1
|
Aponte AMO, Ospina V, Pulido SA, Ríos-Vásquez LA, Jaramillo LAB, Peña CMM, Ocampo-Cardona R, Robledo SM. In Vitro Cytotoxicity of Fluorinated Quaternary Ammonium Salts in Colorectal Cancer Cells and In Silico Pharmacology. Adv Pharmacol Pharm Sci 2024; 2024:2671547. [PMID: 39512304 PMCID: PMC11540889 DOI: 10.1155/2024/2671547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease driven by genetic and epigenetic alterations that modulate specific metabolic pathways. Despite the availability of effective treatments like 5-fluorouracil (5-FU), pharmacological therapy for CRC still faces significant challenges, including drug resistance, toxicity, and limited specificity. Therefore, discovering new compounds remains critical to overcoming these barriers and expanding treatment options. This study evaluated the cytotoxicity of fluorinated quaternary ammonium salts (FQAS) library in CRC-derived cell lines with premetastatic and metastatic phenotypes. The genetic and epigenetic background of the CRC cell lines and the selectivity of cytotoxicity compared to nontumor cells and between different CRC stages were also assessed. Additionally, the in silico pharmacological properties of these FQASs were analyzed. Results showed that FQASs 9-14 exhibited significant cytotoxic activity against both premetastatic and metastatic CRC cell lines, with FQASs 9, 13, and 14 displaying selective toxicity toward CRC cells over normal murine colorectal cells. However, in silico studies indicated poor oral bioavailability for these compounds, suggesting that an injection-based delivery route may be more effective for targeting CRC cells. In conclusion, CF3-containing FQASs are promising therapeutic candidates for CRC treatment.
Collapse
Affiliation(s)
| | - Victoria Ospina
- Grupo Estudios Preclínicos, Corporación de Innovación para el Desarrollo de Productos, Medellín, Colombia
| | - Sergio A. Pulido
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
- División I+D+i, LifeFactors Zona Franca S.A.S, Rionegro, Colombia
| | - Luz Amalia Ríos-Vásquez
- Química Teórica y Bioinformática, Departamento de Química, Universidad de Caldas, Manizales, Colombia
| | | | | | - Rogelio Ocampo-Cardona
- Química Teórica y Bioinformática, Departamento de Química, Universidad de Caldas, Manizales, Colombia
| | - Sara M. Robledo
- PECET-Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
2
|
Mustafa N, Jumaah F, Ludin N, Akhtaruzzaman M, Hassan N, Ahmad A, Chan K, Su'ait M. Tetraalkylammonium salts (TAS) in solar energy applications - A review on in vitro and in vivo toxicity. Heliyon 2024; 10:e27381. [PMID: 38560257 PMCID: PMC10979238 DOI: 10.1016/j.heliyon.2024.e27381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Tetraalkylammonium salt (TAS) is an organic salt widely employed as a precursor, additive or electrolyte in solar cell applications, such as perovskite or dye-sensitized solar cells. Notably, Perovskite solar cells (PSCs) have garnered acclaim for their exceptional efficiency. However, PSCs have been associated with environmental and health concerns due to the presence of lead (Pb) content, the use of hazardous solvents, and the incorporation of TAS in their fabrication processes, which significantly contributes to environmental and human health toxicity. As a response, there is a growing trend towards transitioning to safer and biobased materials in PSC fabrication to address these concerns. However, the potential health hazards associated with TAS necessitate a thorough evaluation, considering the widespread use of this substance. Nevertheless, the overexploitation of TAS could potentially increase the disposal of TAS in the ecosystem, thus, posing a major health risk and severe pollution. Therefore, this review article presents a comprehensive discussion on the in vitro and in vivo toxicity assays of TAS as a potential material in solar energy applications, including cytotoxicity, genotoxicity, in vivo dermal, and systemic toxicity. In addition, this review emphasizes the toxicity of TAS compounds, particularly the linear tetraalkyl chain structures, and summarizes essential findings from past studies as a point of reference for the development of non-toxic and environmentally friendly TAS derivatives in future studies. The effects of the TAS alkyl chain length, polar head and hydrophobicity, cation and anion, and other properties are also included in this review.
