1
|
Bott KN, Feldman E, de Souza RJ, Comelli EM, Klentrou P, Peters SJ, Ward WE. Lipopolysaccharide-Induced Bone Loss in Rodent Models: A Systematic Review and Meta-Analysis. J Bone Miner Res 2023; 38:198-213. [PMID: 36401814 PMCID: PMC10107812 DOI: 10.1002/jbmr.4740] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Osteoporosis has traditionally been characterized by underlying endocrine mechanisms, though evidence indicates a role of inflammation in its pathophysiology. Lipopolysaccharide (LPS), a component of gram-negative bacteria that reside in the intestines, can be released into circulation and stimulate the immune system, upregulating bone resorption. Exogenous LPS is used in rodent models to study the effect of systemic inflammation on bone, and to date a variety of different doses, routes, and durations of LPS administration have been used. The study objective was to determine whether systemic administration of LPS induced inflammatory bone loss in rodent models. A systematic search of Medline and four other databases resulted in a total of 110 studies that met the inclusion criteria. Pooled standardized mean differences (SMDs) and corresponding 95% confidence intervals (CI) with a random-effects meta-analyses were used for bone volume fraction (BV/TV) and volumetric bone mineral density (vBMD). Heterogeneity was quantified using the I2 statistic. Shorter-term (<2 weeks) and longer-term (>2 weeks) LPS interventions were analyzed separately because of intractable study design differences. BV/TV was significantly reduced in both shorter-term (SMD = -3.79%, 95% CI [-4.20, -3.38], I2 62%; p < 0.01) and longer-term (SMD = -1.50%, 95% CI [-2.00, -1.00], I2 78%; p < 0.01) studies. vBMD was also reduced in both shorter-term (SMD = -3.11%, 95% CI [-3.78, -2.44]; I2 72%; p < 0.01) and longer-term (SMD = -3.49%, 95% CI [-4.94, -2.04], I2 82%; p < 0.01) studies. In both groups, regardless of duration, LPS negatively impacted trabecular bone structure but not cortical bone structure, and an upregulation in bone resorption demonstrated by bone cell staining and serum biomarkers was reported. This suggests systemically delivered exogenous LPS in rodents is a viable model for studying inflammatory bone loss, particularly in trabecular bone. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Kirsten N Bott
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Evelyn Feldman
- Lakehead University Library, Lakehead University, Thunder Bay, ON, Canada
| | - Russell J de Souza
- Department of Health Research Methods, Evidence, and Impact, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada.,Population Health Research Institute, Hamilton Health Sciences Corporation, Hamilton, ON, Canada
| | - Elena M Comelli
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Joannah and Brian Lawson Centre for Child Nutrition, University of Toronto, Toronto, ON, Canada
| | - Panagiota Klentrou
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Sandra J Peters
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Wendy E Ward
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada.,Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada.,Department of Nutritional Sciences, University of Toronto, Toronto, ON, Canada.,Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
2
|
Reversing the imbalance in bone homeostasis via sustained release of SIRT-1 agonist to promote bone healing under osteoporotic condition. Bioact Mater 2023; 19:429-443. [PMID: 35574058 PMCID: PMC9079176 DOI: 10.1016/j.bioactmat.2022.04.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/12/2022] Open
Abstract
The imbalance of bone homeostasis is the root cause of osteoporosis. However current therapeutic approaches mainly focus on either anabolic or catabolic pathways, which often fail to turn the imbalanced bone metabolism around. Herein we reported that a SIRT-1 agonist mediated molecular therapeutic strategy to reverse the imbalance in bone homeostasis by simultaneously regulating osteogenesis and osteoclastogenesis via locally sustained release of SRT2104 from mineral coated acellular matrix microparticles. Immobilization of SRT2104 on mineral coating (MAM/SRT) harnessing their electrostatic interactions resulted in sustained release of SIRT-1 agonist for over 30 days. MAM/SRT not only enhanced osteogenic differentiation and mineralization, but also attenuated the formation and function of excessive osteoclasts via integrating multiple vital upstream signals (β-catenin, FoxOs, Runx2, NFATc1, etc.) in vitro. Osteoporosis animal model also validated that it accelerated osteoporotic bone healing and improved osseointegration of the surrounding bone. Overall, our work proposes a promising strategy to treat osteoporotic bone defects by reversing the imbalance in bone homeostasis using designated small molecule drug delivery systems. A mineral coated acellular matrix microcarriers sustainably release SIRT2104 more than 30 days. This drug delivery system regulates osteogenesis and osteoclastogenesis. It can accelerate osteoporotic bone healing by reversing the imbalance in bone homeostasis.
