1
|
Li S, Yin M, Wang P, Gao L, Lv F, Yang R, Li Y, Wang Q, Li L, Liu Y, Wang S. Phenolic Compounds and Antioxidant Capacity Comparison of Wild-Type and Yellow-Leaf gl1 Mutant of Lagerstroemia indica. PLANTS (BASEL, SWITZERLAND) 2024; 13:315. [PMID: 38276772 PMCID: PMC10818265 DOI: 10.3390/plants13020315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND The yellow-leaf gl1 mutant of Lagerstroemia indica exhibits an altered phenylpropanoid metabolism pathway compared to wild-type (WT). However, details on the metabolites associated with leaf color variation, including color-specific metabolites with bioactive constituents, are not fully understood. METHODS Chemical and metabolomics approaches were used to compare metabolite composition and antioxidant capacity between the gl1 mutant and WT leaves. RESULTS The mutant exhibited an irregular xylem structure with a significantly lower phenolic polymer lignin content and higher soluble phenolic compounds. Untargeted metabolomics analysis identified phenolic compounds, particularly lignans, as key differential metabolites between gl1 and WT, with a significant increase in the mutant. The neolignan derivative balanophonin-4-O-D-glu was identified as a characteristic metabolite in the gl1 mutant. The soluble phenolic compounds of the gl1 mutant exhibited higher FRAP, ABTS, DPPH, and hydroxyl radical scavenging activity than in WT. Correlation analysis showed a positive relationship between antioxidant capacity and phenolic compounds in L. indica. CONCLUSIONS Metabolites associated with leaf color variation in the L. indica yellow-leaf gl1 mutant demonstrated high antioxidant capacity, particularly in scavenging hydroxyl radicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Shuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, No. 1 Qianhu Houcun, Nanjing 210014, China; (S.L.); (M.Y.); (P.W.); (L.G.); (F.L.); (R.Y.); (Y.L.); (Q.W.); (L.L.); (Y.L.)
| |
Collapse
|
2
|
Rohit Singh T, Ezhilarasan D, Karthick M, Shree Harini K. Lagerstroemia speciosa Pers. (Lythraceae) Ethanolic Extract Attenuates Isoniazid-Induced Oxidative Stress and Hepatic Inflammation in Rats. Cureus 2024; 16:e51609. [PMID: 38313882 PMCID: PMC10837052 DOI: 10.7759/cureus.51609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 02/06/2024] Open
Abstract
Background Drug-induced liver injury is a common cause of acute liver failure. Isoniazid (INH) is used as a first-line treatment for tuberculosis. Clinical and experimental studies have reported abnormal liver function after INH therapy. Lagerstroemia speciosa Pers., commonly known as banaba, has been traditionally used to treat various ailments including diabetes and obesity due to its antioxidant and anti-inflammatory properties. Aim To investigate the hepatoprotective effect of ethanolic banaba leaf extract (EBLE) against INH-induced hepatotoxicity in rats. Materials and methods A total of 30 male Wistar albino rats (150 - 200 g) were divided into five groups (n = 6). Group I rats were served as a control and were administered dimethyl sulfoxide for the first 30 days and water for the next 30 consecutive days. Group II rats were administered INH (50 mg/kg, p.o.) once in the first 30 consecutive days and sacrificed at Day 30. Group III rats were administered INH for 30 consecutive days and left without treatment for the next 30 days. In Groups IV and V, rats were post-treated orally with EBLE 250 and 500 mg/kg, p.o. (0.3 ml/rat) for 30 days after INH administration. At the end of Day 60, the remaining group of animals were sacrificed. The blood and liver tissues were collected. The marker enzymes of hepatotoxicity, oxidative stress markers, inflammatory markers, and histopathology were analyzed. Results INH administration induced significant elevation of marker enzymes (aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase, bilirubin, gamma-glutamyl transpeptidase) of hepatotoxicity in the serum. This treatment also increased lipid peroxidation and proinflammatory marker expression (tumor necrosis factor-alpha, transforming growth factor-beta, and nuclear factor kappa B (NF-κB) except inhibitor of NF-κB) and decreased antioxidants such superoxide dismutase, catalase, and glutathione in the liver tissue. All these abnormalities were significantly mitigated after treatment with EBLE. Conclusion The results of this study suggest that EBLE can be used for INH-induced hepatotoxicity.