Collapse
Affiliation(s)
- N.M. Mustafa
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - F.N. Jumaah
- Department of Materials & Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | - N.A. Ludin
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - M. Akhtaruzzaman
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - N.H. Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Battery Technology Research Group (UKMBATT), Polymer Research Centre (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - A. Ahmad
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Battery Technology Research Group (UKMBATT), Polymer Research Centre (PORCE), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- Department of Physics, Faculty of Science and Technology, Universitas Airlangga, JI. Mulyorejo, Surabaya, 60115, Indonesia
| | - K.M. Chan
- Product Stewardship and Toxicology, Group Health, Safety and Environment (GHSE), Petroliam Nasional Berhad (PETRONAS), 50088 Kuala Lumpur, Malaysia
| | - M.S. Su'ait
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
3
|
García DJ, Fernández-Culma M, Upegui YA, Ríos-Vásquez LA, Quiñones W, Ocampo-Cardona R, Echeverri F, Vélez ID, Robledo SM. Nanoemulsions for increased penetrability and sustained release of leishmanicidal compounds. Arch Pharm (Weinheim) 2023:e2300108. [PMID: 37068175 DOI: 10.1002/ardp.202300108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/19/2023]
Abstract
In the last decade, the World Health Organization has driven the development of drugs for topical use in patients with cutaneous leishmaniasis (CL), the most prevalent clinical form of leishmaniasis, a neglected tropical disease. The chemicals C6 I, TC1, and TC2 were reported as promising antileishmanial drugs. We aimed to develop a topical nanoformulation that enhances the advantageous effect of C6 I, TC1, and TC2, guaranteeing higher stability and bioavailability of the pharmacologically active components through the topical route. Nanoemulsions were prepared by ultrasonication based on oleic acid (0.5 g). A relation of Tween®-80/ethanol (1:3) and water was obtained; physicochemical characterization of all formulations was performed, and the preliminary stability and transdermal penetration of these nanoemulsions were also investigated. Newtonian-type fluids with high load capacity, 147-273 nm globule size, and -15 to -18 mV zeta potential were obtained with differential permeability rates in the first pig ear skin assay, first-order kinetics-release model for C6 I, and Weibull for TC1 and TC2. The nanoemulsion showed good stability, high encapsulation efficiency, and higher leishmanicidal activity against Leishmania braziliensis with lower cytotoxicity in U937 macrophages. In conclusion, nanoemulsions of ethanol-oleic acid/Tween®-80 increase the activity of compounds with leishmanicidal activity by increasing their penetration and sustained release.
Collapse
Affiliation(s)
- Darlyn J García
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Yulieth A Upegui
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | | | - Wiston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | | | - Fernando Echeverri
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Medellín, Colombia
| | - Iván D Vélez
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Sara M Robledo
- PECET - Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
4
|
Giraldo DAM, Vásquez LAR, Toscano RA, Ocampo-Cardona R, Gomez-Peña JJ, Macías MA. Synthesis and crystallographic study of six quaternary salts of N-halomethylated and non-N-halomethylated ammonium: Importance of C-H‧‧‧X (X=F, I) and I‧‧‧I− halogen interactions in the supramolecular structures. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Espinosa R, Robledo S, Guzmán C, Arbeláez N, Yepes L, Santafé G, Sáez A. Synthesis and evaluation of the in vitro and in vivo antitrypanosomal activity of 2-styrylquinolines. Heliyon 2021; 7:e07024. [PMID: 34036197 PMCID: PMC8134988 DOI: 10.1016/j.heliyon.2021.e07024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/05/2021] [Accepted: 05/06/2021] [Indexed: 11/14/2022] Open
Abstract
In this study, we report the synthesis and evaluation of in vitro and in vivo antitrypanosomal activity of styrylquinoline-like compounds (SQ) 3a-h. Synthesis was carried out by using quinaldine and 8- hydroxyquinaldine with a variety of aromatic aldehydes. The structure of SQs was corroborated by one and two-dimension NMR spectroscopy. In vitro antitrypanosomal activity on T. cruzi Talahuen strain was evaluated using β-galactosidase enzymatic method; cytotoxicity on U-937 cells was assessed by using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] method. On the other hand, in vivo therapeutical response to 3a-f compounds was evaluated in BALB/c mice (Mus musculus) experimentally infected with T. cruzi blood trypomastigotes and then orally administered with 100 mg/kg weight day for 20 days. All of the compounds showed in vitro activity with EC50 values ranging between 4.6 ± 0.1 μg/mL (14.4 μM) and 36.6 ± 6.1 μg/mL (91 μM). Furthermore, treatment with 3a-f compounds for 20 days resulted in improvement in all of the mice, with a 83–96% decrease in parasitic load at day 90 post-treatment. Treatment with benznidazol (BZ) managed to cure 100% of the mice at the end of treatment. None of the treatments affected the weight of the animals or alanine aminotransferase (ALT), blood urea nitrogen (BUN) and creatinine levels in serum. These results suggest a therapeutic potential of 3a-f compounds as treatment for the infection.
