1
|
Eletskaya BZ, Mironov AF, Fateev IV, Berzina MY, Antonov KV, Smirnova OS, Zatsepina AB, Arnautova AO, Abramchik YA, Paramonov AS, Kayushin AL, Khandazhinskaya AL, Matyugina ES, Kochetkov SN, Miroshnikov AI, Mikhailopulo IA, Esipov RS, Konstantinova ID. Enzymatic Transglycosylation Features in Synthesis of 8-Aza-7-Deazapurine Fleximer Nucleosides by Recombinant E. coli PNP: Synthesis and Structure Determination of Minor Products. Biomolecules 2024; 14:798. [PMID: 39062512 PMCID: PMC11275124 DOI: 10.3390/biom14070798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Enzymatic transglycosylation of the fleximer base 4-(4-aminopyridine-3-yl)-1H-pyrazole using recombinant E. coli purine nucleoside phosphorylase (PNP) resulted in the formation of "non-typical" minor products of the reaction. In addition to "typical" N1-pyrazole nucleosides, a 4-imino-pyridinium riboside and a N1-pyridinium-N1-pyrazole bis-ribose derivative were formed. N1-Pyrazole 2'-deoxyribonucleosides and a N1-pyridinium-N1-pyrazole bis-2'-deoxyriboside were formed. But 4-imino-pyridinium deoxyriboside was not formed in the reaction mixture. The role of thermodynamic parameters of key intermediates in the formation of reaction products was elucidated. To determine the mechanism of binding and activation of heterocyclic substrates in the E. coli PNP active site, molecular modeling of the fleximer base and reaction products in the enzyme active site was carried out. As for N1-pyridinium riboside, there are two possible locations for it in the PNP active site. The presence of a relatively large space in the area of amino acid residues Phe159, Val178, and Asp204 allows the ribose residue to fit into that space, and the heterocyclic base can occupy a position that is suitable for subsequent glycosylation. Perhaps it is this "upside down" arrangement that promotes secondary glycosylation and the formation of minor bis-riboside products.
Collapse
Affiliation(s)
- Barbara Z. Eletskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Anton F. Mironov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
- Institute of Biochemical Technology and Nanotechnology, Peoples’ Friendship University of Russia Named after Patrice Lumumba, Miklukho-Maklaya St. 6, Moscow 117198, Russia
| | - Ilya V. Fateev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Maria Ya. Berzina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Konstantin V. Antonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Olga S. Smirnova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexandra B. Zatsepina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexandra O. Arnautova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Yulia A. Abramchik
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Alexey L. Kayushin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Anastasia L. Khandazhinskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Elena S. Matyugina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., Moscow 119991, Russia; (A.L.K.); (E.S.M.); (S.N.K.)
| | - Anatoly I. Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Igor A. Mikhailopulo
- Institute of Bioorganic Chemistry, National Academy of Sciences, Acad. Kuprevicha 5/2, 220141 Minsk, Belarus;
| | - Roman S. Esipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| | - Irina D. Konstantinova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; (B.Z.E.); (A.F.M.); (I.V.F.); (M.Y.B.); (O.S.S.); (A.B.Z.); (A.O.A.); (Y.A.A.); (A.S.P.); (A.L.K.); (R.S.E.)
| |
Collapse
|
2
|
Stachelska-Wierzchowska A, Wierzchowski J. Chemo-Enzymatic Generation of Highly Fluorescent Nucleoside Analogs Using Purine-Nucleoside Phosphorylase. Biomolecules 2024; 14:701. [PMID: 38927104 PMCID: PMC11201700 DOI: 10.3390/biom14060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Chemo-enzymatic syntheses of strongly fluorescent nucleoside analogs, potentially applicable in analytical biochemistry and cell biology are reviewed. The syntheses and properties of fluorescent ribofuranosides of several purine, 8-azapurine, and etheno-purine derivatives, obtained using various types of purine nucleoside phosphorylase (PNP) as catalysts, as well as α-ribose-1-phosphate (r1P) as a second substrate, are described. In several instances, the ribosylation sites are different to the canonical purine N9. Some of the obtained ribosides show fluorescence yields close to 100%. Possible applications of the new analogs include assays of PNP, nucleoside hydrolases, and other enzyme activities both in vitro and within living cells using fluorescence microscopy.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| |
Collapse
|
3
|
Stachelska-Wierzchowska A, Wierzchowski J. Non-typical nucleoside analogs as fluorescent and fluorogenic indicators of purine-nucleoside phosphorylase activity in biological samples. Anal Chim Acta 2020; 1139:119-128. [PMID: 33190694 DOI: 10.1016/j.aca.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022]
Affiliation(s)
- A Stachelska-Wierzchowska
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-710, Olsztyn, Poland.
