1
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
2
|
NMR-Based Chromatography Readouts: Indispensable Tools to “Translate” Analytical Features into Molecular Structures. Cells 2022; 11:cells11213526. [DOI: 10.3390/cells11213526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/29/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Gaining structural information is a must to allow the unequivocal structural characterization of analytes from natural sources. In liquid state, NMR spectroscopy is almost the only possible alternative to HPLC-MS and hyphenating the effluent of an analyte separation device to the probe head of an NMR spectrometer has therefore been pursued for more than three decades. The purpose of this review article was to demonstrate that, while it is possible to use mass spectrometry and similar methods to differentiate, group, and often assign the differentiating variables to entities that can be recognized as single molecules, the structural characterization of these putative biomarkers usually requires the use of NMR spectroscopy.
Collapse
|
3
|
Suntivich R, Songjang W, Jiraviriyakul A, Ruchirawat S, Chatwichien J. LC-MS/MS metabolomics-facilitated identification of the active compounds responsible for anti-allergic activity of the ethanol extract of Xenostegia tridentata. PLoS One 2022; 17:e0265505. [PMID: 35427369 PMCID: PMC9012362 DOI: 10.1371/journal.pone.0265505] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 03/02/2022] [Indexed: 12/29/2022] Open
Abstract
In vivo and in vitro anti-allergic activities of ethanol extract of Xenostegia tridentata (L.) D.F. Austin & Staples were investigated using passive cutaneous anaphylaxis reaction assay and RBL-2H3 cell degranulation assay, respectively. The crude ethanol extract exhibited promising activities when compared with the known anti-allergic agents, namely dexamethasone and ketotifen fumarate. The ethyl acetate subfraction showed the highest anti-allergic activity among various sub-partitions and showed better activity than the crude extract, consistent with the high abundance of total phenolic and flavonoid contents in this subfraction. LC-MS/MS metabolomics analysis and bioassay-guided isolation were then used to identify chemical constituents responsible for the anti-allergic activity. The results showed that major components of the ethyl acetate subfraction consist of 3,5-dicaffeoylquinic acid, quercetin-3-O-rhamnoside, kaempferol-3-O-rhamnoside and luteolin-7-O-glucoside. The inhibitory activity of the isolated compounds against mast cell degranulation was validated, ensuring their important roles in the anti-allergic activity of the plant. Notably, besides showing the anti-allergic activity of X. tridentata, this work highlights the role of metabolomic analysis in identifying and selectively isolating active metabolites from plants.
Collapse
Affiliation(s)
- Rinrada Suntivich
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Worawat Songjang
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Arunya Jiraviriyakul
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
- Integrative Biomedical Research Unit (IBRU), Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Somsak Ruchirawat
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
| | - Jaruwan Chatwichien
- Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, Ministry of Higher Education, Science, Research and Innovation, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
4
|
Charoensin S, Laopaiboon B, Boonkum W, Phetcharaburanin J, Villareal MO, Isoda H, Duangjinda M. Thai Native Chicken as a Potential Functional Meat Source Rich in Anserine, Anserine/Carnosine, and Antioxidant Substances. Animals (Basel) 2021; 11:902. [PMID: 33809894 PMCID: PMC8004088 DOI: 10.3390/ani11030902] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 01/19/2023] Open
Abstract
This study identified anserine and anserine/carnosine in chicken breast of Thai native chicken (TNC; 100% Thai native), Thai synthetic chicken (TSC; 50% Thai native), and Thai native crossbred chicken (TNC crossbred; 25% Thai native) compared with commercial broiler chicken (BR; 0% Thai native) using nuclear magnetic resonance (NMR) spectroscopy and the effect on antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl assay (DPPH). We conducted experiments with a completely randomized design and explored principal components analysis (PCA) and orthogonal projection to latent structure-discriminant analysis (OPLS-DA) to identify the distinguishing metabolites and relative concentrations from 1H NMR spectra among the groups. The relative concentrations and antioxidant properties among the groups were analyzed by analysis of variance (ANOVA) using the general linear model (GLM). This study revealed seven metabolites alanine, inositol monophosphate (IMP), inosine, and anserine/carnosine, lactate, anserine, and creatine. Lactate, anserine, and creatine were major components. In terms of PCA, the plots can distinguish BR from other groups. OPLS-DA revealed that anserine and anserine/carnosine in the chicken breast were significantly higher in TNC, TSC, and TNC crossbred than BR according to their relative concentrations and antioxidant properties (p < 0.01). Therefore, TNCs and their crossbreeds might have the potential to be functional meat sources.
