1
|
Bangar SP, Whiteside WS, Chowdhury A, Ilyas RA, Siroha AK. Recent advancements in functionality, properties, and applications of starch modification with stearic acid: A review. Int J Biol Macromol 2024; 280:135782. [PMID: 39304056 DOI: 10.1016/j.ijbiomac.2024.135782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Starch modifications using chemicals are widely used to improve the desirable properties of native starch. Starch modified with steric acid characterized the starch properties due to the formation of starch-steric acid complex. Structural and functional characteristics of modified starch are influenced by duration, starch-acid concentration ratio, and temperature during the reaction. The diffraction patterns of the starch-stearic acid complexes show a mixture of A-type/B-type and V-type patterns. Starch-stearic acid complexes are regarded as "Generally Recognized as Safe (GRAS)" and are thermally stable and exhibit high paste viscosity and non-gelling properties. Due to their reduced gelling ability and increased viscosity, they can be utilized as fat replacers. Starch stearate also has promising applications in drug delivery due to its biocompatibility and non-gelling properties, which can be utilized for controlled release systems. Additionally, its biodegradability and enhanced thermal stability make it an ideal candidate for use in environmentally friendly, biodegradable materials. Complexes also have the potential for food packaging applications due to their increased thermal stability and improved barrier properties due to the replacement of the hydroxyl group of starch with a hydrophobic functional group of stearic acid (SA). This review paper examines the reaction parameters involved in the SA modification of starches and explores the starch-SA complexes' impact on physicochemical factors, as well as key structural attributes and industrial applications.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA.
| | - William Scott Whiteside
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson, SC 29631, USA.
| | - Amreen Chowdhury
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - R A Ilyas
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Anil Kumar Siroha
- Chaudhary Charan Singh Haryana Agricultural University College of Agriculture, Bawal, Rewari 123401, India
| |
Collapse
|
2
|
Momin F, Kevlani V, Rawal S, Patel R, Acharya S, Shah S. Antipsoriatic Effect of Silymarin NLCs Based Gel: In Vitro and In Vivo Activity. AAPS PharmSciTech 2024; 25:195. [PMID: 39168904 DOI: 10.1208/s12249-024-02910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Psoriasis is a chronic inflammatory disorder affecting over 100 million people, requires long-term therapy. Current treatments offer only symptomatic relief. However, phytoconstituents-based therapies like Silymarin (SLM) have shown promising effects. The study aims to develop, optimize, and evaluate a novel stable SLM NLC gel to improve anti-psoriatic activity by enhancing its permeability and retention into the dermal layer. SLM NLC formulation was prepared and optimized using 32 full factorial designs. The formulation was evaluated for the particle size, PDI, zeta potential, and % entrapment efficiency, evaluated by Transmission electron microscopy and thermal analysis. The freeze dried and prepared NLC-loaded gel was evaluated for physicochemical parameters, ex-vivo, and in-vivo studies. SLM-loaded NLC shows 624 nm particle size, 0.41 PDI, 92.95% entrapment efficiency, and -31.6 mV zeta potential. The sphere form of NLCs was confirmed using TEM. Controlled drug release was observed in ex vivo studies, low PASI score compared to disease control. Further, the levels of IL-6, TNF-α, and NF-κB were also reduced. The results are supported by histopathology showing minimal parakeratosis indicated in the SLM NLC-treated group. Prepared NLC-based shows enhance topical penetration and decrease the thickness of psoriatic plaques in the in vivo study.
Collapse
Affiliation(s)
- Faijmahmad Momin
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Vijay Kevlani
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Shruti Rawal
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Riya Patel
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Sheetal Acharya
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, LJ Campus, Near Sarkhej-Sanand Circle, Off. S.G. Road, Ahmedabad, 382 210, India.
| |
Collapse
|
3
|
Seo S, Kim GY, Kim MH, Lee KW, Kim MJ, Chaudhary M, Bikram K, Kim T, Choi S, Yang H, Park JW, Kim DD, Kim KT. Nanocrystal Formulation to Enhance Oral Absorption of Silybin: Preparation, In Vitro Evaluations, and Pharmacokinetic Evaluations in Rats and Healthy Human Subjects. Pharmaceutics 2024; 16:1033. [PMID: 39204378 PMCID: PMC11359960 DOI: 10.3390/pharmaceutics16081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Despite the various therapeutic benefits and high tolerance of orally administered silybin, poor water-solubility can be the main restrictive physicochemical feature, which results in low oral bioavailability in the absorption. A milk thistle nanocrystal formulation (HM40) was prepared using a modified wet-milling method. Comprehensive characterization was performed to determine the physical morphology, crystallinity, and physicochemical properties. The long-term stability was evaluated over 24 months. In vitro silybin release was assessed at pH 1.2 for 2 h, followed by pH 6.8 for 4 h. Finally, in vivo pharmacokinetic studies were conducted in rats and healthy human volunteers. HM40 exhibited a nanocrystal structure maintaining crystallinity and enhanced the solubility and dissolution of silybin compared to that of the raw material. The stability over 24 months revealed consistent surface morphology, particle size, silybin content, and solubility. In vitro release profiles indicated a significant increase in the silybin release from HM40. In vivo pharmacokinetic studies demonstrated that HM40 showed 2.61- and 1.51-fold higher oral bioavailability in rats and humans, respectively, than that of the reference capsule. HM40 formulation presents a stable and promising approach for the oral delivery of poorly water-soluble silybin, with the potential for use in pharmaceutical formulations containing milk thistle.