| | - J Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 4 Oczapowskiego St., PL-10-710, Olsztyn, Poland.
| |
Collapse
|
4
|
Stachelska-Wierzchowska A, Wierzchowski J, Górka M, Bzowska A, Stolarski R, Wielgus-Kutrowska B. Tricyclic Nucleobase Analogs and Their Ribosides as Substrates and Inhibitors of Purine-Nucleoside Phosphorylases III. Aminopurine Derivatives. Molecules 2020; 25:E681. [PMID: 32033464 PMCID: PMC7037862 DOI: 10.3390/molecules25030681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 11/16/2022] Open
Abstract
Etheno-derivatives of 2-aminopurine, 2-aminopurine riboside, and 7-deazaadenosine (tubercidine) were prepared and purified using standard methods. 2-Aminopurine reacted with aqueous chloroacetaldehyde to give two products, both exhibiting substrate activity towards bacterial (E. coli) purine-nucleoside phosphorylase (PNP) in the reverse (synthetic) pathway. The major product of the chemical synthesis, identified as 1,N2-etheno-2-aminopurine, reacted slowly, while the second, minor, but highly fluorescent product, reacted rapidly. NMR analysis allowed identification of the minor product as N2,3-etheno-2-aminopurine, and its ribosylation product as N2,3-etheno-2-aminopurine-N2--D-riboside. Ribosylation of 1,N2-etheno-2-aminopurine led to analogous N2--d-riboside of this base. Both enzymatically produced ribosides were readily phosphorolysed by bacterial PNP to the respective bases. The reaction of 2-aminopurine-N9- -D-riboside with chloroacetaldehyde gave one major product, clearly distinct from that obtained from the enzymatic synthesis, which was not a substrate for PNP. A tri-cyclic 7-deazaadenosine (tubercidine) derivative was prepared in an analogous way and shown to be an effective inhibitor of the E. coli, but not of the mammalian enzyme. Fluorescent complexes of amino-purine analogs with E. coli PNP were observed.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland;
| | - Michał Górka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
- Biological and Chemical Research Centre, University of Warsaw, 101 Zwirki i Wigury St., 02-089 Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| | - Ryszard Stolarski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura St., 02-093 Warsaw, Poland; (M.G.); (A.B.); (R.S.)
| |
Collapse
|
5
|
Pyrka M, Maciejczyk M. Why Purine Nucleoside Phosphorylase Ribosylates 2,6-Diamino-8-azapurine in Noncanonical Positions? A Molecular Modeling Study. J Chem Inf Model 2020; 60:1595-1606. [PMID: 31944095 DOI: 10.1021/acs.jcim.9b00985] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protein nucleoside phosphorylase (PNP) is an enzyme that catalyzes a reversible conversion process (ribosylation and phosphorolysis) between nucleobases (purines) and their nucleosides. Experimental studies showed that calf PNP ribosylates purine analogues in specific positions: 2,6-diamino-8-azapurine in position 7 or 8 and 8-azaguanine in position 9 of the triazole ring. The reason for this phenomenon can be a result of different expositions of purine substrates to the channel leading to the binding site. This hypothesis was verified by the application of molecular modeling techniques to two complexes of purine analogues 2,6-diamino-azapurine, calf PNP (pdb-code: 1LVU), and 8-azaguanine, calf PNP (pdb-code: 2AI1). The results obtained with a combination of quantum chemistry, docking, and molecular dynamics methods showed qualitative validity of our hypothesis. Binding free energies of protein-ligand systems showed that most probable binding poses expose N8 nitrogen for 2,6-diamino-8-azapurine and N9 nitrogen for 8-azaguanine into the binding channel and ruled out the exposition of N9 for 2,6-diamino-8-azapurine and N7 for 8-azaguanine, partially in agreement with the experimental data. The other important result obtained in this study is a significantly higher population of the protonated form of crucial residue Glu-201 present in the binding pocket, compared to the standard protonation of free glutamic acid in solution. This result combined with populations of tautomeric forms of both investigated systems strongly suggests that 2,6-diamino-8-azapurine and 8-azaguanine are recognized by proteins with deprotonated and protonated Glu-201 residues, respectively. A comparison of computed binding poses of the investigated ligands to the inhibitors present in crystal structures suggests that the modification of the (S)-PMPDAP inhibitor, in which a 2-(phosphonomethoxy)propyl chain is attached at position 8 instead of position 9, might increase its binding affinity.