Collapse
Affiliation(s)
- Roger Espinosa
- IDEFARMA - Department of Regency and Pharmacy, University of Córdoba, Montería, Colombia
| | - Sara Robledo
- PECET - Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Camilo Guzmán
- IDEFARMA - Department of Regency and Pharmacy, University of Córdoba, Montería, Colombia
| | - Natalia Arbeláez
- PECET - Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Lina Yepes
- PECET - Faculty of Medicine, University of Antioquia, Medellin, Colombia
| | - Gílmar Santafé
- Department of Chemistry, University of Córdoba, Montería, Colombia
| | - Alex Sáez
- Department of Biological Sciences, EAFIT University, Medellin, Colombia
| |
Collapse
|
6
|
Fernández M, Holgado MÁ, Cayero-Otero MD, Pineda T, Yepes LM, Gaspar DP, Almeida AJ, Robledo SM, Martín-Banderas L. Improved antileishmanial activity and cytotoxicity of a novel nanotherapy for N-iodomethyl-N,N-dimethyl-N-(6,6-diphenylhex-5-en-1-yl)ammonium iodide. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Andrade JT, Lima WG, Sousa JF, Saldanha AA, Nívea Pereira De Sá, Morais FB, Prates Silva MK, Ribeiro Viana GH, Johann S, Soares AC, Araújo LA, Antunes Fernandes SO, Cardoso VN, Siqueira Ferreira JM. Design, synthesis, and biodistribution studies of new analogues of marine alkaloids: Potent in vitro and in vivo fungicidal agents against Candida spp. Eur J Med Chem 2021; 210:113048. [PMID: 33316690 DOI: 10.1016/j.ejmech.2020.113048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/26/2020] [Accepted: 11/23/2020] [Indexed: 12/28/2022]
Abstract
Invasive candidiasis, such as intra-abdominal candidiasis (IAC), is a significant cause of morbidity and mortality worldwide. IAC is still poorly understood, and its treatment represents a challenge for public health. In this study, we showed the in vitro anti-Candida activity of four alkaloid synthetic derivatives and their antifungal potential in a murine model of IAC. The biological effects of alkaloids were evaluated against Candida spp. through the determination of the minimum inhibitory concentration (MIC). For the alkaloids that showed antifungal activity, the fungicidal concentration, time-kill curve, synergism with azoles and polyenes, phenotypic effects, and the effect against virulence factors were also determined. The most active alkaloids were selected for in vivo assays. The compounds 6a and 6b were active against C. albicans, C. glabrata, and C. tropicalis (MIC 7.8 μg/mL) and showed promising antifungal activity against C. krusei (MIC 3.9 μg/mL). The compound 6a presented a potent fungicidal effect in vitro, eliminating the yeast C. albicans after 8 h of incubation at MIC. An important in vitro synergistic effect with ketoconazole was observed for these two alkaloids. They also induced the lysis of fungal cells by binding to the ergosterol of the membrane. Besides that, 6a and 6b were able to reduce yeast-to-hyphal transition in C. albicans, as well as inhibit the biofilm formation of this pathogen. In the in vivo assay, the compound 6a did not show acute toxicity and was mainly absorbed by the liver, spleen, and lung after a parenteral administration. Also, this analogue significantly reduced the fungal load of C. albicans on the kidney and spleen of animals with IAC. Therefore, these results showed that the compound 6a is a potent anti-Candida agent in vitro and in vivo.
Collapse
Affiliation(s)
- Jéssica Tauany Andrade
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil; Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jaqueline França Sousa
- Laboratório de Compostos Bioativos e Catalíticos, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Aline Aparecida Saldanha
- Laboratório de Farmacologia da Dor e Inflamação, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Nívea Pereira De Sá
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernanda Barbara Morais
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Mayra Karla Prates Silva
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Gustavo Henrique Ribeiro Viana
- Laboratório de Compostos Bioativos e Catalíticos, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana Cristina Soares
- Laboratório de Farmacologia da Dor e Inflamação, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Leonardo Allan Araújo
- Serviço de Recursos Vegetais e Opoterápicos (SRVO), Diretoria de Pesquisa (DPD), Fundação Ezequiel Dias (FUNED), Belo Horizonte, MG, Brazil
| | - Simone Odília Antunes Fernandes
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Valbert Nascimento Cardoso
- Laboratório de Radioisótopos, Departamento de Análises Clinicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Jaqueline Maria Siqueira Ferreira
- Laboratório de Microbiologia Médica, Campus Universidade Federal de São João Del-Rei (UFSJ), Centro-Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil.