Collapse
Affiliation(s)
- SeungRee Seo
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Gwan-Young Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Min-Hwan Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | | | - Min-Jae Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Mansingh Chaudhary
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Khadka Bikram
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Taeheon Kim
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Seungmok Choi
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Heejin Yang
- Life Science Research Institute, Daewoong Pharmaceuticals, Yongin-si 17028, Republic of Korea
| | - Joo Won Park
- Bio-Synectics, Inc., Seoul 08826, Republic of Korea
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences (BK21 Four) and Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| |
Collapse
|
4
|
Shree Harini K, Ezhilarasan D. Flavonoids-based nanomedicines for the treatment of liver fibrosis: A recent progress. J Drug Deliv Sci Technol 2024; 93:105467. [DOI: 10.1016/j.jddst.2024.105467] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Bai L, Wang T, Deng Q, Zheng W, Li X, Yang H, Tong R, Yu D, Shi J. Dual properties of pharmacological activities and preparation excipient: Bletilla striata polysaccharides. Int J Biol Macromol 2024; 254:127643. [PMID: 37898246 DOI: 10.1016/j.ijbiomac.2023.127643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/06/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023]
Abstract
Bletilla striata has been used for thousands of years and shows the functions of stopping bleeding, reducing swelling, and promoting healing in traditional applications. For Bletilla striata, Bletilla striata polysaccharides (BSP) is the main active ingredient, exhibiting biological functions of anti-inflammatory, anti-oxidant, anti-fibrotic, immune modulation, anti-glycation, and so on. In addition, BSP has exhibited the characteristics of excipient such as bio-adhesion, bio-degradability, and bio-safety and has been prepared into a series of preparations such as nanoparticles, microspheres, microneedles, hydrogels, etc. BSP, as both a drug and an excipient, has already aroused more and more attention. In this review, publications in recent years related to the extraction and identification, biological activities, and excipient application of BSP are reviewed. Specifically, we focused on the advances in the application of BSP as a formulation excipient. We hold opinion that BSP not only needed more researches in the mechanisms, but also the development into hydrogels, nano-formulations, tissue engineering, and so on. And we believe that this paper provides a beneficial reference for further BSP innovation and in-depth research and promotes the use of these natural products in pharmaceutical applications.
Collapse
Affiliation(s)
- Lan Bai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ting Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qichuan Deng
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Zheng
- Department of Pharmacy, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xinyu Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Hao Yang
- Power China Chengdu Engineering Corporation Limited, Chengdu, China
| | - Rongsheng Tong
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Dongke Yu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; The State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
6
|
Li R, Zhou J, Zhang X, Wang Y, Wang J, Zhang M, He C, Zhuang P, Chen H. Construction of the Gal-NH 2/mulberry leaf polysaccharides-lysozyme/luteolin nanoparticles and the amelioration effects on lipid accumulation. Int J Biol Macromol 2023; 253:126780. [PMID: 37699459 DOI: 10.1016/j.ijbiomac.2023.126780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/14/2023]
Abstract
Luteolin is a kind of natural flavonoid with great potential for lipid accumulation intervention. However, the poor water solubility and non-targeted release greatly diminish its efficiency. In this study, 4-aminophenyl β-D-galactopyranoside (Gal-NH2)/mulberry leaf polysaccharides- lysozyme/luteolin nanoparticles (Gal-MPL/Lut) were fabricated via amide reaction, self-assembly process and electrostatic interaction. The nanoparticles could hepatic-target of Lut and enhance action on liver tissue by specific recognition of asialoglycoprotein receptor (ASGPR). Physicochemical characterization of the nanoparticles showed a spherical shape with a uniform particle size distribution (77.8 ± 2.6 nm) with a polydispersity index (PDI) of 0.22 ± 0.06. Subsequently, in HepG2 cells model, administration with hepatic-targeted Gal-MPL/Lut nanoparticles promoted the cellular uptake of Lut, and regulated lipid metabolism manifested by remarkably inhibiting total cholesterol (TC) and triglyceride (TG) expression levels through the modulation of PI3K/SIRT-1/FAS/CEBP-α signaling pathway. This study provides a promising strategy for a highly hepatic-targeted therapy to ameliorate lipid accumulation using natural medicines facilitated by nano-technology.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingna Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xiaoyu Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Yajie Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jia Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, PR China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, PR China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa 999078, Macao
| | - Pengwei Zhuang
- Haihe Laboratory of Modern Chinese Medicine, Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
7
|
Mishra AK, Neha S, Rani L, Jain A, Dewangan HK, Sahoo PK. Rationally designed nanoparticulate delivery approach for silymarin with natural bio-enhancer: In vitro characterization and in vivo evaluations of hepatoprotective effects in a mouse model. J Drug Deliv Sci Technol 2023; 86:104580. [DOI: 10.1016/j.jddst.2023.104580] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
|
8
|
Zhu Z, Liang T, Dai G, Zheng J, Dong J, Xia C, Duan B. Extraction, structural-activity relationships, bioactivities, and application prospects of Bletilla striata polysaccharides as ingredients for functional products: A review. Int J Biol Macromol 2023:125407. [PMID: 37327937 DOI: 10.1016/j.ijbiomac.2023.125407] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
Bletilla striata is a well-known medicinal plant with high pharmaceutical and ornamental values. Polysaccharide is the most important bioactive ingredient in B. striata and has various health benefits. Recently, B. striata polysaccharides (BSPs) have attracted much attention from industries and researchers due to their remarkable immunomodulatory, antioxidant, anti-cancer, hemostatic, anti-inflammatory, anti-microbial, gastroprotective, and liver protective effects. Despite the successful isolation and characterization of B. striata polysaccharides (BSPs), there is still limited knowledge regarding their structure-activity relationships (SARs), safety concerns, and applications, which hinders their full utilization and development. Herein, we provided an overview of the extraction, purification, and structural features, as well as the effects of different influencing factors on the components and structures of BSPs. We also highlighted and summarized the diversity of chemistry and structure, specificity of biological activity, and SARs of BSP. The challenges and opportunities of BSPs in the food, pharmaceutical, and cosmeceutical fields are discussed, and the potential development and future study direction are scrutinized. This article provides comprehensive knowledge and underpinnings for further research and application of BSPs as therapeutic agents and multifunctional biomaterials.