Collapse
|
3
|
A Comparison of the Flavonoid Biosynthesis Mechanisms of Dendrobium Species by Analyzing the Transcriptome and Metabolome. Int J Mol Sci 2022; 23:ijms231911980. [PMID: 36233278 PMCID: PMC9569625 DOI: 10.3390/ijms231911980] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Dendrobium huoshanense, Dendrobium officinale, and Dendrobium moniliforme, as precious Chinese medicinal materials, have a variety of medicinal properties. Flavonoids are important medicinal components of Dendrobium, but their accumulation rules and biosynthesis mechanisms remain unclear. To explore the similarities and differences of flavonoid accumulation and biosynthesis in these three Dendrobium species, we performed flavonoid content determination, widely-targeted metabolomics and transcriptome sequencing on 1-4 years old Dendrobium species. The results showed that in different growth years, D. huoshanense stems had the highest flavonoid content in the second year of growth, while D. officinale and D. moniliforme stems had the highest flavonoid content in the third year of growth. A total of 644 differentially accumulated metabolites (DAMs) and 10,426 differentially expressed genes (DEGs) were identified by metabolomic and transcriptomic analysis. It was found that DAMs and DEGs were not only enriched in the general pathway of "flavonoid biosynthesis", but also in multiple sub-pathways such as "Flavone biosynthesis", and "Flavonol biosynthesis" and "Isoflavonoid biosynthesis". According to a combined transcriptome and metabolome analysis, the expression levels of the F3'H gene (LOC110096779) and two F3'5'H genes (LOC110101765 and LOC110103762) may be the main genes responsible for the differences in flavonoid accumulation. As a result of this study, we have not only determined the optimal harvesting period for three Dendrobium plants, but also identified the key genes involved in flavonoid biosynthesis and provided a basis for further study of the molecular mechanism of flavonoid synthesis.
Collapse
|
4
|
Nie H, Wang N, Huang J, Ni Z, Xue K, Song L, Wang M, Wu F. Radiosynthesis and tumor microPET/CT imaging of 18F-fluoroethoxylerianin, a 18F-Labeled Erianin Analogue. SYNOPEN 2022. [DOI: 10.1055/a-1818-8330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Abstract: Erianin is an active constituent of Dendrobium candidum. In this work, 18F -fluoroethoxylerianin([18F]FEE), a 18F-Labeled Erianin analogue, was designed and synthesized to evaluate the property of Erianin and related analogues by in vivo PET imaging. The initial product was separated and purified by liquid phase separation module Explora LC and simple homemade solid phase extraction, and high purity [18F]FEE was finally obtained. The radiochemical purity of [18F]FEE was determined by Radio-TLC and Radio-HPLC. [18F]FEE showed good stability in normal saline and serum, and could be quickly eliminated from mice. Cell experiments, biological distribution, and small animal PET/CT further showed that [18F]FEE had a high uptake rate in HepG2 tumor cells, and showed good imaging ability in HepG2 tumor model. The results of this study indicate that the synthesized 18F-Labeled Erianin analogue is an effective new probe for positron emission tomography (PET) imaging of HepG2 hepatocellular carcinoma, which provides an intuitive and reliable theoretical basis for the development of erianin as an anticancer drug.
