1
|
Takahashi H, Borrelli R, Gelin MF, Chen L. Finite temperature dynamics in a polarized sub-Ohmic heat bath: A hierarchical equations of motion-tensor train study. J Chem Phys 2024; 160:164106. [PMID: 38656440 DOI: 10.1063/5.0202312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
The dynamics of the sub-Ohmic spin-boson model under polarized initial conditions at finite temperatures is investigated by employing both analytical tools and the numerically accurate hierarchical equations of motion-tensor train method. By analyzing the features of nonequilibrium dynamics, we discovered a bifurcation phenomenon, which separates two regimes of the dynamics. It is found that before the bifurcation time, increasing temperature slows down the population dynamics, while the opposite effect occurs after the bifurcation time. The dynamics is highly sensitive to both initial preparation of the bath and thermal effects.
Collapse
Affiliation(s)
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | |
Collapse
|
2
|
Pios SV, Gelin MF, Ullah A, Dral PO, Chen L. Artificial-Intelligence-Enhanced On-the-Fly Simulation of Nonlinear Time-Resolved Spectra. J Phys Chem Lett 2024; 15:2325-2331. [PMID: 38386692 DOI: 10.1021/acs.jpclett.4c00107] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Time-resolved spectroscopy is an important tool for unraveling the minute details of structural changes in molecules of biological and technological significance. The nonlinear femtosecond signals detected for such systems must be interpreted, but it is a challenging task for which theoretical simulations are often indispensable. Accurate simulations of transient absorption or two-dimensional electronic spectra are, however, computationally very expensive, prohibiting the wider adoption of existing first-principles methods. Here, we report an artificial-intelligence-enhanced protocol to drastically reduce the computational cost of simulating nonlinear time-resolved electronic spectra, which makes such simulations affordable for polyatomic molecules of increasing size. The protocol is based on the doorway-window approach for the on-the-fly surface-hopping simulations. We show its applicability for the prototypical molecule of pyrazine for which it produces spectra with high precision with respect to ab initio reference while cutting the computational cost by at least 95% compared to pure first-principles simulations.
Collapse
Affiliation(s)
- Sebastian V Pios
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Arif Ullah
- School of Physics and Optoelectronic Engineering, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Lipeng Chen
- Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China
| |
Collapse
|
3
|
Oliden-Sánchez A, Sola-Llano R, Pérez-Pariente J, Gómez-Hortigüela L, Martínez-Martínez V. Exploiting the photophysical features of DMAN template in ITQ-51 zeotype in the search for FRET energy transfer. Phys Chem Chem Phys 2024; 26:1225-1233. [PMID: 38099816 DOI: 10.1039/d3cp02625f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The combination between photoactive molecules and inorganic structures is of great interest for the development of advanced materials in the field of optics. Particularly, zeotypes with extra-large pore size are attractive because they allow the encapsulation of bulky dyes. The microporous aluminophoshate Mg-ITQ-51 (IFO-type structure) represents an ideal candidate because of the synergic combination of two crucial features: the IFO framework itself, which is composed of non-interconnected one-dimensional extra-large elliptical channels with a diameter up to 11 Å able to host bulky guest species, and the particular organic structure-directing agent used for the synthesis (1,8-bis(dimethylamino)naphthalene, DMAN), which efficiently fills the IFO pores, and is itself a photoactive molecule with interesting fluorescence properties in the blue range of the visible spectrum, thus providing a densely-incorporated donor species for FRET processes. Besides, occlusion of DMAN dye in the framework triggers a notable improvement of its fluorescence properties by confinement effect. To extend the action of the material and to mimic processes such as photosynthesis in which FRET is essential, two robust laser dyes with bulky size, rhodamine 123 and Nile Blue, have been encapsulated for the first time in a zeolitic framework, together with DMAN, in a straightforward one-pot synthesis. Thus, photoactive systems with emission in the entire visible range have been achieved due to a partial FRET between organic chromophores protected in a rigid aluminophosphate matrix.