Collapse
Affiliation(s)
- Zemei Zhu
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Tingting Liang
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Guona Dai
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jiamei Zheng
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Jingjing Dong
- College of Pharmaceutical Science, Dali University, Dali 671000, China
| | - Conglong Xia
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| | - Baozhong Duan
- College of Pharmaceutical Science, Dali University, Dali 671000, China.
| |
Collapse
|
9
|
Macit M, Duman G, Cumbul A, Sumer E, Macit C. Formulation development of Silybum marianum seed extracts and silymarin nanoparticles, and evaluation of hepatoprotective effect. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
10
|
Application of Plant Polysaccharide Nanoparticles as Polymeric Carrier Materials for the Construction of Medicine Carriers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics 2022; 14:pharmaceutics14081703. [PMID: 36015329 PMCID: PMC9414761 DOI: 10.3390/pharmaceutics14081703] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Herb polysaccharides (HPS) have been studied extensively for their healthcare applications. Though the toxicity was not fully clarified, HPS were widely accepted for their biodegradability and biocompatibility. In addition, as carbohydrate polymers with a unique chemical composition, molecular weight, and functional group profile, HPS can be conjugated, cross-linked, and functionally modified. Thus, they are great candidates for the fabrication of drug delivery systems (DDS). HPS-based DDS (HPS-DDS) can bypass phagocytosis by the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting therapeutic effects. In this review, we focus on the application of HPS as components of immunoregulatory DDS. We summarize the principles governing the fabrication of HPS-DDS, including nanoparticles, micelles, liposomes, microemulsions, hydrogels, and microneedles. In addition, we discuss the role of HPS in DDS for immunotherapy. This comprehensive review provides valuable insights that could guide the design of effective HPS-DDS.
Collapse
|
12
|
Zhang Z, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Wang J, Jin Z, Qiu C. A review of nanostructured delivery systems for the encapsulation, protection, and delivery of silymarin: An emerging nutraceutical. Food Res Int 2022; 156:111314. [PMID: 35651070 DOI: 10.1016/j.foodres.2022.111314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/26/2022]
Abstract
Silymarin exhibits biological activities that may promote human health and wellbeing, including antioxidant, antimicrobial, anti-inflammatory, and anti-cancer activities. Consequently, it has potential for application as a nutraceutical ingredient in functional foods and supplements. But its application for this purpose is currently limited by its poor water solubility, chemical stability, and bioavailability. The potential of nano-delivery systems to improve the functional performance of silymarin was reviewed in this manuscript. The formation, attributes, and applications of biopolymer-based, lipid-based, surfactant-based, and miscellaneous nanocarriers are discussed. In particular, the impact of the different delivery systems such as biopolymer-based, lipid-based delivery systems on the gastrointestinal fate of silymarin is summarized. The encapsulation in edible nanocarriers can improve the bioavailability of silymarin by enhancing its water-dispersibility, inhibiting its degradation, and increasing its absorption.These nanocarriers may therefore be utilized to incorporate this nutraceutical into functional foods and supplements in a bioavailable form.
Collapse
Affiliation(s)
- Zhiheng Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu 210037, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, 169 Qixing South Road, Ningbo, Zhejiang 315832, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jinpeng Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
A review on plant polysaccharide based on drug delivery system for construction and application, with emphasis on traditional Chinese medicine polysaccharide. Int J Biol Macromol 2022; 211:711-728. [PMID: 35588976 DOI: 10.1016/j.ijbiomac.2022.05.087] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/22/2022]
Abstract
Carbohydrate polymers with unique chemical composition, molecular weight and functional chemical groups show multiple potentials in drug delivery. Most carbohydrate polymers such as plant polysaccharides exhibit advantages of biodegradability, ease of modification, low immunogenicity and low toxicity. They can be conjugated, cross-linked or functionally modified, and then used as nanocarrier materials. Polysaccharide drug delivery system can avoid the phagocytosis of the reticuloendothelial system, prevent the degradation of biomolecules, and increase the bioavailability of small molecules, thus exerting effective therapeutic effects. Therefore, they have been fully explored. In this paper, we reviewed the construction methods of drug delivery systems based on carbohydrate polymers (astragalus polysaccharide, angelica polysaccharide, lycium barbarum polysaccharide, ganoderma lucidum polysaccharide, bletilla polysaccharide, glycyrrhiza polysaccharide, and epimedium polysaccharides, etc). The application of polysaccharide drug delivery systems to deliver small molecule chemotherapeutic drugs, gene drugs, and metal ion drugs was also briefly introduced. At the same time, the role of the polysaccharide drug delivery system in tumor treatment, targeted therapy, and wound healing was discussed. In addition, the research of polysaccharide delivery systems based on the therapeutic efficacy of traditional Chinese medicine was also summarized and prospected.