Collapse
Affiliation(s)
- T Rohit Singh
- Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Devaraj Ezhilarasan
- Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Munusamy Karthick
- Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthik Shree Harini
- Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
3
|
Orabi MAA, Orabi EA, Awadh AAA, Alshahrani MM, Abdel-Wahab BA, Sakagami H, Hatano T. New Megastigmane and Polyphenolic Components of Henna Leaves and Their Tumor-Specific Cytotoxicity on Human Oral Squamous Carcinoma Cell Lines. Antioxidants (Basel) 2023; 12:1951. [PMID: 38001804 PMCID: PMC10669829 DOI: 10.3390/antiox12111951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Polyphenols have a variety of phenolic hydroxyl and carbonyl functionalities that enable them to scavenge many oxidants, thereby preserving the human redox balance and preventing a number of oxidative stress-related chronic degenerative diseases. In our ongoing investigation of polyphenol-rich plants in search of novel molecules, we resumed the investigation of Lawsonia inermis L. (Lythraceae) or henna, a popular ancient plant with aesthetic and therapeutic benefits. The leaves' 70% aq acetone extract was fractionated on a Diaion HP-20 column with different ratios of H2O/an organic solvent. Multistep gel chromatographic fractionation and HPLC purification of the Diaion 75% aq MeOH and MeOH fractions led to a new compound (1) along with tannin-related metabolites, benzoic acid (2), benzyl 6'-O-galloyl-β-D-glucopyranoside (3), and ellagic acid (4), which are first isolated from henna. Repeating the procedures on the Diaion 50% aq MeOH eluate led to the first-time isolation of two O-glucosidic ellagitannins, heterophylliin A (5), and gemin D (6), in addition to four known C-glycosidic ellagitannins, lythracin D (7), pedunculagin (8), flosin B (9), and lagerstroemin (10). The compound structures were determined through intensive spectroscopic investigations, including HRESIMS, 1D (1H and 13C) and 2D (1H-1H COSY, HSQC, HMBC, and NOESY) NMR, UV, [α]D, and CD experiments. The new structure of 1 was determined to be a megastigmane glucoside gallate; its biosynthesis from gallic acid and a β-ionone, a degradative product of the common metabolite β-carotin, was highlighted. Cytotoxicity investigations of the abundant ellagitannins revealed that lythracin D2 (7) and pedunculagin (8) are obviously more cytotoxic (tumor specificity = 2.3 and 2.8, respectively) toward oral squamous cell carcinoma cell lines (HSC-2, HSC-4, and Ca9-22) than normal human oral cells (HGF, HPC, and HPLF). In summary, Lawsonia inermis is a rich source of anti-oral cancer ellagitannins. Also, the several discovered polyphenolics highlighted here emphasize the numerous biological benefits of henna and encourage further clinical studies to profit from their antioxidant properties against oxidative stress-related disorders.
Collapse
Affiliation(s)
- Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 66454, Saudi Arabia
| | - Esam A. Orabi
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montréal, QC H4B 1R6, Canada
| | - Ahmed Abdullah Al Awadh
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 66454, Saudi Arabia; (A.A.A.A.); (M.M.A.)
| | - Mohammed Merae Alshahrani
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Najran University, Najran 66454, Saudi Arabia; (A.A.A.A.); (M.M.A.)
| | - Basel A. Abdel-Wahab
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 64462, Saudi Arabia;
| | - Hiroshi Sakagami
- Meikai University Research Institute of Odontology (M-RIO), 1-1 Keyakidai, Saitama 350-0283, Japan;
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Tsushima, Okayama 700-8530, Japan;
| |
Collapse
|
4
|
Yang LY, Yi P, Chen JL, Li YH, Qiu JL, Wang ZY, Fu M, Yuan CM, Huang LJ, Hao XJ, Gu W. Chemical Constituents of Primulina eburnea (Gesneriaceae) and Their Cytotoxic Activities. Chem Biodivers 2023; 20:e202300248. [PMID: 37080916 DOI: 10.1002/cbdv.202300248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/22/2023]
Abstract
Two new ursane-type triterpenes, eburnealactones A and B (1 and 2), one new flavonoid, eburneatin A (6), and one new phenylethanoid glycoside, chiritoside D (7), along with 9 known compounds (3-5, 8-13) were isolated from the whole plant of Primulina eburnea. Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, and HR-ESI-MS). All the compounds were evaluated for their cytotoxic activities. Compound 1 showed significant cytotoxic activities against MKN-45 cell lines and 5637 cell lines with the IC50 values of 9.57 μM and 8.30 μM, respectively. Compound 1 exhibited moderate cytotoxic activities against A549 and PATU8988T cell lines with the IC50 values of 30.70 μM and 38.22 μM, respectively. Compound 6 exhibited moderate cytotoxic activities against MKN-45, HCT116, PATU8988T, 5637 and A-673 cell lines with the IC50 values of 19.69 μM, 16.44 μM, 18.07 μM, 11.51 μM and 18.15 μM, respectively. Compound 5 showed moderate cytotoxic activities against A549 cell lines with the IC50 values of 24.06 μM.
