1
|
Goto S, Hosojima M, Kabasawa H, Arai K, Takemoto K, Aoki H, Komochi K, Kobayashi R, Sugita N, Endo T, Kaseda R, Yoshida Y, Narita I, Hirayama Y, Saito A. Megalin-related mechanism of hemolysis-induced acute kidney injury and the therapeutic strategy. J Pathol 2024; 263:315-327. [PMID: 38721910 DOI: 10.1002/path.6284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 06/12/2024]
Abstract
Hemolysis-induced acute kidney injury (AKI) is attributed to heme-mediated proximal tubule epithelial cell (PTEC) injury and tubular cast formation due to intratubular protein condensation. Megalin is a multiligand endocytic receptor for proteins, peptides, and drugs in PTECs and mediates the uptake of free hemoglobin and the heme-scavenging protein α1-microglobulin. However, understanding of how megalin is involved in the development of hemolysis-induced AKI remains elusive. Here, we investigated the megalin-related pathogenesis of hemolysis-induced AKI and a therapeutic strategy using cilastatin, a megalin blocker. A phenylhydrazine-induced hemolysis model developed in kidney-specific mosaic megalin knockout (MegKO) mice confirmed megalin-dependent PTEC injury revealed by the co-expression of kidney injury molecule-1 (KIM-1). In the hemolysis model in kidney-specific conditional MegKO mice, the uptake of hemoglobin and α1-microglobulin as well as KIM-1 expression in PTECs was suppressed, but tubular cast formation was augmented, likely due to the nonselective inhibition of protein reabsorption in PTECs. Quartz crystal microbalance analysis revealed that cilastatin suppressed the binding of megalin with hemoglobin and α1-microglobulin. Cilastatin also inhibited the specific uptake of fluorescent hemoglobin by megalin-expressing rat yolk sac tumor-derived L2 cells. In a mouse model of hemolysis-induced AKI, repeated cilastatin administration suppressed PTEC injury by inhibiting the uptake of hemoglobin and α1-microglobulin and also prevented cast formation. Hemopexin, another heme-scavenging protein, was also found to be a novel ligand of megalin, and its binding to megalin and uptake by PTECs in the hemolysis model were suppressed by cilastatin. Mass spectrometry-based semiquantitative analysis of urinary proteins in cilastatin-treated C57BL/6J mice indicated that cilastatin suppressed the reabsorption of a limited number of megalin ligands in PTECs, including α1-microglobulin and hemopexin. Collectively, cilastatin-mediated selective megalin blockade is an effective therapeutic strategy to prevent both heme-mediated PTEC injury and cast formation in hemolysis-induced AKI. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Sawako Goto
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideyuki Kabasawa
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kaho Arai
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kazuya Takemoto
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Aoki
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Koichi Komochi
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryota Kobayashi
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Nanako Sugita
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Taeko Endo
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ryohei Kaseda
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yutaka Yoshida
- Department of Bacteriology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
2
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Marton Menendez A, Nesbitt DJ. Ionic Cooperativity between Lysine and Potassium in the Lysine Riboswitch: Single-Molecule Kinetic and Thermodynamic Studies. J Phys Chem B 2023; 127:2430-2440. [PMID: 36916791 DOI: 10.1021/acs.jpcb.3c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Functionality in many biological systems, including proteins and nucleic acid structures, including protein and nucleic acid riboswitch structures, can depend on cooperative kinetic behavior between multiple small molecule ligands. In this work, single-molecule FRET data on the Bacillus subtilis lysine riboswitch reveals that affinity for the cognate lysine ligand increases significantly with K+, providing evidence for synergism between lysine/K+ binding to the aptamer and successful folding of the riboswitch. To describe/interpret this more complex kinetic scenario, we explore the conventional 4-state ("square") model for aptamer binding as a function of K+. Extension into this additional dimension generates a novel "cube" model for riboswitch folding dynamics with respect to lysine/K+ binding, revealing that riboswitch folding (kfold) and unfolding (kunfold) rate constants increase and decrease dramatically with K+, respectively. Furthermore, temperature-dependent single-molecule kinetic studies indicate that the presence of K+ entropically enhances the transition state barrier to folding but partially compensates for this by increasing the overall exothermicity for lysine binding. We rationalize this behavior as evidence that K+ facilitates hydrogen bonding between the negatively charged carboxyl group of lysine and the RNA, increasing structural rigidity and lowering entropy in the binding pocket. Finally, we explore the effects of cation size with Na+ and Cs+ studies to demonstrate that K+ is optimally suited for bridging interactions between lysine and the riboswitch aptamer domain. Regulation of lysine production and transport, dictated by the riboswitch's ability to recognize and bind lysine, is therefore intimately tied to the presence of K+ in the binding pocket and is strongly modulated by local cation conditions. The results suggest an increase in lysine riboswitch functionality by sensitivity to additional species in the cellular riboswitch environment.