Collapse
|
14
|
Deng M, Chen H, Xie L, Liu K, Zhang X, Li X. Tea saponins as natural emulsifiers and cryoprotectants to prepare silymarin nanoemulsion. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
15
|
Wang B, Wang X, Xiong Z, Lu G, Ma W, Lv Q, Wang L, Jia X, Feng L. A review on the applications of Traditional Chinese medicine polysaccharides in drug delivery systems. Chin Med 2022; 17:12. [PMID: 35033122 PMCID: PMC8760834 DOI: 10.1186/s13020-021-00567-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/30/2021] [Indexed: 01/03/2023] Open
Abstract
Traditional Chinese medicine polysaccharides (TCMPs) are plentiful and renewable resources with properties such as biocompatibility, hydrophilicity, biodegradability, and low cytotoxicity. Because the polysaccharide molecular chain contains a variety of active groups, different polysaccharide derivatives can be easily produced through chemical modification. They have been increasingly used in drug delivery systems (DDS). However, the potential of polysaccharides is usually ignored due to their structural complexity, poor stability or ambiguity of mechanisms of actions. This review summarized the applications of TCMPs in DDS around four main aspects. The general characteristics of TCMPs as drug delivery carriers, as well as the relationships between structure and function of them were summarized. Meanwhile, the direction of preparing multifunctional drug delivery materials with synergistic effect by using TCMPs was discussed. This review aims to become a reference for further research of TCMPs and their derivatives, especially applications of them as carriers in pharmaceutical preparation industry.
Collapse
|
16
|
The combination of nanotechnology and traditional Chinese medicine (TCM) inspires the modernization of TCM: review on nanotechnology in TCM-based drug delivery systems. Drug Deliv Transl Res 2021; 12:1306-1325. [PMID: 34260049 DOI: 10.1007/s13346-021-01029-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2021] [Indexed: 01/12/2023]
Abstract
Fast development of combination of nanotechnology with traditional Chinese medicine (TCM) broadens the field of application of TCM. Besides, it increases the research ideas and contributes to TCM modernization. As expected, TCM will be developed into the nanodrug delivery system by nanotechnology with careful design, which will enhance the medicinal value of TCM to cure and prevent disease based on benefits brought by nanometer scale. Here, formulations, relevant preparations methods, and characteristics of nano-TCM were introduced. In addition, the main excellent performances of nano-TCM were clearly elaborated. What is more, the review was intended to address the studies committed to application of nanotechnology in TCM over the years, including development of Chinese medicine active ingredients, complete TCM, and Chinese herbal compounds based on nanotechnology. Finally, this review discussed the safety of nano-TCM and presented future development trends in the way to realize the modernization of TCM. Overall, using the emerging nanotechnology in TCM is promising to promote progress of TCM in international platform. Recent researches on modernization of traditional Chinese medicine (TCM) urged by nanotechnology are introduced, and formulations, advantages, and applications of nano-TCM are reviewed to provide strong proofs.
Collapse
|
17
|
Zhang G, Huang L, Wu J, Liu Y, Zhang Z, Guan Q. Doxorubicin-loaded folate-mediated pH-responsive micelle based on Bletilla striata polysaccharide: Release mechanism, cellular uptake mechanism, distribution, pharmacokinetics, and antitumor effects. Int J Biol Macromol 2020; 164:566-577. [DOI: 10.1016/j.ijbiomac.2020.07.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/09/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
|
18
|
Ahmed MM, Fatima F, Anwer MK, Ansari MJ, Das SS, Alshahrani SM. Development and characterization of ethyl cellulose nanosponges for sustained release of brigatinib for the treatment of non-small cell lung cancer. JOURNAL OF POLYMER ENGINEERING 2020. [DOI: 10.1515/polyeng-2019-0365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Non-small cell lung cancer (NSCLC) contributes to about 85% of lung cancer. By 2040, lung cancer cases estimated to rise to 3.6 million globally. Brigatinib (BG) acts as tyrosine kinase inhibitors that target the epidermal growth factor receptor of the epithelial lung cancer cells. BG loaded nanosponges (NSs) were prepared by the emulsion solvent evaporation technique using ethylcellulose (EC) and polyvinyl alcohol (PVA) as a stabilizer. Eight formulations were developed by varying the concentration of the drug (BG), EC and PVA followed by optimization through particle characterization; size, polydispersity index (PDI), zeta potential (ZP), drug entrapment and loading efficiency. The optimized formulation BGNS5 showed particles size (261.0 ± 3.5 nm), PDI (0.301) and ZP(−19.83 ± 0.06 Mv) together with entrapment efficiency (85.69 ± 0.04%) and drug loading (17.69 ± 0.01%). FTIR, DSC, XRD, and SEM showed drug-polymer compatibility, entrapment of drug in EC core, non-crystallinity of BG in NS and confirm spherical porous nature of the NS. BGNS5 reflects drug release in a sustained manner, 86.91 ± 2.12% for about 12 h. BGNS5 significantly decreased the cell viability of A549 human lung cancer cell lines with less hemolytic ratio compared to pure drug BG and EC. Based on the aforementioned results BGNS5 could be used in the effective treatment of NSCLC.