Collapse
Affiliation(s)
- Sukanya Charoensin
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (B.L.); (W.B.)
| | - Banyat Laopaiboon
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (B.L.); (W.B.)
| | - Wuttigrai Boonkum
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (B.L.); (W.B.)
- Network Center for Animal Breeding and Omics Research, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40000, Thailand
| | - Jutarop Phetcharaburanin
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Myra O. Villareal
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City 305-8572, Japan;
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City 305-8572, Japan
| | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba City 305-8572, Japan;
- Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba City 305-8572, Japan
| | - Monchai Duangjinda
- Department of Animal Science, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40002, Thailand; (S.C.); (B.L.); (W.B.)
- Network Center for Animal Breeding and Omics Research, Faculty of Agricultural, Khon Kaen University, Khon Kaen 40000, Thailand
| |
Collapse
|
5
|
Letertre MPM, Dervilly G, Giraudeau P. Combined Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry Approaches for Metabolomics. Anal Chem 2020; 93:500-518. [PMID: 33155816 DOI: 10.1021/acs.analchem.0c04371] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
6
|
Wolfender JL, Litaudon M, Touboul D, Queiroz EF. Innovative omics-based approaches for prioritisation and targeted isolation of natural products - new strategies for drug discovery. Nat Prod Rep 2019; 36:855-868. [PMID: 31073562 DOI: 10.1039/c9np00004f] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: 2013 to 2019 The exploration of the chemical diversity of extracts from various biological sources has led to major drug discoveries. Over the past two decades, despite the introduction of advanced methodologies for natural product (NP) research (e.g., dereplication and high content screening), successful accounts of the validation of NPs as lead therapeutic candidates have been limited. In this context, one of the main challenges faced is related to working with crude natural extracts because of their complex composition and the inadequacies of classical bioguided isolation studies given the pace of high-throughput screening campaigns. In line with the development of metabolomics, genomics and chemometrics, significant advances in metabolite profiling have been achieved and have generated high-quality massive genome and metabolome data on natural extracts. The unambiguous identification of each individual NP in an extract using generic methods remains challenging. However, the establishment of structural links among NPs via molecular network analysis and the determination of common features of extract composition have provided invaluable information to the scientific community. In this context, new multi-informational-based profiling approaches integrating taxonomic and/or bioactivity data can hold promise for the discovery and development of new bioactive compounds and return NPs back to an exciting era of development. In this article, we examine recent studies that have the potential to improve the efficiency of NP prioritisation and to accelerate the targeted isolation of key NPs. Perspectives on the field's evolution are discussed.
Collapse
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, CMU - Rue Michel Servet 1, 1211 Geneva 11, Switzerland.
| | | | | | | |
Collapse
|
7
|
Ory L, Nazih EH, Daoud S, Mocquard J, Bourjot M, Margueritte L, Delsuc MA, Bard JM, Pouchus YF, Bertrand S, Roullier C. Targeting bioactive compounds in natural extracts - Development of a comprehensive workflow combining chemical and biological data. Anal Chim Acta 2019; 1070:29-42. [DOI: 10.1016/j.aca.2019.04.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023]
|
8
|
1H NMR-MS-based heterocovariance as a drug discovery tool for fishing bioactive compounds out of a complex mixture of structural analogues. Sci Rep 2019; 9:11113. [PMID: 31366964 PMCID: PMC6668471 DOI: 10.1038/s41598-019-47434-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/17/2019] [Indexed: 01/07/2023] Open
Abstract
Chemometric methods and correlation of spectroscopic or spectrometric data with bioactivity results are known to improve dereplication in classical bio-guided isolation approaches. However, in drug discovery from natural sources the isolation of bioactive constituents from a crude extract containing close structural analogues remains a significant challenge. This study is a 1H NMR-MS workflow named ELINA (Eliciting Nature’s Activities) which is based on statistical heterocovariance analysis (HetCA) of 1H NMR spectra detecting chemical features that are positively (“hot”) or negatively (“cold”) correlated with bioactivity prior to any isolation. ELINA is exemplified in the discovery of steroid sulfatase (STS) inhibiting lanostane triterpenes (LTTs) from a complex extract of the polypore fungus Fomitopsis pinicola.
