, Netz RR, Koksch B. The Impact of Halogenated Phenylalanine Derivatives on NFGAIL Amyloid Formation. Chembiochem 2020; 21:3544-3554. [PMID: 33405360 PMCID: PMC7756607 DOI: 10.1002/cbic.202000373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/31/2020] [Indexed: 12/12/2022]
Abstract
The hexapeptide hIAPP22-27 (NFGAIL) is known as a crucial amyloid core sequence of the human islet amyloid polypeptide (hIAPP) whose aggregates can be used to better understand the wild-type hIAPP's toxicity to β-cell death. In amyloid research, the role of hydrophobic and aromatic-aromatic interactions as potential driving forces during the aggregation process is controversially discussed not only in case of NFGAIL, but also for amyloidogenic peptides in general. We have used halogenation of the aromatic residue as a strategy to modulate hydrophobic and aromatic-aromatic interactions and prepared a library of NFGAIL variants containing fluorinated and iodinated phenylalanine analogues. We used thioflavin T staining, transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) to study the impact of side-chain halogenation on NFGAIL amyloid formation kinetics. Our data revealed a synergy between aggregation behavior and hydrophobicity of the phenylalanine residue. This study introduces systematic fluorination as a toolbox to further investigate the nature of the amyloid self-assembly process.
Collapse
Affiliation(s)
- Suvrat Chowdhary
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Johann Moschner
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Dorian J. Mikolajczak
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Maximilian Becker
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Andreas F. Thünemann
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Claudia Kästner
- Federal Institute for Materials Research and Testing (BAM)Unter den Eichen 8712205BerlinGermany
| | - Damian Klemczak
- Institute of PharmacyFreie Universität BerlinKönigin-Luise-Str. 2–414195BerlinGermany
| | - Anne‐Katrin Stegemann
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| | - Christoph Böttcher
- Institute of Chemistry and Biochemistry and Core Facility BioSupraMolFreie Universität BerlinFabeckstraße 36a14195BerlinGermany
| | - Pierangelo Metrangolo
- Department of ChemistryMaterials and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. Mancinelli 720131MilanItaly
| | - Roland R. Netz
- Department of PhysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Beate Koksch
- Institute of Chemistry and BiochemistryFreie Universität BerlinArnimallee 2014195BerlinGermany
| |
Collapse
|
39
|
Townsend DJ, Middleton DA, Ashton L. Raman Spectroscopy with 2D Perturbation Correlation Moving Windows for the Characterization of Heparin-Amyloid Interactions. Anal Chem 2020; 92:13822-13828. [PMID: 32935978 DOI: 10.1021/acs.analchem.0c02390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It has been shown extensively that glycosaminoglycan (GAG)-protein interactions can induce, accelerate, and impede the clearance of amyloid fibrils associated with systemic and localized amyloidosis. Obtaining molecular details of these interactions is fundamental to our understanding of amyloid disease. Consequently, there is a need for analytical approaches that can identify protein conformational transitions and simultaneously characterize heparin interactions. By combining Raman spectroscopy with two-dimensional (2D) perturbation correlation moving window (2DPCMW) analysis, we have successfully identified changes in protein secondary structure during pH- and heparin-induced fibril formation of apolipoprotein A-I (apoA-I) associated with atherosclerosis. Furthermore, from the 2DPCMW, we have identified peak shifts and intensity variations in Raman peaks arising from different heparan sulfate moieties, indicating that protein-heparin interactions vary at different heparin concentrations. Raman spectroscopy thus reveals new mechanistic insights into the role of GAGs during amyloid fibril formation.
Collapse
Affiliation(s)
- David J Townsend
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - David A Middleton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| | - Lorna Ashton
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom
| |
Collapse
|
40
|
Alabbas A, Desai UR. Enzyme immobilization offers a robust tool to scale up the production of longer, diverse, natural glycosaminoglycan oligosaccharides. Glycobiology 2020; 30:768-773. [PMID: 32193533 DOI: 10.1093/glycob/cwaa027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/15/2020] [Accepted: 03/18/2020] [Indexed: 11/14/2022] Open
Abstract
Although structurally diverse, longer glycosaminoglycan (GAG) oligosaccharides are critical to understand human biology, few are available. The major bottleneck has been the predominant production of oligosaccharides, primarily disaccharides, upon enzymatic depolymerization of GAGs. In this work, we employ enzyme immobilization to prepare hexasaccharide and longer sequences of chondroitin sulfate in good yields with reasonable homogeneity. Immobilized chondroitinase ABC displayed good efficiency, robust operational pH range, broad thermal stability, high recycle ability and excellent distribution of products in comparison to the free enzyme. Diverse sequences could be chromatographically resolved into well-defined peaks and characterized using LC-MS. Enzyme immobilization technology could enable easier access to diverse longer GAG sequences.