Collapse
Affiliation(s)
- Li-Yuan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- School of pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550014, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Jun-Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yu-Huan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jue-Lin Qiu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Zhao-Yang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Mao Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Lie-Jun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Research Unit of Chemical Biology of Natural Anti-virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| |
Collapse
|
5
|
Structural elucidation, antioxidant and hepatoprotective activities of chemical composition from Jinsi Huangju (Chrysanthemum morifolium) flowers. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
6
|
Fu L, Pei D, Yu M, Li LY, Jia HM, Zhang HW, Shang H, Yu SS, Zhang T, Zou ZM. New caffeoyl derivatives from Elephantopus scaber. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2022; 24:713-721. [PMID: 34647509 DOI: 10.1080/10286020.2021.1974005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Three new caffeoyl derivatives (1-3), together with two known ones (4-5), were isolated from the whole plant of Elephantopus scaber Linn. The structures of the new compounds were elucidated using detailed spectroscopic analysis. Compound 4 was obtained and its NMR data were given for the first time. All isolates were evaluated for their anti-inflammatory activity against lipopolysaccharide (LPS)-stimulated nitric oxide (NO) production and pro-inflammatory cytokines release in RAW 264.7 cells. Compounds 2-5 showed mild inhibitory activities with IC50 values ranging from 64.78 to 87.21 μM, and 3-4 could inhibit LPS-induced tumor necrosis factor-α (TNF-α) production.
Collapse
Affiliation(s)
- Lu Fu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Di Pei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ling-Yu Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Hai Shang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Shi-Shan Yu
- Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100150, China
| | - Tao Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
7
|
Chen F, Huang SY, Xiang SQ, Qiao XX, Liao GC, Liu ZQ, Zhou H, Wu P. Pubescenosides Q-R, two new phenolic glycosides from Ilex pubescens. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2021; 23:363-370. [PMID: 32162545 DOI: 10.1080/10286020.2020.1737858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Two new phenolic glycosides (1-2), along with six existing compounds (3-8), were isolated from the ethanolic extract of Ilex pubescens roots, a traditional folk medicine. These structures were determined using HR-ESI-MS, IR, UV, and NMR (including 1 D, 2 D-NMR). The anti-inflammatory activities of three phenolic glycosides (1-3) were evaluated in the human HepG2 cell lines. The results showed that compound 3 could induce P-gp and BCRP expression through the Nrf2-mediated pathway.[Formula: see text].
Collapse
Affiliation(s)
- Fang Chen
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shi-Yun Huang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Shu-Qing Xiang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Xiao-Xu Qiao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Guo-Chao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| | - Zhong-Qiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Hua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau 999078, China
| | - Peng Wu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, China
| |
Collapse
|
8
|
Guo S, Ren X, He K, Chen X, Zhang S, Roller M, Zheng B, Zheng Q, Ho CT, Bai N. The anti-diabetic effect of eightLagerstroemia speciosaleaf extracts based on the contents of ellagitannins and ellagic acid derivatives. Food Funct 2020; 11:1560-1571. [DOI: 10.1039/c9fo03091c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Anti-diabetic effects of eight extracts from leaves ofL. speciosausing different manufacturing processes based on the contents of active ellagitannins and inhibitory ellagic acid derivatives.