Collapse
Affiliation(s)
- Andrea Marton Menendez
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - David J Nesbitt
- JILA, University of Colorado Boulder and National Institute of Standards and Technology, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Physics, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
4
|
Lawson ADG, MacCoss M, Baeten DL, Macpherson A, Shi J, Henry AJ. Modulating Target Protein Biology Through the Re-mapping of Conformational Distributions Using Small Molecules. Front Chem 2021; 9:668186. [PMID: 34017820 PMCID: PMC8129178 DOI: 10.3389/fchem.2021.668186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last 10 years considerable progress has been made in the application of small molecules to modulating protein-protein interactions (PPIs), and the navigation from "undruggable" to a host of candidate molecules in clinical trials has been well-charted in recent, comprehensive reviews. Structure-based design has played an important role in this scientific journey, with three dimensional structures guiding medicinal chemistry efforts. However, the importance of two additional dimensions: movement and time is only now being realised, as increasing computing power, closely aligned with wet lab validation, is applied to the challenge. Protein dynamics are fundamental to biology and disease, and application to PPI drug discovery has massively widened the scope for new chemical entities to influence function from allosteric, and previously unreported, sites. In this forward-looking perspective we highlight exciting, new opportunities for small molecules to modulate disease biology, by adjusting the frequency profile of natural conformational sampling, through the stabilisation of clinically desired conformers of target proteins.
Collapse
Affiliation(s)
| | | | | | | | - Jiye Shi
- UCB Pharma, Slough, United Kingdom
| | | |
Collapse
|
5
|
Yablokov EO, Sushko TA, Kaluzhskiy LA, Kavaleuski AA, Mezentsev YV, Ershov PV, Gilep AA, Ivanov АS, Strushkevich NV. Substrate-induced modulation of protein-protein interactions within human mitochondrial cytochrome P450-dependent system. J Steroid Biochem Mol Biol 2021; 208:105793. [PMID: 33271253 DOI: 10.1016/j.jsbmb.2020.105793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/18/2020] [Accepted: 11/14/2020] [Indexed: 12/28/2022]
Abstract
Steroidogenesis is strictly regulated at multiple levels, as produced steroid hormones are crucial to maintain physiological functions. Cytochrome P450 enzymes are key players in adrenal steroid hormone biosynthesis and function within short redox-chains in mitochondria and endoplasmic reticulum. However, mechanisms regulating supply of reducing equivalents in the mitochondrial CYP-dependent system are not fully understood. In the present work, we aimed to estimate how the specific steroids, substrates, intermediates and products of multistep reactions modulate protein-protein interactions between adrenodoxin (Adx) and mitochondrial CYP11 s. Using the SPR technology we determined that steroid substrates affect affinity and stability of CYP11s-Adx complexes in an isoform-specific mode. In particular, cholesterol induces a 4-fold increase in the rate of CYP11A1 - Adx complex formation without significant effect on dissociation (koff decreased ∼1.5-fold), overall increasing complex affinity. At the same time steroid substrates decrease the affinity of both CYP11B1 - Adx and CYP11B2 - Adx complexes, predominantly reducing their stability (4-7 fold). This finding reveals differentiation of protein-protein interactions within the mitochondrial pool of CYPs, which have the same electron donor. The regulation of electron supply by the substrates might affect the overall steroid hormones production. Our experimental data provide further insight into protein-protein interactions within CYP-dependent redox chains involved in steroidogenesis.