Collapse
Affiliation(s)
- Hui Nie
- Department of pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Nian Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jinwen Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zhuang Ni
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Kangyan Xue
- Department of pharmaceutical Engineering, School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Lixing Song
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Mingwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Fanhong Wu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, shanghai, China
| |
Collapse
|
5
|
Sun Y, Li G, Zhou Q, Shao D, Lv J, Zhou J. Dual Targeting of Cell Growth and Phagocytosis by Erianin for Human Colorectal Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3301-3313. [PMID: 32848368 PMCID: PMC7429191 DOI: 10.2147/dddt.s259006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022]
Abstract
Objective To investigate the effect of erianin on tumor growth and immune response in human colorectal cancer cells (CRC). Methods The effect of erianin on tumor growth was determined by CCK8 and colony formation assay. Western blotting was used to evaluate the expression levels of relevant proteins and qRT-PCR was used to evaluate the mRNA level of the relevant gene. The transcriptional activity of β-catenin was determined by dual-luciferase reporter assay. Cellular thermal shift assay was used to quantify drug–target interactions. The cell surface CD47 was assessed by flow cytometry. The enrichment of H3K27 acetyl marks on CD47 promoter was evaluated by chromatin immunoprecipitation assay. Phagocytosis assay was used to determine the phagocytic activity of macrophage. In vivo role of erianin was studied on xenograft models. Results We found that erianin significantly decreased cell survival, colony formation, induced cell cycle arrest, and led to cell apoptosis in SW480 and HCT116 cells. Mechanism analysis demonstrated that erianin inhibited the nuclear translocation and transcriptional activity of β-catenin, which might result from erianin-β-catenin interaction. In addition, the downstream gene expressions, such as c-Myc and cyclin D1, was decreased. More interestingly, erianin decreased the expression of CD47 by regulating H3K27 acetyl marks enrichment on CD47 promoter. Consequently, macrophage-mediated phagocytosis was increased. Our in vivo experiments further confirmed the inhibitory effect of erianin on tumor growth. Conclusion In summary, erianin could inhibit CRC cells growth and promoted phagocytosis, which suggested erianin as a potential therapeutic strategy for CRC patients.
Collapse
Affiliation(s)
- Yihan Sun
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Guofeng Li
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Qi Zhou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Danyue Shao
- Second School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jingwei Lv
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| | - Jianhua Zhou
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, People's Republic of China
| |
Collapse
|
6
|
Jia L, Shi L, Li J, Zeng Y, Tang S, Liu W, Mo X, Liu X. Total flavonoids from celery suppresses RANKL-induced osteoclast differentiation and bone resorption function via attenuating NF-κB and p38 pathways in RAW264.7 cells. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103949] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
7
|
Long W, Quan J, Liu Y, Li J, Gong Q, Jiang H. 7ND protein exerts inhibitory effects on both osteoclast differentiation in vitro and lipopolysaccharide‑induced bone erosion in vivo. Mol Med Rep 2020; 22:97-104. [PMID: 32377737 PMCID: PMC7248529 DOI: 10.3892/mmr.2020.11119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/25/2020] [Indexed: 11/29/2022] Open
Abstract
Excessive numbers of osteoclasts are responsible for inflammation-induced osteolysis. Identification of osteoclast-targeting agents may facilitate the development of a novel therapeutic approach for the treatment of pathological bone loss. Seven-amino acid truncated (7ND) protein, a mutant form of monocyte chemoattractant protein-1 (MCP-1), functions as a competitive inhibitor of MCP-1. However, the effects of 7ND protein on osteoclast differentiation remain unknown. Therefore, in the present study, the effects of 7ND protein on osteoclast differentiation induced by tumour necrosis factor superfamily member 11 were investigated. In the present study, 7ND protein inhibited the osteoclast differentiation of peripheral blood mononuclear cells without influencing cell proliferation. Furthermore, to evaluate the effects of 7ND protein in vivo, a lipopolysaccharide (LPS)-induced calvarial bone erosion animal model was established. The 7ND protein remarkably attenuated LPS-induced bone resorption, as assessed by micro-computed tomography and histological analysis. Taken together, the present results suggested the feasibility of local delivery of 7ND protein to mitigate osteoclast differentiation and LPS-induced osteolysis, which may represent a potential approach to treat inflammatory bone destruction.