Collapse
Affiliation(s)
- Ainhoa Oliden-Sánchez
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 4808 Bilbao, Spain.
| | - Rebeca Sola-Llano
- Departamento de Química Física, Universidad del País Vasco (UPV/EHU), Apartado 644, 4808 Bilbao, Spain.
| | - Joaquín Pérez-Pariente
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain.
| | - Luis Gómez-Hortigüela
- Instituto de Catálisis y Petroleoquímica, CSIC, c/Marie Curie 2, 28049 Cantoblanco, Madrid, Spain.
| | | |
Collapse
|
4
|
Gera T, Chen L, Eisfeld A, Reimers JR, Taffet EJ, Raccah DIGB. Simulating optical linear absorption for mesoscale molecular aggregates: An adaptive hierarchy of pure states approach. J Chem Phys 2023; 158:2887556. [PMID: 37125709 DOI: 10.1063/5.0141882] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
In this paper, we present dyadic adaptive HOPS (DadHOPS), a new method for calculating linear absorption spectra for large molecular aggregates. This method combines the adaptive HOPS (adHOPS) framework, which uses locality to improve computational scaling, with the dyadic HOPS method previously developed to calculate linear and nonlinear spectroscopic signals. To construct a local representation of dyadic HOPS, we introduce an initial state decomposition that reconstructs the linear absorption spectra from a sum over locally excited initial conditions. We demonstrate the sum over initial conditions can be efficiently Monte Carlo sampled and that the corresponding calculations achieve size-invariant [i.e., O(1)] scaling for sufficiently large aggregates while trivially incorporating static disorder in the Hamiltonian. We present calculations on the photosystem I core complex to explore the behavior of the initial state decomposition in complex molecular aggregates as well as proof-of-concept DadHOPS calculations on an artificial molecular aggregate inspired by perylene bis-imide to demonstrate the size-invariance of the method.
Collapse
Affiliation(s)
- Tarun Gera
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures and the School of Physics, Shanghai University, 200444 Shanghai, China
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Elliot J Taffet
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| | - Doran I G B Raccah
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| |
Collapse
|
5
|
Zhao Y. The hierarchy of Davydov's Ansätze: From guesswork to numerically "exact" many-body wave functions. J Chem Phys 2023; 158:080901. [PMID: 36859105 DOI: 10.1063/5.0140002] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
This Perspective presents an overview of the development of the hierarchy of Davydov's Ansätze and a few of their applications in many-body problems in computational chemical physics. Davydov's solitons originated in the investigation of vibrational energy transport in proteins in the 1970s. Momentum-space projection of these solitary waves turned up to be accurate variational ground-state wave functions for the extended Holstein molecular crystal model, lending unambiguous evidence to the absence of formal quantum phase transitions in Holstein systems. The multiple Davydov Ansätze have been proposed, with increasing Ansatz multiplicity, as incremental improvements of their single-Ansatz parents. For a given Hamiltonian, the time-dependent variational formalism is utilized to extract accurate dynamic and spectroscopic properties using Davydov's Ansätze as its trial states. A quantity proven to disappear for large multiplicities, the Ansatz relative deviation is introduced to quantify how closely the Schrödinger equation is obeyed. Three finite-temperature extensions to the time-dependent variation scheme are elaborated, i.e., the Monte Carlo importance sampling, the method of thermofield dynamics, and the method of displaced number states. To demonstrate the versatility of the methodology, this Perspective provides applications of Davydov's Ansätze to the generalized Holstein Hamiltonian, variants of the spin-boson model, and systems of cavity-assisted singlet fission, where accurate dynamic and spectroscopic properties of the many-body systems are given by the Davydov trial states.
Collapse
Affiliation(s)
- Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
6
|
Rolczynski BS, Díaz SA, Kim YC, Mathur D, Klein WP, Medintz IL, Melinger JS. Determining interchromophore effects for energy transport in molecular networks using machine-learning algorithms. Phys Chem Chem Phys 2023; 25:3651-3665. [PMID: 36648290 DOI: 10.1039/d2cp04960k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Nature uses chromophore networks, with highly optimized structural and energetic characteristics, to perform important chemical functions. Due to its modularity, predictable aggregation characteristics, and established synthetic protocols, structural DNA nanotechnology is a promising medium for arranging chromophore networks with analogous structural and energetic controls. However, this high level of control creates a greater need to know how to optimize the systems precisely. This study uses the system's modularity to produce variations of a coupled 14-Site chromophore network. It uses machine-learning algorithms and spectroscopy measurements to reveal the energy-transport roles of these Sites, paying particular attention to the cooperative and inhibitive effects they impose on each other for transport across the network. The physical significance of these patterns is contextualized, using molecular dynamics simulations and energy-transport modeling. This analysis yields insights about how energy transfers across the Donor-Relay and Relay-Acceptor interfaces, as well as the energy-transport pathways through the homogeneous Relay segment. Overall, this report establishes an approach that uses machine-learning methods to understand, in fine detail, the role that each Site plays in an optoelectronic molecular network.