Collapse
Affiliation(s)
- E O Yablokov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia.
| | - T A Sushko
- Department of Bioengineering, School of Engineering, The University of Tokyo, 4-6 - 1 Shirokanedai, Minato-ku, 108-8639, Tokyo, Japan
| | - L A Kaluzhskiy
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - A A Kavaleuski
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141, Kuprevicha str. 5/2, Minsk, Belarus
| | - Y V Mezentsev
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - P V Ershov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - A A Gilep
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, 220141, Kuprevicha str. 5/2, Minsk, Belarus
| | - А S Ivanov
- Institute of Biomedical Chemistry, 119121, Pogodinskaya str. 10, Building 8, Moscow, Russia
| | - N V Strushkevich
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, 121205, Moscow, Russia
| |
Collapse
|
6
|
Meng F, Liang Z, Zhao K, Luo C. Drug design targeting active posttranslational modification protein isoforms. Med Res Rev 2020; 41:1701-1750. [PMID: 33355944 DOI: 10.1002/med.21774] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/29/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Modern drug design aims to discover novel lead compounds with attractable chemical profiles to enable further exploration of the intersection of chemical space and biological space. Identification of small molecules with good ligand efficiency, high activity, and selectivity is crucial toward developing effective and safe drugs. However, the intersection is one of the most challenging tasks in the pharmaceutical industry, as chemical space is almost infinity and continuous, whereas the biological space is very limited and discrete. This bottleneck potentially limits the discovery of molecules with desirable properties for lead optimization. Herein, we present a new direction leveraging posttranslational modification (PTM) protein isoforms target space to inspire drug design termed as "Post-translational Modification Inspired Drug Design (PTMI-DD)." PTMI-DD aims to extend the intersections of chemical space and biological space. We further rationalized and highlighted the importance of PTM protein isoforms and their roles in various diseases and biological functions. We then laid out a few directions to elaborate the PTMI-DD in drug design including discovering covalent binding inhibitors mimicking PTMs, targeting PTM protein isoforms with distinctive binding sites from that of wild-type counterpart, targeting protein-protein interactions involving PTMs, and hijacking protein degeneration by ubiquitination for PTM protein isoforms. These directions will lead to a significant expansion of the biological space and/or increase the tractability of compounds, primarily due to precisely targeting PTM protein isoforms or complexes which are highly relevant to biological functions. Importantly, this new avenue will further enrich the personalized treatment opportunity through precision medicine targeting PTM isoforms.
Collapse
Affiliation(s)
- Fanwang Meng
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario, Canada
| | - Zhongjie Liang
- Center for Systems Biology, Department of Bioinformatics, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
7
|
Lu H, Zhou Q, He J, Jiang Z, Peng C, Tong R, Shi J. Recent advances in the development of protein-protein interactions modulators: mechanisms and clinical trials. Signal Transduct Target Ther 2020; 5:213. [PMID: 32968059 PMCID: PMC7511340 DOI: 10.1038/s41392-020-00315-3] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2020] [Accepted: 07/23/2020] [Indexed: 02/05/2023] Open
Abstract
Protein-protein interactions (PPIs) have pivotal roles in life processes. The studies showed that aberrant PPIs are associated with various diseases, including cancer, infectious diseases, and neurodegenerative diseases. Therefore, targeting PPIs is a direction in treating diseases and an essential strategy for the development of new drugs. In the past few decades, the modulation of PPIs has been recognized as one of the most challenging drug discovery tasks. In recent years, some PPIs modulators have entered clinical studies, some of which been approved for marketing, indicating that the modulators targeting PPIs have broad prospects. Here, we summarize the recent advances in PPIs modulators, including small molecules, peptides, and antibodies, hoping to provide some guidance to the design of novel drugs targeting PPIs in the future.
Collapse
Affiliation(s)
- Haiying Lu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China
| | - Qiaodan Zhou
- Department of Ultrasonic, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, 610072, Chengdu, China
| | - Jun He
- Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, 610041, Sichuan, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Cheng Peng
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicines of Ministry, State Key Laboratory Breeding Base of Systematic Research, Development and Utilization of Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, 611137, Chengdu, China.