Collapse
Affiliation(s)
- Alhumaidi Alabbas
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Pharmaceutical Chemistry, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Umesh R Desai
- Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, USA.,Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
41
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
42
|
Pinheiro L, Faustino C. Therapeutic Strategies Targeting Amyloid-β in Alzheimer's Disease. Curr Alzheimer Res 2020; 16:418-452. [PMID: 30907320 DOI: 10.2174/1567205016666190321163438] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/16/2019] [Accepted: 03/17/2019] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder linked to protein misfolding and aggregation. AD is pathologically characterized by senile plaques formed by extracellular Amyloid-β (Aβ) peptide and Intracellular Neurofibrillary Tangles (NFT) formed by hyperphosphorylated tau protein. Extensive synaptic loss and neuronal degeneration are responsible for memory impairment, cognitive decline and behavioral dysfunctions typical of AD. Amyloidosis has been implicated in the depression of acetylcholine synthesis and release, overactivation of N-methyl-D-aspartate (NMDA) receptors and increased intracellular calcium levels that result in excitotoxic neuronal degeneration. Current drugs used in AD treatment are either cholinesterase inhibitors or NMDA receptor antagonists; however, they provide only symptomatic relief and do not alter the progression of the disease. Aβ is the product of Amyloid Precursor Protein (APP) processing after successive cleavage by β- and γ-secretases while APP proteolysis by α-secretase results in non-amyloidogenic products. According to the amyloid cascade hypothesis, Aβ dyshomeostasis results in the accumulation and aggregation of Aβ into soluble oligomers and insoluble fibrils. The former are synaptotoxic and can induce tau hyperphosphorylation while the latter deposit in senile plaques and elicit proinflammatory responses, contributing to oxidative stress, neuronal degeneration and neuroinflammation. Aβ-protein-targeted therapeutic strategies are thus a promising disease-modifying approach for the treatment and prevention of AD. This review summarizes recent findings on Aβ-protein targeted AD drugs, including β-secretase inhibitors, γ-secretase inhibitors and modulators, α-secretase activators, direct inhibitors of Aβ aggregation and immunotherapy targeting Aβ, focusing mainly on those currently under clinical trials.
Collapse
Affiliation(s)
- Lídia Pinheiro
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| | - Célia Faustino
- iMed.ULisboa - Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto 1649-003 Lisboa, Portugal
| |
Collapse
|
43
|
Skaanning LK, Santoro A, Skamris T, Martinsen JH, D’Ursi AM, Bucciarelli S, Vestergaard B, Bugge K, Langkilde AE, Kragelund BB. The Non-Fibrillating N-Terminal of α-Synuclein Binds and Co-Fibrillates with Heparin. Biomolecules 2020; 10:E1192. [PMID: 32824376 PMCID: PMC7464290 DOI: 10.3390/biom10081192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 01/16/2023] Open
Abstract
The intrinsically disordered protein α-synuclein (aSN) is, in its fibrillated state, the main component of Lewy bodies-hallmarks of Parkinson's disease. Additional Lewy body components include glycosaminoglycans, including heparan sulfate proteoglycans. In humans, heparan sulfate has, in an age-dependent manner, shown increased levels of sulfation. Heparin, a highly sulfated glycosaminoglycan, is a relevant mimic for mature heparan sulfate and has been shown to influence aSN fibrillation. Here, we decompose the underlying properties of the interaction between heparin and aSN and the effect of heparin on fibrillation. Via the isolation of the first 61 residues of aSN, which lacked intrinsic fibrillation propensity, fibrillation could be induced by heparin, and access to the initial steps in fibrillation was possible. Here, structural changes with shifts from disorder via type I β-turns to β-sheets were revealed, correlating with an increase in the aSN1-61/heparin molar ratio. Fluorescence microscopy revealed that heparin and aSN1-61 co-exist in the final fibrils. We conclude that heparin can induce the fibrillation of aSN1-61, through binding to the N-terminal with an affinity that is higher in the truncated form of aSN. It does so by specifically modulating the structure of aSN via the formation of type I β-turn structures likely critical for triggering aSN fibrillation.