Collapse
Affiliation(s)
- Weilin Long
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jingjing Quan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yiwen Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jing Li
- Department of Stomatology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
8
|
Zhang W, Xue K, Gao Y, Huai Y, Wang W, Miao Z, Dang K, Jiang S, Qian A. Systems pharmacology dissection of action mechanisms of Dipsaci Radix for osteoporosis. Life Sci 2019; 235:116820. [PMID: 31476308 DOI: 10.1016/j.lfs.2019.116820] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/17/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Abstract
AIMS Osteoporosis (OP) is a systemic metabolic bone disease characterized by bone mass decrease and microstructural degradation, which may increase the risk of bone fracture and leading to high morbidity. Dipsaci Radix (DR), one typical traditional Chinese medicine (TCM), which has been applied in the treatment of OP with good therapeutic effects and few side effects. However, the underlying molecular mechanisms of DR to treat OP have not been fully elucidated. In this study, we aim to dissect the molecular mechanism of DR in the treatment of OP. MATERIALS AND METHODS A systems pharmacology approach was employed to comprehensively dissect the action mechanisms of DR for the treatment of OP. KEY FINDINGS 10 compounds were screened out as the potential active ingredients with excellent biological activity based on in silico ADME (absorption, distribution, metabolism and excretion) prediction model. Then, 36 key protein targets of 6 compounds were identified by systems drug targeting model (SysDT) and they were involved in several biological processes, such as osteoclast differentiation, osteoblast differentiation and anti-inflammation. The target-pathway network indicated that targets are mainly mapped in multiple signaling pathways, i.e., MAPK, Tumor necrosis factor α (TNF-α), NF-κb and Toll-like receptor pathways. The in vitro results indicated that the compounds ursolic acid and beta-sitosterol effectively inhibited the osteoclast differentiation. SIGNIFICANCE These results systematically dissected that DR exhibits the therapeutic effects of OP by the regulation of immune system-related pathways, which provide novel perspective to drug development of OP.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kaiyue Xue
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yongguang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ying Huai
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Wei Wang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Kai Dang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Shanfeng Jiang
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| |
Collapse
|
9
|
Zhang Y, Zhang Q, Wei F, Liu N. Progressive study of effects of erianin on anticancer activity. Onco Targets Ther 2019; 12:5457-5465. [PMID: 31371985 PMCID: PMC6628150 DOI: 10.2147/ott.s200161] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/18/2019] [Indexed: 01/21/2023] Open
Abstract
Erianin is the major bisbenzyl compound extracted from the traditional Chinese medicine Dendrohium chrysotoxum Lindl. Erianin possesses many biological properties relevant to cancer prevention and therapy. The previous studies confirmed that antitumor effects of erianin are regulated with multiple signaling pathways. The mechanisms of erianin are numerous, and most of them induce cancer cell apoptosis that may be intrinsic or extrinsic and modulate the ROS/JNK signaling pathways. Invasion, migration, and angiogenesis represent emerging targets of erianin and support its anticancer properties. This review aimed to summarize the recent advances in the antitumor activity of erianin and to provide a rationale for further exploring the potential application of erianin in overcoming cancer in the future.
