1
|
Zimnitskiy NS, Barkov A, Kochnev IA, Kutyashev I, Korotaev VY, Sosnovskikh V. Highly diastereoselective annulation of 2-substituted 3-nitro-2H-chromenes with hemicurcuminoids and curcuminoids via a double and triple Michael reaction cascade. NEW J CHEM 2022. [DOI: 10.1039/d2nj02019j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The K2CO3-catalysed double Michael addition of (E)-1,5-diaryl- and 1-alkyl-5-arylpent-4-ene-1,3-diones to 2-trifluoromethyl- and 2-phenyl-substituted 3-nitro-2H-chromenes in dichloromethane at room temperature for 48 h results in 10-aroyl(acyl)-7-aryl-6a-nitro-6,6a,7,8,10,10a-hexahydro-9H-benzo[c]chromen-9-ones in 75-98% yields as individual...
Collapse
|
2
|
Liang Y, Kan C, Barve BD, Kuo Y, Fang H, Li W. Metal‐Free, Base‐Promoted, Tandem Pericyclic Reaction: A One‐Pot Approach for Cycloheptane‐Annelated Chromones from γ‐Alkynyl‐1,3‐Diketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yi‐En Liang
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei 10608 Taiwan, R.O.C
| | - Chih‐Yu Kan
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| | - Balaji D. Barve
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
- Department of Chemistry National Taiwan Normal University Taipei 10610 Taiwan, R.O.C
| | - Yao‐Haur Kuo
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| | - Hsu‐Wei Fang
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei 10608 Taiwan, R.O.C
| | - Wen‐Tai Li
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan, R.O.C
| |
Collapse
|
3
|
Patil VM, Masand N, Verma S, Masand V. Chromones: Privileged scaffold in anticancer drug discovery. Chem Biol Drug Des 2021; 98:943-953. [PMID: 34519163 DOI: 10.1111/cbdd.13951] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
In the design and discovery of anticancer drugs, various natural heterocyclic scaffolds have attracted considerable interest as privileged structures. For rational drug design, some of the natural scaffolds such as chromones have exhibited wide acceptability due to their drug-like properties. Among the approved anticancer drugs, the scaffolds with high selectivity for a small group of closely related targets are of importance. In the development of selective anticancer agents, the natural, as well as synthetic, can generate highly selective compounds toward cancer targets. The present manuscript includes more particularly the development of cancer inhibitors incorporating the chromone scaffold, with a strong emphasis on their molecular interactions in the anticancer mechanism. It also includes the structure-activity relationship studies and related examples of lead optimization.
Collapse
Affiliation(s)
- Vaishali M Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, India
| | - Neeraj Masand
- Department of Pharmacy, Lala Lajpat Rai Memorial Medical College, Meerut, Uttar Pradesh, India
| | - Saroj Verma
- Department of Pharmaceutical Chemistry, SGT University, Gurugram, Haryana, India
| | - Vijay Masand
- Department of Chemistry, Vidya Bharati College, Amravati, Maharashtra, India
| |
Collapse
|
4
|
Acenaphthenequinone-Based Stabilized Azomethine Ylides in (3+2) Cycloaddition Reactions with 1,5-diarylpent-4-ene-1,3-diones. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02978-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Virieux D, Delogu F, Porcheddu A, García F, Colacino E. Mechanochemical Rearrangements. J Org Chem 2021; 86:13885-13894. [PMID: 34259516 DOI: 10.1021/acs.joc.1c01323] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molecular rearrangements are a powerful tool for constructing complex structures in an atom- and step-economic manner, translating multistep transformations into an intrinsically more sustainable process. Mechanochemical molecular rearrangements become an even more appealing eco-friendly synthetic approach, especially for preparing active pharmaceutical ingredients (APIs) and natural products. Still in their infancy, rearrangements promoted by mechanochemistry represent a promising approach for chemists to merge molecular diversity and green chemistry perspectives toward more selective and efficient syntheses with a reduced environmental footprint.
Collapse
Affiliation(s)
- David Virieux
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34296, France
| | - Francesco Delogu
- Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Universita degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Andrea Porcheddu
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Cittadella Universitaria, 09042 Monserrato, 09028 Cagliari, Italy
| | - Felipe García
- School of Physical and Mathematical Sciences, Division of Chemistry and Biological Chemistry, 21 Nanyang Link, 63737 Singapore
| | | |
Collapse
|
6
|
Vashisth N, Sharma SP, Kumar S, Aruna. One-Pot Green Synthesis of 2-Hydroxybenzoyl(cinnamoyl)methanes and 2-Styrylchromones Using Dual-Frequency Ultrasonication. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428020120155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Abidizadegan M, Peltomaa E, Blomster J. The Potential of Cryptophyte Algae in Biomedical and Pharmaceutical Applications. Front Pharmacol 2021; 11:618836. [PMID: 33603668 PMCID: PMC7884888 DOI: 10.3389/fphar.2020.618836] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/31/2020] [Indexed: 01/28/2023] Open
Abstract
Microalgae produce a variety of bioactive components that provide benefits to human and animal health. Cryptophytes are one of the major groups of microalgae, with more than 20 genera comprised of 200 species. Recently, cryptophytes have attracted scientific attention because of their characteristics and biotechnological potential. For example, they are rich in a number of chemical compounds, such as fatty acids, carotenoids, phycobiliproteins and polysaccharides, which are mainly used for food, medicine, cosmetics and pharmaceuticals. This paper provides a review of studies that assess protective algal compounds and introduce cryptophytes as a remarkable source of bioactive components that may be usable in biomedical and pharmaceutical sciences.