Collapse
Affiliation(s)
- Brian S Rolczynski
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Young C Kim
- Materials Science and Technology Division, Code 6300, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA.
| |
Collapse
|
7
|
Gelin MF, Chen L, Domcke W. Equation-of-Motion Methods for the Calculation of Femtosecond Time-Resolved 4-Wave-Mixing and N-Wave-Mixing Signals. Chem Rev 2022; 122:17339-17396. [PMID: 36278801 DOI: 10.1021/acs.chemrev.2c00329] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Femtosecond nonlinear spectroscopy is the main tool for the time-resolved detection of photophysical and photochemical processes. Since most systems of chemical interest are rather complex, theoretical support is indispensable for the extraction of the intrinsic system dynamics from the detected spectroscopic responses. There exist two alternative theoretical formalisms for the calculation of spectroscopic signals, the nonlinear response-function (NRF) approach and the spectroscopic equation-of-motion (EOM) approach. In the NRF formalism, the system-field interaction is assumed to be sufficiently weak and is treated in lowest-order perturbation theory for each laser pulse interacting with the sample. The conceptual alternative to the NRF method is the extraction of the spectroscopic signals from the solutions of quantum mechanical, semiclassical, or quasiclassical EOMs which govern the time evolution of the material system interacting with the radiation field of the laser pulses. The NRF formalism and its applications to a broad range of material systems and spectroscopic signals have been comprehensively reviewed in the literature. This article provides a detailed review of the suite of EOM methods, including applications to 4-wave-mixing and N-wave-mixing signals detected with weak or strong fields. Under certain circumstances, the spectroscopic EOM methods may be more efficient than the NRF method for the computation of various nonlinear spectroscopic signals.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Lipeng Chen
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, D-01187 Dresden, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technical University of Munich, D-85747 Garching,Germany
| |
Collapse
|
8
|
Chen L, Bennett DIG, Eisfeld A. Calculating non-linear response functions for multi-dimensional electronic spectroscopy using dyadic non-Markovian quantum state diffusion. J Chem Phys 2022; 157:114104. [DOI: 10.1063/5.0107925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a methodology for simulating multi-dimensional electronic spectra of molecular aggregates with coupling of electronic excitation to a structured environment using the stochastic non-Markovian quantum state diffusion (NMQSD) method in combination with perturbation theory for the response functions. A crucial aspect of our approach is that we propagate the NMQSD equation in a doubled system Hilbert space, but with the same noise. We demonstrate that our approach shows fast convergence with respect to the number of stochastic trajectories, providing a promising technique for numerical calculation of two-dimensional electronic spectra of large molecular aggregates.
Collapse
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Max-Planck-Institute for the Physics of Complex Systems, Germany
| | - Doran I. G Bennett
- Chemistry, Southern Methodist University Department of Chemistry, United States of America
| | | |
Collapse
|
9
|
Chen L, Bennett DIG, Eisfeld A. Simulation of absorption spectra of molecular aggregates: A hierarchy of stochastic pure state approach. J Chem Phys 2022; 156:124109. [DOI: 10.1063/5.0078435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Simulation of spectroscopic observables for molecular aggregates with strong and structured coupling of electronic excitation to vibrational degrees of freedom is an important but challenging task. The Hierarchy of Pure States (HOPS) provides a formally exact solution based on local, stochastic trajectories. Exploiting the localization of HOPS for the simulation of absorption spectra in large aggregates requires a formulation in terms of normalized trajectories. Here, we provide a normalized dyadic equation where the ket- and bra-states are propagated in different electronic Hilbert spaces. This work opens the door to applying adaptive HOPS methods for the simulation of absorption spectra.