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 610072, Chengdu, China.
| |
Collapse
|
8
|
Garlick JM, Mapp AK. Selective Modulation of Dynamic Protein Complexes. Cell Chem Biol 2020; 27:986-997. [PMID: 32783965 PMCID: PMC7469457 DOI: 10.1016/j.chembiol.2020.07.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 12/11/2022]
Abstract
Dynamic proteins perform critical roles in cellular machines, including those that control proteostasis, transcription, translation, and signaling. Thus, dynamic proteins are prime candidates for chemical probe and drug discovery but difficult targets because they do not conform to classical rules of design and screening. Selectivity is pivotal for candidate probe molecules due to the extensive interaction network of these dynamic hubs. Recognition that the traditional rules of probe discovery are not necessarily applicable to dynamic proteins and their complexes, as well as technological advances in screening, have produced remarkable results in the last 2-4 years. Particularly notable are the improvements in target selectivity for small-molecule modulators of dynamic proteins, especially with techniques that increase the discovery likelihood of allosteric regulatory mechanisms. We focus on approaches to small-molecule screening that appear to be more suitable for highly dynamic targets and have the potential to streamline identification of selective modulators.
Collapse
Affiliation(s)
- Julie M Garlick
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anna K Mapp
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Rallabandi HR, Ganesan P, Kim YJ. Targeting the C-Terminal Domain Small Phosphatase 1. Life (Basel) 2020; 10:life10050057. [PMID: 32397221 PMCID: PMC7281111 DOI: 10.3390/life10050057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The human C-terminal domain small phosphatase 1 (CTDSP1/SCP1) is a protein phosphatase with a conserved catalytic site of DXDXT/V. CTDSP1’s major activity has been identified as dephosphorylation of the 5th Ser residue of the tandem heptad repeat of the RNA polymerase II C-terminal domain (RNAP II CTD). It is also implicated in various pivotal biological activities, such as acting as a driving factor in repressor element 1 (RE-1)-silencing transcription factor (REST) complex, which silences the neuronal genes in non-neuronal cells, G1/S phase transition, and osteoblast differentiation. Recent findings have denoted that negative regulation of CTDSP1 results in suppression of cancer invasion in neuroglioma cells. Several researchers have focused on the development of regulating materials of CTDSP1, due to the significant roles it has in various biological activities. In this review, we focused on this emerging target and explored the biological significance, challenges, and opportunities in targeting CTDSP1 from a drug designing perspective.
Collapse
|
10
|
Yoou MS, Cho S, Choi Y. Molecular Docking-assisted Protein Chip Screening of Inhibitors for Bcl-2 Family Protein-protein Interaction to Discover Anticancer Agents by Fragment-based Approach. BIOCHIP JOURNAL 2019. [DOI: 10.1007/s13206-019-3306-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
Ni D, Lu S, Zhang J. Emerging roles of allosteric modulators in the regulation of protein-protein interactions (PPIs): A new paradigm for PPI drug discovery. Med Res Rev 2019; 39:2314-2342. [PMID: 30957264 DOI: 10.1002/med.21585] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 03/12/2019] [Accepted: 03/24/2019] [Indexed: 12/26/2022]
Abstract
Protein-protein interactions (PPIs) are closely implicated in various types of cellular activities and are thus pivotal to health and disease states. Given their fundamental roles in a wide range of biological processes, the modulation of PPIs has enormous potential in drug discovery. However, owing to the general properties of large, flat, and featureless interfaces of PPIs, previous attempts have demonstrated that the generation of therapeutic agents targeting PPI interfaces is challenging, rendering them almost "undruggable" for decades. To date, rapid progress in chemical and structural biology techniques has promoted the exploitation of allostery as a novel approach in drug discovery. By attaching to allosteric sites that are topologically and spatially distinct from PPI interfaces, allosteric modulators can achieve improved physiochemical properties. Thus, allosteric modulators may represent an alternative strategy to target intractable PPIs and have attracted intense pharmaceutical interest. In this review, we first briefly introduce the characteristics of PPIs and then present different approaches for investigating PPIs, as well as the latest methods for modulating PPIs. Importantly, we comprehensively review the recent progress in the development of allosteric modulators to inhibit or stabilize PPIs. Finally, we conclude with future perspectives on the discovery of allosteric PPI modulators, especially the application of computational methods to aid in allosteric PPI drug discovery.