Collapse
Affiliation(s)
- Maryam Abidizadegan
- Environmental Laboratory, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Elina Peltomaa
- Institute of Atmospheric and Earth System Research (INAR)/Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Jaanika Blomster
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Liang Y, D. Barve B, Kuo Y, Fang H, Kuo T, Li W. Metal‐Free, DBU‐Mediated, Microwave‐Assisted Synthesis of Benzo[
c
]xanthones by Tandem Reactions of Alkynyl‐1,3‐diketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001169] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yi‐En Liang
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan R.O.C
| | - Balaji D. Barve
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan R.O.C
| | - Yao‐Haur Kuo
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan R.O.C
| | - Hsu‐Wei Fang
- Department of Chemical Engineering and Biotechnology National Taipei University of Technology Taipei 10608 Taiwan R.O.C
| | - Ting‐Shen Kuo
- Department of Chemistry National Taiwan Normal University Taipei 10610 Taiwan R.O.C
| | - Wen‐Tai Li
- National Research Institute of Chinese Medicine Ministry of Health and Welfare Taipei 11221 Taiwan R.O.C
| |
Collapse
|
9
|
1,5-Diarylpent-4-ene-1,3-diones in the synthesis of spiro[(thia)pyrrolizidine-3,3'-oxindoles] and 1,3-diaryl-5-spiro[oxindole-3,3'-pyrrolizidin-2'-yl]-1H-pyrazoles. Chem Heterocycl Compd (N Y) 2021. [DOI: 10.1007/s10593-021-02871-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Li W, Chen HQ, Wang H, Mei WL, Dai HF. Natural products in agarwood and Aquilaria plants: chemistry, biological activities and biosynthesis. Nat Prod Rep 2020; 38:528-565. [PMID: 32990292 DOI: 10.1039/d0np00042f] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Covering: Up to the end of 2019.Agarwood is a resinous portion of Aquilaria trees, which is formed in response to environmental stress factors such as physical injury or microbial attack. It is very sought-after among the natural incenses, as well as for its medicinal properties in traditional Chinese and Ayurvedic medicine. Interestingly, the chemical constituents of agarwood and healthy Aquilaria trees are quite different. Sesquiterpenes and 2-(2-phenethyl)chromones with diverse scaffolds commonly accumulate in agarwood. Similar structures have rarely been reported from the original trees that mainly contain flavonoids, benzophenones, xanthones, lignans, simple phenolic compounds, megastigmanes, diterpenoids, triterpenoids, steroids, alkaloids, etc. This review summarizes the chemical constituents and biological activities both in agarwood and Aquilaria trees, and their biosynthesis is discussed in order to give a comprehensive overview of the research progress on agarwood.
Collapse
Affiliation(s)
- Wei Li
- Hainan Engineering Research Center of Agarwood, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China.
| | | | | | | | | |
Collapse
|
11
|
Zimnitskiy NS, Barkov AY, Ulitko MV, Kutyashev IB, Korotaev VY, Sosnovskikh VY. An expedient synthesis of novel spiro[indenoquinoxaline-pyrrolizidine]-pyrazole conjugates with anticancer activity from 1,5-diarylpent-4-ene-1,3-diones through the 1,3-dipolar cycloaddition/cyclocondensation sequence. NEW J CHEM 2020. [DOI: 10.1039/d0nj02817g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A highly regio- and stereoselective two-stage route for the synthesis of spiro[indenoquinoxaline-pyrrolizidine]-pyrazole hybrids with anticancer activity has been developed.
Collapse
Affiliation(s)
- Nikolay S. Zimnitskiy
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | - Alexey Yu. Barkov
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | - Maria V. Ulitko
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | - Igor B. Kutyashev
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | - Vladislav Yu. Korotaev
- Institute of Natural Sciences and Mathematics
- Ural Federal University
- Ekaterinburg
- Russian Federation
| | | |
Collapse
|
12
|
Santos CMM, Silva AMS. An Overview of 2-Styrylchromones: Natural Occurrence, Synthesis, Reactivity and Biological Properties. European J Org Chem 2017. [DOI: 10.1002/ejoc.201700003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Clementina M. M. Santos
- School of Agriculture; Polytechnic Institute of Bragança; Campus de Santa Apolónia 5300-253 Bragança Portugal
- Department of Chemistry; QOPNA &University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| | - Artur M. S. Silva
- Department of Chemistry; QOPNA &University of Aveiro; Campus de Santiago 3810-193 Aveiro Portugal
| |
Collapse
|
13
|
Renewable Green Platform Chemicals for Polymers. Molecules 2017; 22:molecules22030376. [PMID: 28264520 PMCID: PMC6155402 DOI: 10.3390/molecules22030376] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 02/21/2017] [Accepted: 02/22/2017] [Indexed: 11/17/2022] Open
|
14
|
|