Collapse
|
9
|
Wolfender JL, Nuzillard JM, van der Hooft JJJ, Renault JH, Bertrand S. Accelerating Metabolite Identification in Natural Product Research: Toward an Ideal Combination of Liquid Chromatography–High-Resolution Tandem Mass Spectrometry and NMR Profiling, in Silico Databases, and Chemometrics. Anal Chem 2018; 91:704-742. [DOI: 10.1021/acs.analchem.8b05112] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, CMU, 1 Rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jean-Marc Nuzillard
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | | | - Jean-Hugues Renault
- Institut de Chimie Moléculaire de Reims, UMR CNRS 7312, Université de Reims Champagne Ardenne, 51687 Reims Cedex 2, France
| | - Samuel Bertrand
- Groupe Mer, Molécules, Santé-EA 2160, UFR des Sciences Pharmaceutiques et Biologiques, Université de Nantes, 44035 Nantes, France
- ThalassOMICS Metabolomics Facility, Plateforme Corsaire, Biogenouest, 44035 Nantes, France
| |
Collapse
|
10
|
Nothias LF, Nothias-Esposito M, da Silva R, Wang M, Protsyuk I, Zhang Z, Sarvepalli A, Leyssen P, Touboul D, Costa J, Paolini J, Alexandrov T, Litaudon M, Dorrestein PC. Bioactivity-Based Molecular Networking for the Discovery of Drug Leads in Natural Product Bioassay-Guided Fractionation. JOURNAL OF NATURAL PRODUCTS 2018; 81:758-767. [PMID: 29498278 DOI: 10.1021/acs.jnatprod.7b00737] [Citation(s) in RCA: 208] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is a common problem in natural product therapeutic lead discovery programs that despite good bioassay results in the initial extract, the active compound(s) may not be isolated during subsequent bioassay-guided purification. Herein, we present the concept of bioactive molecular networking to find candidate active molecules directly from fractionated bioactive extracts. By employing tandem mass spectrometry, it is possible to accelerate the dereplication of molecules using molecular networking prior to subsequent isolation of the compounds, and it is also possible to expose potentially bioactive molecules using bioactivity score prediction. Indeed, bioactivity score prediction can be calculated with the relative abundance of a molecule in fractions and the bioactivity level of each fraction. For that reason, we have developed a bioinformatic workflow able to map bioactivity score in molecular networks and applied it for discovery of antiviral compounds from a previously investigated extract of Euphorbia dendroides where the bioactive candidate molecules were not discovered following a classical bioassay-guided fractionation procedure. It can be expected that this approach will be implemented as a systematic strategy, not only in current and future bioactive lead discovery from natural extract collections but also for the reinvestigation of the untapped reservoir of bioactive analogues in previous bioassay-guided fractionation efforts.
Collapse
Affiliation(s)
- Louis-Félix Nothias
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301 , Université Paris-Sud , 91198 , Gif-sur-Yvette , France
| | - Mélissa Nothias-Esposito
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301 , Université Paris-Sud , 91198 , Gif-sur-Yvette , France
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134 , University of Corsica , 20250 , Corte , France
| | - Ricardo da Silva
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Mingxun Wang
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Ivan Protsyuk
- European Molecular Biology Laboratory, EMBL , Heidelberg , Germany
| | - Zheng Zhang
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Abi Sarvepalli
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| | - Pieter Leyssen
- Laboratory for Virology and Experimental Chemotherapy, Rega Institute for Medical Research , KU Leuven , 3000 Leuven , Belgium
| | - David Touboul
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301 , Université Paris-Sud , 91198 , Gif-sur-Yvette , France
| | - Jean Costa
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134 , University of Corsica , 20250 , Corte , France
| | - Julien Paolini
- Laboratoire de Chimie des Produits Naturels, CNRS, UMR SPE 6134 , University of Corsica , 20250 , Corte , France
| | - Theodore Alexandrov
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
- European Molecular Biology Laboratory, EMBL , Heidelberg , Germany
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, ICSN UPR 2301 , Université Paris-Sud , 91198 , Gif-sur-Yvette , France
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center , University of California, San Diego , La Jolla , California 92093 , United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences , University of California, San Diego , La Jolla , California 92093 , United States
| |
Collapse
|
11
|
Walters NA, de Villiers A, Joubert E, de Beer D. Phenolic profiling of rooibos using off-line comprehensive normal phase countercurrent chromatography × reversed phase liquid chromatography. J Chromatogr A 2017; 1490:102-114. [DOI: 10.1016/j.chroma.2017.02.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 02/11/2017] [Indexed: 01/17/2023]
|
12
|
Affiliation(s)
- G. A. Nagana Gowda
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology and Pain Medicine and
- Department of Chemistry, University of Washington, Seattle, Washington 98109, United States
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
| |
Collapse
|