Collapse
Affiliation(s)
- Maciej Pyrka
- Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| | - Maciej Maciejczyk
- Department of Physics and Biophysics, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 4, 10-719 Olsztyn, Poland
| |
Collapse
|
6
|
Stachelska-Wierzchowska A, Wierzchowski J, Górka M, Bzowska A, Wielgus-Kutrowska B. Tri-Cyclic Nucleobase Analogs and their Ribosides as Substrates of Purine-Nucleoside Phosphorylases. II Guanine and Isoguanine Derivatives. Molecules 2019; 24:E1493. [PMID: 30995785 PMCID: PMC6514686 DOI: 10.3390/molecules24081493] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 11/17/2022] Open
Abstract
Etheno-derivatives of guanine, O6-methylguanine, and isoguanine were prepared and purified using standard methods. The title compounds were examined as potential substrates of purine-nucleoside phosphorylases from various sources in the reverse (synthetic) pathway. It was found that 1,N2-etheno-guanine and 1,N6-etheno-isoguanine are excellent substrates for purine-nucleoside phosphorylase (PNP) from E. coli, while O6-methyl-N2,3-etheno-guanine exhibited moderate activity vs. this enzyme. The latter two compounds displayed intense fluorescence in neutral aqueous medium, and so did the corresponding ribosylation products. By contrast, PNP from calf spleens exhibited only modest activity towards 1,N6-etheno-isoguanine; the remaining compounds were not ribosylated by this enzyme. The enzymatic ribosylation of 1,N6-etheno-isoguanine using two forms of calf PNP (wild type and N243D) and E. coli PNP (wild type and D204N) gave three different products, which were identified on the basis of NMR analysis and comparison with the product of the isoguanosine reaction with chloroacetic aldehyde, which gave an essentially single compound, identified unequivocally as N9-riboside. With the wild-type E. coli enzyme as a catalyst, N9--d- and N7--d-ribosides are obtained in proportion ~1:3, while calf PNP produced another riboside, tentatively identified as N6--d-riboside. The potential application of various forms of PNP for synthesis of the tri-cyclic nucleoside analogs is discussed.
Collapse
Affiliation(s)
- Alicja Stachelska-Wierzchowska
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Jacek Wierzchowski
- Department of Physics and Biophysics, University of Varmia & Masuria in Olsztyn, 4 Oczapowskiego St., 10-719 Olsztyn, Poland.
| | - Michał Górka
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
- Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Agnieszka Bzowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| | - Beata Wielgus-Kutrowska
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland.
| |
Collapse
|
7
|
Stachelska-Wierzchowska A, Wierzchowski J, Bzowska A, Wielgus-Kutrowska B. Tricyclic nitrogen base 1,N 6-ethenoadenine and its ribosides as substrates for purine-nucleoside phosphorylases: Spectroscopic and kinetic studies. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:89-101. [PMID: 29376769 DOI: 10.1080/15257770.2017.1419255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The title compound is an excellent substrate for E. coli PNP, as well as for its D204N mutant. The main product of the synthetic reaction is N9-riboside, but some amount of N7-riboside is also present. Surprisingly, 1,N6-ethenoadenine is also ribosylated by both wild-type and mutated (N243D) forms of calf PNP, which catalyze the synthesis of a different riboside, tentatively identified as N6-β-D-ribosyl-1,N6-ethenoadenine. All ribosides are susceptible to phosphorolysis by the E. coli PNP (wild type). All the ribosides are fluorescent and can be utilized as analytical probes.
Collapse
Affiliation(s)
| | - Jacek Wierzchowski
- a Department of Biophysics , University of Varmia & Masuria in Olsztyn , 4 Oczapowskiego St, Olsztyn , Poland
| | - Agnieszka Bzowska
- b Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , 5 Pasteura St., Warsaw , Poland
| | - Beata Wielgus-Kutrowska
- b Division of Biophysics, Institute of Experimental Physics, Faculty of Physics , University of Warsaw , 5 Pasteura St., Warsaw , Poland
| |
Collapse
|
8
|
Yi WJ, Kim TS. Melatonin protects mice against stress-induced inflammation through enhancement of M2 macrophage polarization. Int Immunopharmacol 2017; 48:146-158. [DOI: 10.1016/j.intimp.2017.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/18/2017] [Accepted: 05/06/2017] [Indexed: 01/08/2023]
|
9
|
Pyrka M, Maciejczyk M. Theoretical investigations of tautomeric equilibrium of 9-methyl-8-aza-iso-Guanine and its electrostatic properties. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|