Collapse
Affiliation(s)
- Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Doran I. G. Bennett
- Department of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75205, USA
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| |
Collapse
|
10
|
Zhao Y, Sun K, Chen L, Gelin M. The hierarchy of Davydov's Ansätze and its applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Zhao
- Division of Materials Science Nanyang Technological University Singapore Singapore
| | - Kewei Sun
- Division of Materials Science Nanyang Technological University Singapore Singapore
- School of Science, Hanghzhou Dianzi University Hangzhou China
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems Dresden Germany
| | - Maxim Gelin
- School of Science, Hanghzhou Dianzi University Hangzhou China
| |
Collapse
|
11
|
Thalji MR, Ibrahim AA, Ali GA. Cutting-edge development in dendritic polymeric materials for biomedical and energy applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Breuil G, Mangaud E, Lasorne B, Atabek O, Desouter-Lecomte M. Funneling dynamics in a phenylacetylene trimer: Coherent excitation of donor excitonic states and their superposition. J Chem Phys 2021; 155:034303. [PMID: 34293889 DOI: 10.1063/5.0056351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Funneling dynamics in conjugated dendrimers has raised great interest in the context of artificial light-harvesting processes. Photoinduced relaxation has been explored by time-resolved spectroscopy and simulations, mainly by semiclassical approaches or referring to open quantum systems methods, within the Redfield approximation. Here, we take the benefit of an ab initio investigation of a phenylacetylene trimer, and in the spirit of a divide-and-conquer approach, we focus on the early dynamics of the hierarchy of interactions. We build a simplified but realistic model by retaining only bright electronic states and selecting the vibrational domain expected to play the dominant role for timescales shorter than 500 fs. We specifically analyze the role of the in-plane high-frequency skeletal vibrational modes involving the triple bonds. Open quantum system non-adiabatic dynamics involving conical intersections is conducted by separating the electronic subsystem from the high-frequency tuning and coupling vibrational baths. This partition is implemented within a robust non-perturbative and non-Markovian method, here the hierarchical equations of motion. We will more precisely analyze the coherent preparation of donor states or of their superposition by short laser pulses with different polarizations. In particular, we extend the π-pulse strategy for the creation of a superposition to a V-type system. We study the relaxation induced by the high-frequency vibrational collective modes and the transitory dissymmetry, which results from the creation of a superposition of electronic donor states.
Collapse
Affiliation(s)
- Gabriel Breuil
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Etienne Mangaud
- MSME, Université Gustave Eiffel, UPEC, CNRS, F-77454 Marne-La-Vallée, France
| | | | - Osman Atabek
- Institut des Sciences Moléculaires, Université Paris-Saclay-CNRS, UMR8214, F-91400 Orsay, France
| | | |
Collapse
|
13
|
Chen L, Borrelli R, Shalashilin DV, Zhao Y, Gelin MF. Simulation of Time- and Frequency-Resolved Four-Wave-Mixing Signals at Finite Temperatures: A Thermo-Field Dynamics Approach. J Chem Theory Comput 2021; 17:4359-4373. [PMID: 34107216 DOI: 10.1021/acs.jctc.1c00259] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a new approach to simulate four-wave-mixing signals of molecular systems at finite temperatures by combining the multiconfigurational Ehrenfest method with the thermo-field dynamics theory. In our approach, the four-time correlation functions at finite temperatures are mapped onto those at zero temperature in an enlarged Hilbert space with twice the vibrational degrees of freedom. As an illustration, we have simulated three multidimensional spectroscopic signals, time- and frequency-resolved fluorescence spectra, transient-absorption pump-probe spectra, and electronic two-dimensional (2D) spectra at finite temperatures, for a conical intersection-mediated singlet fission model of a rubrene crystal. It is shown that a detailed dynamical picture of the singlet fission process can be extracted from the three spectroscopic signals. An increasing temperature leads to lower intensities of the signals and broadened vibrational peaks, which can be attributed to faster singlet-triplet population transfer and stronger bath-induced electronic dephasing at higher temperatures.
Collapse
Affiliation(s)
- Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str 38, 01187 Dresden, Germany
| | - Raffaele Borrelli
- Department of Agricultural, Forestry and Food Science, Universitá di Torino, I-10095 Grugliasco, TO, Italy
| | | | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
14
|
Chen L, Sun K, Shalashilin DV, Gelin MF, Zhao Y. Efficient simulation of time- and frequency-resolved four-wave-mixing signals with a multiconfigurational Ehrenfest approach. J Chem Phys 2021; 154:054105. [PMID: 33557567 DOI: 10.1063/5.0038824] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have extended the multiconfigurational Ehrenfest approach to the simulation of four-wave-mixing signals of systems involving multiple electronic and vibrational degrees of freedom. As an illustration, we calculate signals of three widely used spectroscopic techniques, time- and frequency-resolved fluorescence spectroscopy, transient absorption spectroscopy, and two-dimensional (2D) electronic spectroscopy, for a two-electronic-state, twenty-four vibrational-mode conical intersection model. It has been shown that all these three spectroscopic signals characterize fast population transfer from the higher excited electronic state to the lower excited electronic state. While the time- and frequency-resolved spectrum maps the wave packet propagation exclusively on the electronically excited states, the transient absorption and 2D electronic spectra reflect the wave packet dynamics on both electronically excited states and the electronic ground state. Combining trajectory-guided Gaussian basis functions and the nonlinear response function formalism, the present approach provides a promising general technique for the applications of various Gaussian basis methods to the calculations of four-wave-mixing spectra of polyatomic molecules.