Collapse
Affiliation(s)
- Sen Guo
- College of Food Science and Technology
- Northwest University
- Xi'an
- China
- College of Chemical Engineering
| | - Xiameng Ren
- College of Food Science and Technology
- Northwest University
- Xi'an
- China
| | - Kan He
- Herbalife International of America
- Torrance
- USA
| | - Xiaozhuo Chen
- Department of Biomedical Sciences and Edison Biotechnology Institute
- Ohio University
- Athens
- USA
| | - Shanshan Zhang
- College of Chemical Engineering
- Department of Pharmaceutical Engineering
- Northwest University
- Xi'an
- China
| | | | | | - Qunyi Zheng
- Herbalife International of America
- Torrance
- USA
| | - Chi-Tang Ho
- Department of Food Science
- Rutgers University
- New Brunswick
- USA
| | - Naisheng Bai
- College of Food Science and Technology
- Northwest University
- Xi'an
- China
| |
Collapse
|
9
|
Mousa AM, El-Sammad NM, Abdel-Halim AH, Anwar N, Khalil WKB, Nawwar M, Hashim AN, Elsayed EA, Hassan SK. Lagerstroemia speciosa (L.) Pers Leaf Extract Attenuates Lung Tumorigenesis via Alleviating Oxidative Stress, Inflammation and Apoptosis. Biomolecules 2019; 9:E871. [PMID: 31842482 PMCID: PMC6995620 DOI: 10.3390/biom9120871] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
One of the major etiological factors that account for lung cancer is tobacco use. Benzo(a)pyrene [B(a)P], one of the main constituents of tobacco smoke, has a key role in lung carcinogenesis. The present study was conducted to investigate the cytotoxicity of an aqueous ethanolic extract of Lagerstroemia speciosa (L.) Pers leaves (LLE) on human lung adenocarcinoma cells (A549), as well as its in vivo antitumor effect on a lung tumorigenesis mice model. Our results revealed that LLE possesses cytotoxic activity against the A549 cell line. Mice orally administered B(a)P (50 mg/kg body weight) showed an increase in relative lung weight with subsequent decrease in final body weight. Serum levels of tumor marker enzymes AHH, ADA and LDH and the inflammatory mediator NF-κB increased, while total antioxidant capacity (TAC) decreased. In addition, we observed the increased activity of metalloproteinases (MMP-2 and MMP-12) and levels of the tumor angiogenesis marker VEFG and the lipid peroxidation marker MDA, as well as decreased levels of the non-enzymatic antioxidant GSH and enzymatic antioxidants CAT and GSH-Px in lung tissues. Moreover, B(a)P administration up-regulated the expression of the COX-2 gene, pro-inflammatory cytokines TNF-α and IL-6, and an anti-apoptotic gene Bcl-2, and at the same time down-regulated expression of pro-apoptotic genes BAX and caspase-3 and the p53 gene. Pre- and post-treatment with LLE (250 mg/kg body weight) attenuated all these abnormalities. Histopathological observations verified the protective effect of LLE. Overall, the present data positively confirm the potent antitumor effect of L. speciosa leaves against lung tumorigenesis.
Collapse
Affiliation(s)
- Amria M. Mousa
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Nermin M. El-Sammad
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Abeer H. Abdel-Halim
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| | - Nayera Anwar
- Pathology Department, National Cancer Institute, Cairo University, Cairo 12796, Egypt
| | - Wagdy K. B. Khalil
- Cell Biology Department, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Mahmoud Nawwar
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo 12622, Egypt
| | - Amani N. Hashim
- Phytochemistry and Plant Systematics Department, National Research Centre, Cairo 12622, Egypt
| | - Elsayed A. Elsayed
- Zoology Department, Bioproducts Research Chair, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Chemistry of Natural and Microbial Products Department, National Research Centre, Cairo 12622, Egypt
| | - Sherien K. Hassan
- Biochemistry Department, National Research Centre, Dokki, Cairo 12622, Egypt; (A.M.M.); (N.M.E.-S.); (A.H.A.-H.); (S.K.H.)
| |
Collapse
|
10
|
Caffeoyl glucosides from Nandina domestica inhibit LPS-induced endothelial inflammatory responses. Bioorg Med Chem Lett 2015; 25:5367-71. [DOI: 10.1016/j.bmcl.2015.09.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 09/09/2015] [Accepted: 09/12/2015] [Indexed: 12/13/2022]
|