Collapse
Affiliation(s)
- Mohammed Muqtader Ahmed
- Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , P.O. Box 173 , Al-Kharj, 11942 , Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , P.O. Box 173 , Al-Kharj, 11942 , Saudi Arabia
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , P.O. Box 173 , Al-Kharj, 11942 , Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , P.O. Box 173 , Al-Kharj, 11942 , Saudi Arabia
| | - Sabya Sachi Das
- Department of Pharmaceutical Sciences and Technology , Birla Institute of Technology , Mesra , Ranchi, 835215 , Jharkhand , India
| | - Saad M. Alshahrani
- Department of Pharmaceutics, College of Pharmacy , Prince Sattam Bin Abdulaziz University , P.O. Box 173 , Al-Kharj, 11942 , Saudi Arabia
| |
Collapse
|
19
|
Liu Y, Sun C, Zhang G, Wu J, Huang L, Qiao J, Guan Q. Bio-responsive Bletilla striata polysaccharide-based micelles for enhancing intracellular docetaxel delivery. Int J Biol Macromol 2020; 142:277-287. [PMID: 31593738 DOI: 10.1016/j.ijbiomac.2019.09.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to design a pH- and redox-dual responsive Bletilla striata polysaccharide (BSP)-based copolymer to enhance anti-tumor drugs release at tumor sites and improve the therapeutic effect. The copolymer was synthesized using stearic acid (SA) and cystamine via a disulfide linkage and characterized using 1H-Nuclear Magnetic Resonance spectroscopy and Fourier Transform Infrared spectroscopy. The BSP-ss-SA copolymer could self-assemble into micelle in an aqueous environment and could encapsulate docetaxel therein. Its inhibitory effects on HepG2 cells and 4 T1 cells were determined. Besides, the anti-cancer effects in vivo and histopathological study of 4 T1-bearing tumor mice were also evaluated. Docetaxel-loaded BSP-ss-SA micelles showed significant pH-sensitive release behavior, supplying a greater drug release percentage in pH 5.0 media compared to pH 7.4 media. BSP-ss-SA micelles exhibited a clear redox-responsive release property in pH 7.4 media whereas the similar cumulative release percentage of docetaxel from BSP-ss-SA micelles in pH 5.0 media in the presence and absence of DL-dithiothreitol. The Docetaxel-loaded BSP-ss-SA micelles clearly inhibited the proliferation of HepG2 and 4 T1 cells compared with docetaxel solution. The results of MTT and histopathological study indicated that BSP-ss-SA copolymer exhibited good blood compatibility. The BSP-ss-SA copolymer may be used as carriers to deliver anti-tumor drugs to special tumor tissues.
Collapse
Affiliation(s)
- Yuran Liu
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Cheng Sun
- Sinotherapeutics Inc., Shanghai 201210, China
| | - Guangyuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Ji Wu
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Long Huang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Jin Qiao
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Qingxiang Guan
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China.
| |
Collapse
|
20
|
Wang W, Jiang S, Wang MY, Yuan HW, Xie Q, Liu Y, Li BS, Jian YQ, Liu CX, Lou HY, Atta-Ur-Rahman, Pan WD. Medicinal plant of Bletilla striata: A review of its chemical constituents, pharmacological activities, and quality control. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_58_20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
21
|
Sohrabi MJ, Dehpour AR, Attar F, Hasan A, Mohammad-Sadeghi N, Meratan AA, Aziz FM, Salihi A, Shekha MS, Akhtari K, Shahpasand K, Hojjati SMM, Sharifi M, Saboury AA, Rezayat SM, Mousavi SE, Falahati M. Silymarin-albumin nanoplex: Preparation and its potential application as an antioxidant in nervous system in vitro and in vivo. Int J Pharm 2019; 572:118824. [PMID: 31715345 DOI: 10.1016/j.ijpharm.2019.118824] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/05/2019] [Accepted: 10/25/2019] [Indexed: 02/07/2023]
Abstract
In this study, we formulated silymarin-HSA nanoplex and assayed its ability to reduce LPS-induced toxicity in vitro and in vivo. Silymarin molecules were encapsulated into HSA nanoplex and the loading efficiency and characterization of fabricated nanoplex were performed by using HPLC, TEM, SEM, DLS, FTIR analysis, and theoretical studies. Afterwards, their protective effect against LPS (20 µg/ml) -induced toxicity in SH-SY5Y cells was investigated by MTT, ROS, and apoptosis assays. For in vivo experiments, rats were pre-treated with either silymarin or silymarin -HSA nanoplex (200 mg/kg) orally for 3 days and at third day received LPS by IP at a dose of 0.5 mg/kg, 150 min before scarification followed by SOD and CAT activity assay. The formulation of silymarin-HSA nanoplex showed a spherical shape with an average diameter between 50 nm and 150 nm, hydrodynamic radius of 188.3 nm, zeta potential of -26.6 mV, and a drug loading of 97.3%. In LPS-treated cells, pretreatments with silymarin-HSA noncomplex recovered the cell viability and decreased the ROS level and corresponding apoptosis more significantly than free silymarin. In rats, it was also depicted that, silymarin-HSA noncomplex can increase the SOD and CAT activity in brain tissue at LPS-triggered oxidative stress model more significantly than the free counterpart. Therefore, nanoformulation of silymarin improved its capability to reduce LPS-induced oxidative stress by restoring cell viability and elevation of SOD and CAT activity in vitro and in vivo, respectively. In conclusion, formulation of silymarin may hold a great promise in the development of antioxidant agents.