Collapse
Affiliation(s)
- Line K. Skaanning
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Angelo Santoro
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Thomas Skamris
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Jacob Hertz Martinsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy;
| | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (L.K.S.); (T.S.); (J.H.M.); (S.B.); (B.V.)
| | - Birthe B. Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Ole Maaløes vej 5, 2200 Copenhagen N, Denmark; (A.S.); (K.B.)
| |
Collapse
|
44
|
Malmberg M, Malm T, Gustafsson O, Sturchio A, Graff C, Espay AJ, Wright AP, El Andaloussi S, Lindén A, Ezzat K. Disentangling the Amyloid Pathways: A Mechanistic Approach to Etiology. Front Neurosci 2020; 14:256. [PMID: 32372895 PMCID: PMC7186396 DOI: 10.3389/fnins.2020.00256] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 03/06/2020] [Indexed: 12/23/2022] Open
Abstract
Amyloids are fibrillar protein aggregates associated with diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), type II diabetes and Creutzfeldt-Jakob disease. The process of amyloid polymerization involves three pathological protein transformations; from natively folded conformation to the cross-β conformation, from biophysically soluble to insoluble, and from biologically functional to non-functional. While amyloids share a similar cross-β conformation, the biophysical transformation can either take place spontaneously via a homogeneous nucleation mechanism (HON) or catalytically on an exogenous surface via a heterogeneous nucleation mechanism (HEN). Here, we postulate that the different nucleation pathways can serve as a mechanistic basis for an etiological classification of amyloidopathies, where hereditary forms generally follow the HON pathway, while sporadic forms follow seed-induced (prions) or surface-induced (including microbially induced) HEN pathways. Critically, the conformational and biophysical amyloid transformation results in loss-of-function (LOF) of the original natively folded and soluble protein. This LOF can, at least initially, be the mechanism of amyloid toxicity even before amyloid accumulation reaches toxic levels. By highlighting the important role of non-protein species in amyloid formation and LOF mechanisms of toxicity, we propose a generalized mechanistic framework that could help better understand the diverse etiology of amyloid diseases and offer new opportunities for therapeutic interventions, including replacement therapies.
Collapse
Affiliation(s)
- Maja Malmberg
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Oskar Gustafsson
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Sturchio
- Department of Neurology and Rehabilitation Medicine, James J and Joan A Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Caroline Graff
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Alberto J. Espay
- Department of Neurology and Rehabilitation Medicine, James J and Joan A Gardner Center for Parkinson Disease and Movement Disorders, University of Cincinnati, Cincinnati, OH, United States
| | - Anthony P. Wright
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| | - Samir El Andaloussi
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Anders Lindén
- Unit for Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Kariem Ezzat
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
45
|
Monaco A, Fraldi A. Protein Aggregation and Dysfunction of Autophagy-Lysosomal Pathway: A Vicious Cycle in Lysosomal Storage Diseases. Front Mol Neurosci 2020; 13:37. [PMID: 32218723 PMCID: PMC7079699 DOI: 10.3389/fnmol.2020.00037] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/24/2020] [Indexed: 12/13/2022] Open
Abstract
Many neurodegenerative conditions are characterized by the deposition of protein aggregates (mainly amyloid-like) in the central nervous system (CNS). In post-mitotic CNS cells protein aggregation causes cytotoxicity by interfering with various cellular functions. Mutations in different genes may directly cause protein aggregation. However, genetic factors together with aging may contribute to the onset of protein aggregation also by affecting cellular degradative functions, in particular the autophagy-lysosomal pathway (ALP). Increasing body of evidence show that ALP dysfunction and protein aggregation are functionally interconnected and induce each other during neurodegenerative processes. We will summarize the findings supporting these concepts by focusing on lysosomal storage diseases (LSDs), a class of metabolic inherited conditions characterized by global lysosomal dysfunction and often associated to a severe neurodegenerative course. We propose a model by which the inherited lysosomal defects initiate aggregate-prone protein deposition, which, in turns, worsen ALP degradation function, thus generating a vicious cycle, which boost neurodegenerative cascades.