Collapse
Affiliation(s)
- Yuying Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Qianqian Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| | - Fanhua Wei
- College of Agriculture, Ningxia University, Yinchuan 750021, People's Republic of China
| | - Na Liu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
10
|
Shah S, Shrestha R, Maharjan S, Selosse MA, Pant B. Isolation and Characterization of Plant Growth-Promoting Endophytic Fungi from the Roots of Dendrobium moniliforme. PLANTS 2018; 8:plants8010005. [PMID: 30597827 PMCID: PMC6359427 DOI: 10.3390/plants8010005] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/06/2018] [Accepted: 11/10/2018] [Indexed: 01/16/2023]
Abstract
The present study aims to identify the diverse endophytic fungi residing in the roots of Dendrobium moniliforme and their role in plant growth and development. Nine endophytic fungi were isolated from the root sections and characterized by molecular technique. Quantification of the indole acetic acid (IAA) compound by these endophytes was done. Further, Chemical profiling of R11 and R13 fungi was done by Gas Chromatography-Mass Spectroscopy (GC-MS). Asymbiotic seed derived protocorms of Rhynchostylis retusa was used for the plant growth assay to investigate the growth promoting activities of the fungal elicitor prepared from the isolated fungi from D. moniliforme. Among the isolated fungi, the relative dominant fungus was Fusarium sp. The R13 and R6 fungi were identified only at the genus level which concludes the fungi are of new species or strain. The indole acetic acid production was relatively higher in R10. Bioactive compound diversity was observed in the organic extract of R11 and R6. The presence of phenolic compound and essential oil suggest their contribution for the antimicrobial and antioxidant properties to their host plant, D. moniliforme. The plant growth assay result concluded, the fungal elicitor prepared from R10, Colletotrichum alatae was the best among all other for the plant growth activities.
Collapse
Affiliation(s)
- Sujit Shah
- Central Department of Botany, Tribhuvan University, Kathmandu 2642, Nepal.
| | - Roshani Shrestha
- Central Department of Botany, Tribhuvan University, Kathmandu 2642, Nepal.
| | - Sabitri Maharjan
- Central Department of Botany, Tribhuvan University, Kathmandu 2642, Nepal.
| | - Marc-Andre Selosse
- Institut de Systématique, Évolution, Biodiversité (UMR 7205-CNRS, MNHN, UPMC, EPHE), Muséum National d'Histoire naturelle, Sorbonne Universités, 57 rue Cuvier, 75005 Paris, France.
- Department of Plant Taxonomy and Nature Conservation, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland.
| | - Bijaya Pant
- Central Department of Botany, Tribhuvan University, Kathmandu 2642, Nepal.
| |
Collapse
|
11
|
Liang Q, Lv M, Zhang X, Hu J, Wu Y, Huang Y, Wang X, Sheng J. Effect of Black Tea Extract and Thearubigins on Osteoporosis in Rats and Osteoclast Formation in vitro. Front Physiol 2018; 9:1225. [PMID: 30233402 PMCID: PMC6129951 DOI: 10.3389/fphys.2018.01225] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 01/06/2023] Open
Abstract
Background: Osteoporosis is a major health problem that is closely related to substantial morbidity, mortality and decline in life quality for the aging population. Although previous studies and epidemiological evidence have demonstrated an association between black tea consumption and the prevention of bone loss, the underlying mechanism remains unclear. So, the effect of black tea extract (BTE) and thearubigins (TRs) on osteoporosis in rats and osteoclast formation in vitro were investigated. Methods:In vivo, ovariectomized (OVX) rats were used to establish osteoporosis models. To validate the model and study the effects of BTE and TRs on osteoporosis, the female Wistar rats were divided into a sham-operated group and five OVX groups including model, Xian-Ling-Gu-Bao (XLGB) (as a positive control), BTE, TRs low-dose, and TRs high-dose group. The rats in the four treatment groups were given the corresponding test sample for 12 weeks. Then, the body weight, femur indices, and serum biomarkers were examined and analyzed. In vitro, RAW264.7 murine macrophages were used as model of osteoclast formation. The effects of BTE and TRs on osteoclasts formation and the specific genes and protein levels of osteoclasts were determined. Results: Although there was no significant effect on the OVX-induced body weight gain by BTE or TRs, the levels of maximum bending force, cortical bone thickness and biomarker of bone resorption (acid phosphatase) can be significantly ameliorated by BTE or TRs in OVX rats. Furthermore, both of BTE and TRs can inhibit the osteoclastogenesis and diminish the expression levels of the related genes and proteins.