Collapse
Affiliation(s)
- Mohammad Javad Sohrabi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad-Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnoosh Attar
- Department of Biology, Faculty of Food Industry & Agriculture, Standard Research Institute (SRI), Karaj, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Nahid Mohammad-Sadeghi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Falah Mohammad Aziz
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq
| | - Mudhir Sabir Shekha
- Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq; Department of Pathological Analysis, College of Science, Knowledge University, Erbil 074016, Kurdistan Region, Iraq
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, P.O. Box 416, Sanandaj, Iran
| | - Koorosh Shahpasand
- Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | | | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Seyed Mahdi Rezayat
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
22
|
Wang C, Zhu J, Ma J, Yang Y, Cui X. Functionalized Bletilla striata polysaccharide micelles for targeted intracellular delivery of Doxorubicin: In vitro and in vivo evaluation. Int J Pharm 2019; 567:118436. [DOI: 10.1016/j.ijpharm.2019.06.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
|
23
|
Di Costanzo A, Angelico R. Formulation Strategies for Enhancing the Bioavailability of Silymarin: The State of the Art. Molecules 2019; 24:E2155. [PMID: 31181687 PMCID: PMC6600503 DOI: 10.3390/molecules24112155] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/06/2019] [Indexed: 12/16/2022] Open
Abstract
Silymarin, a mixture of flavonolignan and flavonoid polyphenolic compounds extractable from milk thistle (Silybum marianum) seeds, has anti-oxidant, anti-inflammatory, anti-cancer and anti-viral activities potentially useful in the treatment of several liver disorders, such as chronic liver diseases, cirrhosis and hepatocellular carcinoma. Equally promising are the effects of silymarin in protecting the brain from the inflammatory and oxidative stress effects by which metabolic syndrome contributes to neurodegenerative diseases. However, although clinical trials have proved that silymarin is safe at high doses (>1500 mg/day) in humans, it suffers limiting factors such as low solubility in water (<50 μg/mL), low bioavailability and poor intestinal absorption. To improve its bioavailability and provide a prolonged silymarin release at the site of absorption, the use of nanotechnological strategies appears to be a promising method to potentiate the therapeutic action and promote sustained release of the active herbal extract. The purpose of this study is to review the different nanostructured systems available in literature as delivery strategies to improve the absorption and bioavailability of silymarin.
Collapse
Affiliation(s)
- Alfonso Di Costanzo
- Centre for Research and Training in Medicine for Aging, Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, I-86100 Campobasso, Italy.
| | - Ruggero Angelico
- Department of Agriculture, Environmental and Food Sciences (DIAAA), University of Molise, I-86100 Campobasso, Italy.
| |
Collapse
|
24
|
Chen Z, Cheng L, He Y, Wei X. Extraction, characterization, utilization as wound dressing and drug delivery of Bletilla striata polysaccharide: A review. Int J Biol Macromol 2018; 120:2076-2085. [DOI: 10.1016/j.ijbiomac.2018.09.028] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/18/2022]
|
25
|
Sansone F, Esposito T, Lauro MR, Picerno P, Mencherini T, Gasparri F, De Santis S, Chieppa M, Cirillo C, Aquino RP. Application of Spray Drying Particle Engineering to a High-Functionality/Low-Solubility Milk Thistle Extract: Powders Production and Characterization. Molecules 2018; 23:E1716. [PMID: 30011893 PMCID: PMC6100597 DOI: 10.3390/molecules23071716] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/20/2022] Open
Abstract
Many natural compounds having antioxidant and anti-inflammatory activity are a potential target for new therapies against chronic inflammatory syndromes. The oral administration of functional herbal supplements may become a prevention strategy or therapy adjuvant for susceptible patients. A case study is our milk thistle (Silybum marianum) extract rich in silymarin complex. A water-soluble microencapsulated powder system was developed by a spray drying technique to improve the poor silymarin bioactivity after oral administration. Sodium carboxymethylcellulose (NaCMC) was employed as coating/swelling polymer matrix and sodium lauryl sulfate (SLS) as the surfactant (1:1:0.05 w/w/w). A H₂O/EtOH/acetone (50/15/35 v/v/v) solvent system was used as liquid feed. The microsystems were capable of improving the in vitro dissolution and permeation rates, suggesting an enhancement of bioactivity after oral administration. The microsystems protect the antioxidant activity of silymarin after harsh storage conditions period and do not affect the anti-inflammatory properties of the raw extract (efficient already at lower concentrations of 0.312 mg/mL) to reduce dendritic cells (DCs) inflammatory cytokine secretion after lipopolysaccharide administration. This approach allows managing particle size, surface properties and release of bioactive agents improving the bioactivity of a herbal supplement and is also possibly applicable to many other similar natural products.