Collapse
Affiliation(s)
- Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | | | - Maxim F Gelin
- School of Science, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
15
|
Suzuki Y, Watanabe H, Okiyama Y, Ebina K, Tanaka S. Comparative study on model parameter evaluations for the energy transfer dynamics in Fenna–Matthews–Olson complex. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110903] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Chen L, Gelin MF, Shalashilin DV. Dynamics of a one-dimensional Holstein polaron: The multiconfigurational Ehrenfest method. J Chem Phys 2019; 151:244116. [DOI: 10.1063/1.5132341] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Technische Universität München, Garching D-85747, Germany
| | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, Garching D-85747, Germany
| | | |
Collapse
|
17
|
Zeng L, Liao Z, Wang XH. Geometry Effects on Light-Harvesting Complex's Light Absorption and Energy Transfer in Purple Bacteria. Photochem Photobiol 2019; 95:1352-1359. [PMID: 31168799 DOI: 10.1111/php.13129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
Light-harvesting complexes (LHC) in photosynthetic organisms perform the major function of light absorption and energy transportation. Optical spectrum of LHC provides a detailed understanding of the molecular mechanisms involved in the excitation energy transfer (EET) processes, which has been widely studied. Here, we study how the geometric property of LHC in Rhodospirillum (Rs.) molischianum would affect its spectral characteristics and energy transfer process. By adopting the effective Hamiltonian and the dipole-dipole approximation, we calculate the exciton level structures for the LH2 ring and LH1 ring and the energy transfer time between different LHCs under various structural parameters and different rotational symmetries. Our numerical results show that the LHC's absorption peaks and the energy transfer time between different LHCs can be modified by changing the geometric configurations. Our study may be beneficial to the applications in designing highly efficient photovoltaic cell and other artificial photosynthetic systems.
Collapse
Affiliation(s)
- Lingyu Zeng
- State Key Laboratory of Photoelectric Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Zeyang Liao
- State Key Laboratory of Photoelectric Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Xue-Hua Wang
- State Key Laboratory of Photoelectric Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
18
|
Bandyopadhyay S, Huang Z, Sun K, Zhao Y. Applications of neural networks to the simulation of dynamics of open quantum systems. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
19
|
|
20
|
Chen L, Gelin MF, Domcke W, Zhao Y. Simulation of Femtosecond Phase-Locked Double-Pump Signals of Individual Light-Harvesting Complexes LH2. J Phys Chem Lett 2018; 9:4488-4494. [PMID: 30037231 DOI: 10.1021/acs.jpclett.8b01887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent phase-locked femtosecond double-pump experiments on individual light-harvesting complexes LH2 of purple bacteria at ambient temperature revealed undamped oscillatory responses on a time scale of at least 400 fs [ Hildner et al. Science 2013 , 340 , 1448 ]. Using an excitonic Hamiltonian for LH2 available in the literature, we simulate these signals numerically by a method that treats excitonic couplings and exciton-phonon couplings in a nonperturbative manner. The simulations provide novel insights into the origin of coherent dynamics in individual LH2 complexes.
Collapse
Affiliation(s)
- Lipeng Chen
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
- Division of Materials Science , Nanyang Technological University , Singapore 639798 , Singapore
| | - Maxim F Gelin
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| | - Wolfgang Domcke
- Department of Chemistry , Technische Universität München , D-85747 Garching , Germany
| | - Yang Zhao
- Division of Materials Science , Nanyang Technological University , Singapore 639798 , Singapore
| |
Collapse
|
21
|
Wang L, Fujihashi Y, Chen L, Zhao Y. Finite-temperature time-dependent variation with multiple Davydov states. J Chem Phys 2018; 146:124127. [PMID: 28388128 DOI: 10.1063/1.4979017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.