Collapse
Affiliation(s)
- Duan Ni
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Jian Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Clinical and Fundamental Research Center, Renji Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Medicinal Bioinformatics Center, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.,Center for Single-Cell Omics, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Allosteric Modulators of Protein-Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1163:313-334. [PMID: 31707709 DOI: 10.1007/978-981-13-8719-7_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein-protein interactions (PPIs) represent promising drug targets of broad-spectrum therapeutic interests due to their critical implications in both health and disease circumstances. Hence, they are widely accepted as the Holy Grail of drug development. Historically, PPIs were rendered "undruggable" for their large, flat, and pocket-less structures. Current attempts to drug these "intractable" targets include orthosteric and allosteric methodologies. Previous efforts employing orthosteric approaches like protein therapeutics and orthosteric small molecules frequently suffered from poor performance caused by the difficulties in directly targeting PPI interfaces. As structural biology progresses rapidly, allosteric modulators, which direct to the allosteric regulatory sites remote to the PPI surfaces, have gradually established as a potential solution. Allosteric pockets are topologically distal from the PPI orthosteric sites, and their ligands do not need to compete with the PPI partners, which helps to improve the physiochemical and pharmacological properties of allosteric PPI modulators. Thus, exploiting allostery to tailor PPIs is regarded as a tempting strategy in future PPI drug discovery. Here, we provide a comprehensive review of our representative achievements along the way we utilize allosteric effects to tame the difficult PPI systems into druggable targets. Importantly, we provide an in-depth mechanistic analysis of this success, which will be instructive to future related lead optimizations and drug design. Finally, we discuss the current challenges in allosteric PPI drug discovery. Their solutions as well as future perspectives are also presented.
Collapse
|
13
|
Comitani F, Gervasio FL. Exploring Cryptic Pockets Formation in Targets of Pharmaceutical Interest with SWISH. J Chem Theory Comput 2018; 14:3321-3331. [DOI: 10.1021/acs.jctc.8b00263] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Federico Comitani
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Francesco Luigi Gervasio
- Department of Chemistry, University College London, London WC1E 6BT, United Kingdom
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
14
|
Cossins BP, Lawson ADG, Shi J. Computational Exploration of Conformational Transitions in Protein Drug Targets. Methods Mol Biol 2018; 1762:339-365. [PMID: 29594780 DOI: 10.1007/978-1-4939-7756-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Protein drug targets vary from highly structured to completely disordered; either way dynamics governs function. Hence, understanding the dynamical aspects of how protein targets function can enable improved interventions with drug molecules. Computational approaches offer highly detailed structural models of protein dynamics which are becoming more predictive as model quality and sampling power improve. However, the most advanced and popular models still have errors owing to imperfect parameter sets and often cannot access longer timescales of many crucial biological processes. Experimental approaches offer more certainty but can struggle to detect and measure lightly populated conformations of target proteins and subtle allostery. An emerging solution is to integrate available experimental data into advanced molecular simulations. In the future, molecular simulation in combination with experimental data may be able to offer detailed models of important drug targets such that improved functional mechanisms or selectivity can be accessed.
Collapse
Affiliation(s)
- Benjamin P Cossins
- Computer-Aided Drug Design and Structural Biology, UCB Pharma, Slough, UK.
| | | | - Jiye Shi
- Computer-Aided Drug Design and Structural Biology, UCB Pharma, Slough, UK
| |
Collapse
|
15
|
Lawson ADG, MacCoss M, Heer JP. Importance of Rigidity in Designing Small Molecule Drugs To Tackle Protein-Protein Interactions (PPIs) through Stabilization of Desired Conformers. J Med Chem 2017; 61:4283-4289. [PMID: 29140691 DOI: 10.1021/acs.jmedchem.7b01120] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tackling PPIs, particularly by stabilizing clinically favored conformations of target proteins, with orally available, bona fide small molecules remains a significant but immensely worthwhile challenge for the pharmaceutical industry. Success may be more likely through the application of nature's learnings to build intrinsic rigidity into the design of clinical candidates.