Collapse
Affiliation(s)
- Francesca Sansone
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Tiziana Esposito
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Maria Rosaria Lauro
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Patrizia Picerno
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Teresa Mencherini
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Franco Gasparri
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Stefania De Santis
- IRCCS "de Bellis", Laboratory of Experimental Immunopathology, 70013 Castellana Grotte, Italy.
| | - Marcello Chieppa
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
- IRCCS "de Bellis", Laboratory of Experimental Immunopathology, 70013 Castellana Grotte, Italy.
- EBRIS, European Biomedical Research Institute of Salerno, 84121 Salerno, Italy.
| | - Claudia Cirillo
- Department of Industrial Engineering and NANO_MATES Research Centre, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| | - Rita Patrizia Aquino
- Department of Pharmacy, University of Salerno, via Giovanni Paolo II, 132, 84084 Fisciano, Italy.
| |
Collapse
|
26
|
Zhu J, Guo X, Guo T, Yang Y, Cui X, Pan J, Qu Y, Wang C. Novel pH-responsive and self-assembled nanoparticles based on Bletilla striata polysaccharide: preparation and characterization. RSC Adv 2018; 8:40308-40320. [PMID: 35558196 PMCID: PMC9091190 DOI: 10.1039/c8ra07202g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 11/26/2018] [Indexed: 12/03/2022] Open
Abstract
In this investigation, innovative pH-sensitive and amphiphilic nanoparticles (NPs) were synthesized by grafting histidine (His, pH sensitive molecule) and stearic acid (SA, hydrophobic segment) onto the polysaccharides of Bletilla striata (BSP). The His-SA-BSP was able to self-assemble into NPs with pH sensitivity. The acidic conditions could trigger the imidazole ionization and reverse the surface charge, while the electrostatic repulsion wrecked the structure and drove the NPs to a swollen state, as revealed by dynamic light scattering (DLS), transmission electron microscopy (TEM), and critical micelle concentration (CMC) analyses. By increasing the degree of substitution (DS) of His, the NPs showed improved pH sensitivity. The NPs could accelerate Doxorubicin (Dox) release to a remarkably greater extent (3-fold) at pH 5 than at pH 7.4. The CCK-8 assay demonstrated a good biocompatibility of the NPs towards different cell lines and a specific inhibition effect of Dox-loaded NPs against tumor cells. Furthermore, the NPs showed the improved cellular uptake of Dox towards MCF-7 by fluorescence microscopy and flow cytometry. Therefore, the new His-SA-BSP showed potential applications in drug nanocarrier systems. In this investigation, innovative pH-sensitive and amphiphilic nanoparticles (NPs) were synthesized by grafting histidine (His, pH sensitive molecule) and stearic acid (SA, hydrophobic segment) onto the polysaccharides of Bletilla striata (BSP).![]()
Collapse
Affiliation(s)
- Junxiao Zhu
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province
| | - Xiaoxi Guo
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- University Based Provincial Key Laboratory of Screening and Utilization of Targeted Drugs
| | - Tingting Guo
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province
| | - Ye Yang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province
| | - Xiuming Cui
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province
| | - Jun Pan
- Institute of Food Science and Technology
- Yunnan Provincial Academy of Agricultural Sciences
- Kunming 650205
- China
| | - Yuan Qu
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province
| | - Chengxiao Wang
- Faculty of Life Science and Technology
- Kunming University of Science and Technology
- Kunming 650500
- China
- Key Laboratory of Sustainable Utilization of Panax Notoginseng Resources of Yunnan Province
| |
Collapse
|
27
|
El-Nahas AE, Allam AN, El-Kamel AH. Mucoadhesive buccal tablets containing silymarin Eudragit-loaded nanoparticles: formulation, characterisation and ex vivo permeation. J Microencapsul 2017; 34:463-474. [PMID: 28691562 DOI: 10.1080/02652048.2017.1345996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Eudragit-loaded silymarin nanoparticles (SNPs) and their formulation into buccal mucoadhesive tablets were investigated to improve the low bioavailability of silymarin through buccal delivery. Characterisation of SNPs and silymarin buccal tablets (SBTs) containing the optimised NPs were performed. Ex vivo permeability of nominated SBTs were assessed using chicken pouch mucosa compared to SNPs and drug suspension followed by histopathological examination. Selected SNPs had a small size (<150 nm), encapsulation effciency (>77%) with drug release of about 90% after 6 h. For STBs, all physicochemical parameters were satisfactory for different polymers used. DSC and FT-IR studies suggested the presence of silymarin in an amorphous state. Ex vivo permeation significantly emphasised the great enhancement of silymarin permeation after NPs formation and much more increase after formulating into BTs relative to the corresponding drug dispersion with confirmed membrane integrity. Incorporation of SNPs into BTs could be an efficient vehicle for delivery of silymarin.