Collapse
Affiliation(s)
- Lu Wang
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yuta Fujihashi
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Lipeng Chen
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
22
|
López-Estrada O, Laguna HG, Barrueta-Flores C, Amador-Bedolla C. Reassessment of the Four-Point Approach to the Electron-Transfer Marcus-Hush Theory. ACS OMEGA 2018; 3:2130-2140. [PMID: 31458519 PMCID: PMC6641260 DOI: 10.1021/acsomega.7b01425] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/08/2018] [Indexed: 05/25/2023]
Abstract
The Marcus-Hush theory has been successfully applied to describe and predict the activation barriers and hence the electron-transfer (ET) rates in several physicochemical and biological systems. This theory assumes that in the ET reaction, the geometry of the free Gibbs energy landscape is parabolic, with equal curvature near the local minimum for both reactants and products. In spite of its achievements, more realistic models have included the assumption of the two parabolas having not the same curvature. This situation is analyzed by the Nelsen's four-point method. As a benchmark to compare the Marcus-Hush approximation to a precise calculation of the excitation energy, we studied the non-ET process of the electronic excitation of the aluminum dimer that has two local minima (3∑g - and 3∏u electronic states) and allows to obtain analytically the Marcus-Hush nonsymmetric parameters. We appraise the ability of the Marcus-Hush formula to approximate the analytical results by using several averages of the two reorganization energies associated with the forward and backward transitions and analyze the error. It is observed that the geometric average minimizes the relative error and that the analytical case is recovered. The main results of this paper are obtained by the application of the Nelsen's four-point method to compute the reorganization energies of a large set of potential π-conjugated molecules proposed for organic photovoltaic devices using the above-mentioned averages for the Marcus-Hush formula. The activation energies obtained with the geometric average are significantly larger for some donor-acceptor pairs in comparison with the previously employed arithmetic average, their differences being suitable for experimental testing.
Collapse
|
23
|
Chen L, Palacino-González E, Gelin MF, Domcke W. Nonperturbative response functions: A tool for the interpretation of four-wave-mixing signals beyond third order. J Chem Phys 2017; 147:234104. [DOI: 10.1063/1.5004763] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Lipeng Chen
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | | | - Maxim F. Gelin
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| | - Wolfgang Domcke
- Department of Chemistry, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
24
|
Fujihashi Y, Wang L, Zhao Y. Direct evaluation of boson dynamics via finite-temperature time-dependent variation with multiple Davydov states. J Chem Phys 2017; 147:234107. [DOI: 10.1063/1.5017713] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yuta Fujihashi
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| | - Lu Wang
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
- Department of Physics, Zhejiang University, Hangzhou 310027, People’s Republic of China
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
25
|
Chen L, Borrelli R, Zhao Y. Dynamics of Coupled Electron–Boson Systems with the Multiple Davydov D1 Ansatz and the Generalized Coherent State. J Phys Chem A 2017; 121:8757-8770. [DOI: 10.1021/acs.jpca.7b07069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lipeng Chen
- Division
of Materials Science, Nanyang Technological University, 639798, Singapore
| | - Raffaele Borrelli
- Department
of Agricultural, Forestry and Food Science, Universitá di Torino, I-10095 Grugliasco, Turin, Italy
| | - Yang Zhao
- Division
of Materials Science, Nanyang Technological University, 639798, Singapore
| |
Collapse
|
26
|
Tadepalli S, Slocik JM, Gupta MK, Naik RR, Singamaneni S. Bio-Optics and Bio-Inspired Optical Materials. Chem Rev 2017; 117:12705-12763. [PMID: 28937748 DOI: 10.1021/acs.chemrev.7b00153] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Through the use of the limited materials palette, optimally designed micro- and nanostructures, and tightly regulated processes, nature demonstrates exquisite control of light-matter interactions at various length scales. In fact, control of light-matter interactions is an important element in the evolutionary arms race and has led to highly engineered optical materials and systems. In this review, we present a detailed summary of various optical effects found in nature with a particular emphasis on the materials and optical design aspects responsible for their optical functionality. Using several representative examples, we discuss various optical phenomena, including absorption and transparency, diffraction, interference, reflection and antireflection, scattering, light harvesting, wave guiding and lensing, camouflage, and bioluminescence, that are responsible for the unique optical properties of materials and structures found in nature and biology. Great strides in understanding the design principles adapted by nature have led to a tremendous progress in realizing biomimetic and bioinspired optical materials and photonic devices. We discuss the various micro- and nanofabrication techniques that have been employed for realizing advanced biomimetic optical structures.