Collapse
Affiliation(s)
- Qingqing Liang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ming Lv
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiaojuan Zhang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jun Hu
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Ying Wu
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Yewei Huang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- *Correspondence: Yewei Huang, Xuanjun Wang, Jun Sheng,
| | - Xuanjun Wang
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yewei Huang, Xuanjun Wang, Jun Sheng,
| | - Jun Sheng
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
- *Correspondence: Yewei Huang, Xuanjun Wang, Jun Sheng,
| |
Collapse
|
12
|
Wang Q, Zi CT, Wang J, Wang YN, Huang YW, Fu XQ, Wang XJ, Sheng J. Dendrobium officinale Orchid Extract Prevents Ovariectomy-Induced Osteoporosis in Vivo and Inhibits RANKL-Induced Osteoclast Differentiation in Vitro. Front Pharmacol 2018; 8:966. [PMID: 29379436 PMCID: PMC5775521 DOI: 10.3389/fphar.2017.00966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 02/04/2023] Open
Abstract
Background:Dendrobium officinale, a traditional Chinese medical herb with high value that is widely used in Asia, possesses many positive effects on human health, including anti-chronic inflammation, anti-obesity, and immune modulation properties; however, whether D. officinale has inhibitory effects on postmenopausal osteoporosis remains unknown. Objective: We investigated the effects of D. officinale extract (DOE) on ovariectomy-induced bone loss in vivo and on osteoclastogenesis in vitro. Methods:In vivo, female rats were divided into a sham-operated (sham) group and five ovariectomized (OVX) subgroups: OVX with vehicle (OVX), OVX with Xian-Ling-Gu-Bao capsule (240 mg/kg body weight/day), and OVX with low-, medium-, and high-dose DOE (150, 300, and 600 mg/kg body weight/day, respectively). Animals in each group were administered their corresponding treatments for 13 weeks. Body weight, serum biochemical parameters, uterine and femoral physical parameters, bone mineral density (BMD), bone biomechanical properties, and bone microarchitecture were obtained. In vitro, the effects of DOE on osteoclastogenesis were examined using RAW264.7 cells. The effects of DOE on osteoclastogenesis and the expression of osteoclast-specific marker genes and proteins were determined. Results: DOE effectively ameliorated serum biochemical parameters, especially alleviated estradiol (E2) deficiency and maintained calcium and phosphorus homeostasis. DOE improved uterine and femoral physical parameters. In addition, DOE improved femoral BMD and biomechanical properties. DOE significantly ameliorated bone microarchitecture. Moreover, DOE inhibited osteoclastogenesis independent of its cytoxicity and suppressed the expression of osteoclast-specific marker genes and proteins. Conclusion: DOE can effectively prevent ovariectomy-induced bone loss in vivo and inhibit osteoclastogenesis in vitro.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Cheng-Ting Zi
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Tea Science, Yunnan Agricultural University, Kunming, China
| | - Jing Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yu-Na Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ye-Wei Huang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xue-Qi Fu
- College of Life Sciences, Jilin University, Changchun, China
| | - Xuan-Jun Wang
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- College of Tea Science, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| | - Jun Sheng
- Key Laboratory of Pu-erh Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming, China
- Tea Research Center of Yunnan, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Kunming, China
| |
Collapse
|
13
|
The medicinal and pharmaceutical importance of Dendrobium species. Appl Microbiol Biotechnol 2017; 101:2227-2239. [PMID: 28197691 DOI: 10.1007/s00253-017-8169-9] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
Plants of the Dendrobium genus, one of the largest in the Orchidaceae, manifest a diversity of medicinal effects encompassing antiangiogenic, immunomodulating, antidiabetic, cataractogenesis-inhibiting, neuroprotective, hepatoprotective, anti-inflammatory, antiplatelet aggregation, antifungal, antibacterial, antiherpetic, antimalarial, aquaporin-5 stimulating, and hemagglutininating activities and also exert beneficial actions on colonic health and alleviate symptoms of hyperthyroidism. The active principles include a wide range of proteinaceous and non-proteinaceous molecules. This mini-review discusses the latest advances in what is known about the medicinal and pharmaceutical properties of members of the Dendrobium genus and explores how biotechnology can serve as a conduit to mass propagate valuable germplasm for sustainable exploration for the pharmaceutical industry.
Collapse
|