Collapse
Affiliation(s)
- Amira E El-Nahas
- a Department of Pharmaceutics, Faculty of Pharmacy , Damanhur University , Damanhur , Egypt
| | - Ahmed N Allam
- b Department of Pharmaceutics, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| | - Amal H El-Kamel
- b Department of Pharmaceutics, Faculty of Pharmacy , Alexandria University , Alexandria , Egypt
| |
Collapse
|
28
|
Demirbilek M, Laçin Türkoglu N, Aktürk S, Akça C. VitD3-loaded solid lipid nanoparticles: stability, cytotoxicity and cytokine levels. J Microencapsul 2017; 34:454-462. [PMID: 28675984 DOI: 10.1080/02652048.2017.1345995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Vitamin D3 (VitD3) has several beneficial effects on many metabolic pathways such as immunity system, bone development. The aim of the study, encapsulation of VitD3 with solid lipids, determine encapsulation efficiency and biocompatibility of nanoparticles. Therefore, VitD3-loaded solid lipid nanoparticles (SLNPs) were developed by optimising ratios of VitD3, stearic acid, beeswax and sodium dodecyl sulphate (SDS). Thermal stability, degradation profile, crystallinity rate, encapsulation efficiency and release profile of SLNPs were determined. Cytotoxicity of SLNPs on HaCaT, L929 and HUVEC cells were investigated. Negatively charged and VitD3-loaded nanoparticles with diameters between 30 and 60 nm were obtained. SLNPs containing up to 5.1 mg VitD3 per 10 mg powder samples were obtained. Cell proliferations were stimulated after exposure with VitD3-loaded SLNPs. Besides, inflammatory response after exposure to VitD3-loaded SLNPs was evaluated via determining IL10 and TNF-alpha levels on THP-1 cells. According to the results, no inflammatory response was observed.
Collapse
Affiliation(s)
- Murat Demirbilek
- a Advanced Technologies Application and Research Center , Hacettepe University , Ankara , Turkey
| | - Nelisa Laçin Türkoglu
- b Science and Technology Application and Research Center , Yildiz Technical University , Istanbul , Turkey
| | - Selçuk Aktürk
- c Department of Physics , Mugla Sitki Koçman University , Mugla , Turkey
| | - Cem Akça
- d Department of Metallurgical and Materials Engineering , Yildiz Technical University , Istanbul , Turkey
| |
Collapse
|
29
|
He X, Wang X, Fang J, Zhao Z, Huang L, Guo H, Zheng X. Bletilla striata: Medicinal uses, phytochemistry and pharmacological activities. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:20-38. [PMID: 27865796 DOI: 10.1016/j.jep.2016.11.026] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 10/23/2016] [Accepted: 11/11/2016] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bletilla striata (Thunb.) Reichb. f. (Orchidaceae), also known as Hyacinth Orchid and Baiji (Simplified Chinese: ), not only has been widely used for the treatment of hematemesis, hemoptysis, and traumatic bleeding due to the efficacy of arresting bleeding with astringent action, but also has been applied topically to overcome ulcers, sores, swellings, and chapped skin due to the efficacy of dispersing swelling and promoting tissue regeneration. Additional medical applications include the treatment of tuberculosis, malignant ulcers, hemorrhoids, anthrax, eye diseases, and silicosis. AIM OF THIS REVIEW This review aims to provide up-to-date information on the botanical characterization, medicinal uses, chemical constituents, pharmacological activities, and toxicity of B. striata. In addition, this paper also focuses on the possible exploitation of this plant for the treatment of different diseases, and uncovers opportunities for future research. MATERIALS AND METHODS The relevant information on B. striata was gathered from worldwide accepted scientific databases via an electronic search (Google Scholar, Web of Science, ScienceDirect, ACS Publications, PubMed, Wiley Online Library, SciFinder, CNKI). Information was also obtained from The Plant List, Chinese pharmacopoeia, Chinese herbal classics books, PhD and MSc dissertations, etc. RESULTS A comprehensive analysis of the literature obtained through the above-mentioned sources confirmed that the ethnomedical usages of B. striata have been recorded in Mongolia, Korea, Japan, and China. Phytochemical investigations revealed that the major chemical constituents of B. striata are polysaccharides, bibenzyls, phenanthrenes, triterpenoids and its saponins, steroids and its saponins, which also have been proven to be the main bioactive substances capable of exhibiting numerous pharmacological activities including wound healing, antiulcer, hemostasis, cytotoxicity, antimicrobial, anti-inflammation, anti-oxidation, immunomodulation, anti-fibrosis, antiaging, anti-allergy, and anti-itch. CONCLUSIONS Preliminary investigations on pharmacological properties of B. striata have shown that B. striata is an outstanding astringent hemostatic medicinal, B. striata polysaccharides (BSP) as the major bioactive components not only capable of promoting wound healing, but also show good performance as a kind of promising natural biomaterial. More importantly, BSP are also reported to be excellent embolic material. However, further investigations need to be carried out to fully clarify its efficacy of dispersing swelling and promoting tissue regeneration. Moreover, this plant also needs a lot more investigations to clarify the pathways of absorption, distribution, metabolism and excretion, and to evaluate its long-term in vivo chronic toxicity before proceeding to the development of pharmaceutical formulation.
Collapse
Affiliation(s)
- Xirui He
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China; Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Xiaoxiao Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Jiacheng Fang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Zefeng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China
| | - Linhong Huang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China.
| | - Hao Guo
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an 710054, PR China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, Xi'an 710069, PR China.
| |
Collapse
|