Collapse
Affiliation(s)
- Antonio Monaco
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Alessandro Fraldi
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Translational Medicine, University of Naples "Federico II," Naples, Italy
| |
Collapse
|
46
|
Viana GM, Gonzalez EA, Alvarez MMP, Cavalheiro RP, do Nascimento CC, Baldo G, D’Almeida V, de Lima MA, Pshezhetsky AV, Nader HB. Cathepsin B-associated Activation of Amyloidogenic Pathway in Murine Mucopolysaccharidosis Type I Brain Cortex. Int J Mol Sci 2020; 21:ijms21041459. [PMID: 32093427 PMCID: PMC7073069 DOI: 10.3390/ijms21041459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/12/2020] [Accepted: 02/12/2020] [Indexed: 01/28/2023] Open
Abstract
Mucopolysaccharidosis type I (MPS I) is caused by genetic deficiency of α-l-iduronidase and impairment of lysosomal catabolism of heparan sulfate and dermatan sulfate. In the brain, these substrates accumulate in the lysosomes of neurons and glial cells, leading to neuroinflammation and neurodegeneration. Their storage also affects lysosomal homeostasis-inducing activity of several lysosomal proteases including cathepsin B (CATB). In the central nervous system, increased CATB activity has been associated with the deposition of amyloid plaques due to an alternative pro-amyloidogenic processing of the amyloid precursor protein (APP), suggesting a potential role of this enzyme in the neuropathology of MPS I. In this study, we report elevated levels of protein expression and activity of CATB in cortex tissues of 6-month-old MPS I (Idua -/- mice. Besides, increased CATB leakage from lysosomes to the cytoplasm of Idua -/- cortical pyramidal neurons was indicative of damaged lysosomal membranes. The increased CATB activity coincided with an elevated level of the 16-kDa C-terminal APP fragment, which together with unchanged levels of β-secretase 1 was suggestive for the role of this enzyme in the amyloidogenic APP processing. Neuronal accumulation of Thioflavin-S-positive misfolded protein aggregates and drastically increased levels of neuroinflammatory glial fibrillary acidic protein (GFAP)-positive astrocytes and CD11b-positive activated microglia were observed in Idua -/- cortex by confocal fluorescent microscopy. Together, our results point to the existence of a novel CATB-associated alternative amyloidogenic pathway in MPS I brain induced by lysosomal storage and potentially leading to neurodegeneration.
Collapse
Affiliation(s)
- Gustavo Monteiro Viana
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
- Correspondence: (G.M.V); (A.V.P); Tel.: +55-11-55764438 (ext. 1188) (G.M.V.); Tel.: +1 (514)-345-4931 (ext. 2736) (A.V.P.)
| | - Esteban Alberto Gonzalez
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil; (E.A.G.); (G.B.)
| | - Marcela Maciel Palacio Alvarez
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| | - Renan Pelluzzi Cavalheiro
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| | - Cinthia Castro do Nascimento
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04024-002, Brazil; (C.C.d.N.); (V.D.)
| | - Guilherme Baldo
- Gene Therapy Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS 90035-903, Brazil; (E.A.G.); (G.B.)
| | - Vânia D’Almeida
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04024-002, Brazil; (C.C.d.N.); (V.D.)
| | - Marcelo Andrade de Lima
- Molecular & Structural Biosciences, School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire ST5 5BG, UK;
| | - Alexey V. Pshezhetsky
- Division of Medical Genetics, CHU Ste-Justine Research Centre, Montreal, QC H3T 1C5, Canada
- Correspondence: (G.M.V); (A.V.P); Tel.: +55-11-55764438 (ext. 1188) (G.M.V.); Tel.: +1 (514)-345-4931 (ext. 2736) (A.V.P.)
| | - Helena Bonciani Nader
- Department of Biochemistry, Universidade Federal de São Paulo (UNIFESP), São Paulo, SP 04044-020, Brazil; (M.M.P.A.); (R.P.C.); (H.B.N.)
| |
Collapse
|
47
|
The Amyloid Inhibitor CLR01 Relieves Autophagy and Ameliorates Neuropathology in a Severe Lysosomal Storage Disease. Mol Ther 2020; 28:1167-1176. [PMID: 32087148 PMCID: PMC7132627 DOI: 10.1016/j.ymthe.2020.02.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are inherited disorders caused by lysosomal deficiencies and characterized by dysfunction of the autophagy-lysosomal pathway (ALP) often associated with neurodegeneration. No cure is currently available to treat neuropathology in LSDs. By studying a mouse model of mucopolysaccharidosis (MPS) type IIIA, one of the most common and severe forms of LSDs, we found that multiple amyloid proteins including α-synuclein, prion protein (PrP), Tau, and amyloid β progressively aggregate in the brain. The amyloid deposits mostly build up in neuronal cell bodies concomitantly with neurodegeneration. Treating MPS-IIIA mice with CLR01, a “molecular tweezer” that acts as a broad-spectrum inhibitor of amyloid protein self-assembly reduced lysosomal enlargement and re-activates autophagy flux. Restoration of the ALP was associated with reduced neuroinflammation and amelioration of memory deficits. Together, these data provide evidence that brain deposition of amyloid proteins plays a gain of neurotoxic function in a severe LSD by affecting the ALP and identify CLR01 as new potent drug candidate for MPS-IIIA and likely for other LSDs.