Collapse
Affiliation(s)
| | - Malcolm MacCoss
- Bohicket Pharma Consulting LLC , 2556 Seabrook Island Road , Seabrook Island , South Carolina 29455 , United States
| | - Jag P Heer
- UCB , 216 Bath Road , Slough SL1 3WE , United Kingdom
| |
Collapse
|
16
|
Morimoto BH. Therapeutic peptides for CNS indications: Progress and challenges. Bioorg Med Chem 2017; 26:2859-2862. [PMID: 28951091 DOI: 10.1016/j.bmc.2017.09.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 10/18/2022]
Abstract
Attacking neurodegeneration and promoting neuroprotection have been the holy grail in neurology for almost 20years and represent an area of high unmet medical need. However, indications like Alzheimer's disease and stroke are areas in drug development fraught with failure. This review will highlight three CNS peptide programs which are tackling targets and indications in which traditional small molecule approaches have been difficult and challenging. The targets for these potential peptide therapeutics include the NMDA receptor, γ-secretase, and cyclin-dependent kinase in which direct inhibition has resulted in on-target (not compound related) problems. For example, direct inhibition of γ-secretase has resulted in gastrointestinal abnormalities and inhibition of the NMDA receptor can result in hallucinations, dizziness, out-of-body sensations, and nightmares. When confronted with show-stopping side effects, the CNS peptide programs profiled in this review strike the problem with intervention and disruption of selective protein-protein interactions. The goal of these peptide programs is to produce selective therapeutics with a better safety profile.
Collapse
Affiliation(s)
- Bruce H Morimoto
- Scientific Affairs, Celerion, Inc., 621 Rose Street, Lincoln, NE 68502, USA.
| |
Collapse
|
17
|
Choi S, Choi KY. Screening-based approaches to identify small molecules that inhibit protein–protein interactions. Expert Opin Drug Discov 2017; 12:293-303. [DOI: 10.1080/17460441.2017.1280456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sehee Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
| | - Kang-Yell Choi
- Translational Research Center for Protein Function Control, Yonsei University, Seoul, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
- CK Biotechnology Inc., 416 Advanced Science and Technology Center, 50 Yonsei-ro, Seoul, Korea
| |
Collapse
|
18
|
Oleinikovas V, Saladino G, Cossins BP, Gervasio FL. Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations. J Am Chem Soc 2016; 138:14257-14263. [PMID: 27726386 DOI: 10.1021/jacs.6b05425] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cryptic pockets, that is, sites on protein targets that only become apparent when drugs bind, provide a promising alternative to classical binding sites for drug development. Here, we investigate the nature and dynamical properties of cryptic sites in four pharmacologically relevant targets, while comparing the efficacy of various simulation-based approaches in discovering them. We find that the studied cryptic sites do not correspond to local minima in the computed conformational free energy landscape of the unliganded proteins. They thus promptly close in all of the molecular dynamics simulations performed, irrespective of the force-field used. Temperature-based enhanced sampling approaches, such as Parallel Tempering, do not improve the situation, as the entropic term does not help in the opening of the sites. The use of fragment probes helps, as in long simulations occasionally it leads to the opening and binding to the cryptic sites. Our observed mechanism of cryptic site formation is suggestive of an interplay between two classical mechanisms: induced-fit and conformational selection. Employing this insight, we developed a novel Hamiltonian Replica Exchange-based method "SWISH" (Sampling Water Interfaces through Scaled Hamiltonians), which combined with probes resulted in a promising general approach for cryptic site discovery. We also addressed the issue of "false-positives" and propose a simple approach to distinguish them from druggable cryptic pockets. Our simulations, whose cumulative sampling time was more than 200 μs, help in clarifying the molecular mechanism of pocket formation, providing a solid basis for the choice of an efficient computational method.
Collapse
|