Collapse
Affiliation(s)
- Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| |
Collapse
|
27
|
Al-Aqar R, Atahan A, Benniston AC, Perks T, Waddell PG, Harriman A. Exciton Migration and Surface Trapping for a Photonic Crystal Displaying Charge-Recombination Fluorescence. Chemistry 2016; 22:15420-15429. [DOI: 10.1002/chem.201602155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Roza Al-Aqar
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Alparslan Atahan
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
- Department of Polymer Engineering; Faculty of Technology; Duzce University; Duzce 81620 Turkey
| | - Andrew C. Benniston
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Thomas Perks
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Paul G. Waddell
- Crystallography Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| | - Anthony Harriman
- Molecular Photonics Laboratory; School of Chemistry; Bedson Building; Newcastle University; Newcastle upon Tyne NE1 7RU UK
| |
Collapse
|
28
|
Jain K, Duvva N, Badgurjar D, Giribabu L, Chitta R. Synthesis and spectroscopic studies of axially bound tetra(phenothiazinyl)/tetra(bis(4′-tert-butylbiphenyl-4-yl)aniline)-zinc(II)porphyrin-fullero[C60 & C70]pyrrolidine donor–acceptor triads. INORG CHEM COMMUN 2016. [DOI: 10.1016/j.inoche.2016.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Zhou N, Chen L, Huang Z, Sun K, Tanimura Y, Zhao Y. Fast, Accurate Simulation of Polaron Dynamics and Multidimensional Spectroscopy by Multiple Davydov Trial States. J Phys Chem A 2016; 120:1562-76. [PMID: 26871592 DOI: 10.1021/acs.jpca.5b12483] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
By employing the Dirac-Frenkel time-dependent variational principle, we study the dynamical properties of the Holstein molecular crystal model with diagonal and off-diagonal exciton-phonon coupling. A linear combination of the Davydov D1 (D2) ansatz, referred to as the "multi-D1 ansatz" ("multi-D2 ansatz"), is used as the trial state with enhanced accuracy but without sacrificing efficiency. The time evolution of the exciton probability is found to be in perfect agreement with that of the hierarchy equations of motion, demonstrating the promise the multiple Davydov trial states hold as an efficient, robust description of dynamics of complex quantum systems. In addition to the linear absorption spectra computed for both diagonal and off-diagonal cases, for the first time, 2D spectra have been calculated for systems with off-diagonal exciton-phonon coupling by employing the multiple D2 ansatz to compute the nonlinear response function, testifying to the great potential of the multiple D2 ansatz for fast, accurate implementation of multidimensional spectroscopy. It is found that the signal exhibits a single peak for weak off-diagonal coupling, while a vibronic multipeak structure appears for strong off-diagonal coupling.
Collapse
Affiliation(s)
- Nengji Zhou
- Department of Physics, Hangzhou Normal University , Hangzhou 310046, China.,Division of Materials Science, Nanyang Technological University , Singapore 639798, Singapore
| | - Lipeng Chen
- Division of Materials Science, Nanyang Technological University , Singapore 639798, Singapore
| | - Zhongkai Huang
- Division of Materials Science, Nanyang Technological University , Singapore 639798, Singapore
| | - Kewei Sun
- School of Science, Hangzhou Dianzi University , Hangzhou 310046, China
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University , Kyoto 606-8502, Japan
| | - Yang Zhao
- Division of Materials Science, Nanyang Technological University , Singapore 639798, Singapore
| |
Collapse
|
30
|
Mandal P, Manna JS, Das D, Mitra MK. Energy transfer cascade in bio-inspired chlorophyll-a/polyacrylamide hydrogel: towards a new class of biomimetic solar cells. RSC Adv 2016. [DOI: 10.1039/c6ra16780b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Efficient solar energy harvesting in natural photosystem inspired chlorophyll-a/hydrogel based soft, simple system, revealing the effect of coherence-dephasing interpaly.
Collapse
Affiliation(s)
- Pubali Mandal
- School of Materials Science & Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Jhimli S. Manna
- School of Materials Science & Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Debmallya Das
- Metallurgical & Material Engineering Department
- Jadavpur University
- Kolkata 700032
- India
| | - Manoj K. Mitra
- Metallurgical & Material Engineering Department
- Jadavpur University
- Kolkata 700032
- India
| |
Collapse
|