Collapse
|
48
|
Gallardo R, Ranson NA, Radford SE. Amyloid structures: much more than just a cross-β fold. Curr Opin Struct Biol 2020; 60:7-16. [PMID: 31683043 DOI: 10.1016/j.sbi.2019.09.001] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023]
Abstract
In recent years our understanding of amyloid structure has been revolutionised by innovations in cryo-electron microscopy, electron diffraction and solid-state NMR. These techniques have yielded high-resolution structures of fibrils isolated from patients with neurodegenerative disease, as well as those formed from amyloidogenic proteins in vitro. The results not only show the expected cross-β amyloid structure, but also reveal that the amyloid fold is unexpectedly diverse and complex. Here, we discuss this diversity, highlighting dynamic regions, ligand binding motifs, cavities, non-protein components, and structural polymorphism. Collectively, these variations combine to allow the generic amyloid fold to be realised in three dimensions in different ways, and this diversity may be related to the roles of fibrils in disease.
Collapse
Affiliation(s)
- Rodrigo Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
49
|
Influence of low-molecular-weight aggregates on aggregate growth kinetics and physical properties of solid-state proteins during storage. Eur J Pharm Biopharm 2020; 146:10-18. [DOI: 10.1016/j.ejpb.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 01/11/2023]
|
50
|
Diociaiuti M, Bombelli C, Zanetti-Polzi L, Belfiore M, Fioravanti R, Macchia G, Giordani C. The Interaction between Amyloid Prefibrillar Oligomers of Salmon Calcitonin and a Lipid-Raft Model: Molecular Mechanisms Leading to Membrane Damage, Ca 2+-Influx and Neurotoxicity. Biomolecules 2019; 10:biom10010058. [PMID: 31905804 PMCID: PMC7022306 DOI: 10.3390/biom10010058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/19/2019] [Accepted: 12/27/2019] [Indexed: 12/14/2022] Open
Abstract
To investigate the interaction between amyloid assemblies and “lipid-rafts”, we performed functional and structural experiments on salmon calcitonin (sCT) solutions rich in prefibrillar oligomers, proto- and mature-fibers interacting with liposomes made of monosialoganglioside-GM1 (4%), DPPC (48%) and cholesterol (48%). To focus on the role played by electrostatic forces and considering that sCT is positive and GM1 is negative at physiologic pH, we compared results with those relative to GM1-free liposomes while, to assess membrane fluidity effects, with those relative to cholesterol-free liposomes. We investigated functional effects by evaluating Ca2+-influx in liposomes and viability of HT22-DIFF neurons. Only neurotoxic solutions rich in unstructured prefibrillar oligomers were able to induce Ca2+-influx in the “lipid-rafts” model, suggesting that the two phenomena were correlated. Thus, we investigated protein conformation and membrane modifications occurring during the interaction: circular dichroism showed that “lipid-rafts” fostered the formation of β-structures and energy filtered-transmission electron microscopy that prefibrillar oligomers formed pores, similar to Aβ did. We speculate that electrostatic forces between the positive prefibrillar oligomers and the negative GM1 drive the initial binding while the hydrophobic profile and flexibility of prefibrillar oligomers, together with the membrane fluidity, are responsible for the subsequent pore formation leading to Ca2+-influx and neurotoxicity.
Collapse
Affiliation(s)
- Marco Diociaiuti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
- Correspondence: ; Tel.: +39-06-49902981
| | - Cecilia Bombelli
- CNR-Istituto per i Sistemi Biologici, UOS di Roma, c/o Dipartimento di Chimica, Sapienza Università di Roma, I-00185 Roma, Italy;
| | - Laura Zanetti-Polzi
- Dipartimento di Fisica e Scienze Chimiche, Università dell’Aquila, via Vetoio (Coppito 1), 67010 L’Aquila, Italy;
| | - Marcello Belfiore
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
| | - Raoul Fioravanti
- Centro Nazionale Malattie Rare, Istituto Superiore di Sanità, I-00161 Roma, Italy; (M.B.); (R.F.)
- Dipartimento di Chimica, Sapienza Università di Roma, I-00185 Roma, Italy
| | - Gianfranco Macchia
- Centro Grandi Strumentazioni e Core Facilities, Istituto Superiore di Sanità, I-00161 Roma, Italy;
| | - Cristiano Giordani
- Grupo Productos Naturales Marinos, Facultad de Ciencias Farmacéuticas y Alimentarias, Instituto de Física, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia;
| |
Collapse
|