| |
Collapse
|
8
|
Ahmed S, Sameen DE, Lu R, Li R, Dai J, Qin W, Liu Y. Research progress on antimicrobial materials for food packaging. Crit Rev Food Sci Nutr 2020; 62:3088-3102. [DOI: 10.1080/10408398.2020.1863327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Saeed Ahmed
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Dur E. Sameen
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Rui Lu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Rui Li
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Jianwu Dai
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya’an, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, China
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Quinolizidine-Derived Lucanthone and Amitriptyline Analogues Endowed with Potent Antileishmanial Activity. Pharmaceuticals (Basel) 2020; 13:ph13110339. [PMID: 33113777 PMCID: PMC7694037 DOI: 10.3390/ph13110339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022] Open
Abstract
Leishmaniases are neglected diseases that are endemic in many tropical and sub-tropical Countries. Therapy is based on different classes of drugs which are burdened by severe side effects, occurrence of resistance and high costs, thereby creating the need for more efficacious, safer and inexpensive drugs. Herein, sixteen 9-thioxanthenone derivatives (lucanthone analogues) and four compounds embodying the diarylethene substructure of amitriptyline (amitriptyline analogues) were tested in vitro for activity against Leishmania tropica and L. infantum promastigotes. All compounds were characterized by the presence of a bulky quinolizidinylalkyl moiety. All compounds displayed activity against both species of Leishmania with IC50 values in the low micromolar range, resulting in several fold more potency than miltefosine, comparable to that of lucanthone, and endowed with substantially lower cytotoxicity to Vero-76 cells, for the best of them. Thus, 4-amino-1-(quinolizidinylethyl)aminothioxanthen-9-one (14) and 9-(quinolizidinylmethylidene)fluorene (17), with selectivity index (SI) in the range 16-24, represent promising leads for the development of improved antileishmanial agents. These two compounds also exhibited comparable activity against intramacrophagic amastigotes of L. infantum. Docking studies have suggested that the inhibition of trypanothione reductase (TryR) may be at the basis (eventually besides other mechanisms) of the observed antileishmanial activity. Therefore, these investigated derivatives may deserve further structural improvements and more in-depth biological studies of their mechanisms of action in order to develop more efficient antiparasitic agents.
Collapse
|
10
|
Novel fluorinated quaternary ammonium salts and their in vitro activity as trypanocidal agents. Med Chem Res 2019. [DOI: 10.1007/s00044-018-02285-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Leishmania treatment and prevention: Natural and synthesized drugs. Eur J Med Chem 2018; 160:229-244. [DOI: 10.1016/j.ejmech.2018.10.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 12/31/2022]
|
12
|
Lopera A, Montoya A, Vélez I, Robledo S, Garcia C. Synthesis of calcium phosphate nanostructures by combustion in solution as a potential encapsulant system of drugs with photodynamic properties for the treatment of cutaneous leishmaniasis. Photodiagnosis Photodyn Ther 2018; 21:138-146. [DOI: 10.1016/j.pdpdt.2017.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 11/28/2017] [Accepted: 11/29/2017] [Indexed: 02/05/2023]
|
13
|
In vivo studies of the effectiveness of novel N-halomethylated and non-halomethylated quaternary ammonium salts in the topical treatment of cutaneous leishmaniasis. Parasitol Res 2017; 117:273-286. [PMID: 29230580 DOI: 10.1007/s00436-017-5702-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/27/2017] [Indexed: 10/18/2022]
Abstract
The physicochemical properties of four N-halomethylated and one non-halomethylated ammonium salts, with proven in vitro antileishmanial activity, were determined according to pharmaceutical standard procedures. The effectiveness and toxicity of these compounds were assessed in hamsters infected with Leishmania (Viannia) braziliensis and compared to that showed by meglumine antimoniate. Animals were followed during 90 days after the completion of treatment. Therapeutic response was determined according to the reduction of size of skin lesions. Toxicity was determined by the effect of compounds on body weight changes and serum levels of renal and hepatic metabolites. The effectiveness of compound 4 was similar to that showed by intralesional administration of meglumine antimoniate and better than that of the other ammonium salts. Levels of creatinine, alanine amino transferase, and blood urea nitrogen in serum were not significantly different between treatment groups, including healthy or untreated hamsters. Results imply that compound 4 has potential as a pharmaceutical active ingredient in the development of new and better formulations for the treatment of cutaneous leishmaniasis.
Collapse
|
14
|
Xie X, Cong W, Zhao F, Li H, Xin W, Hou G, Wang C. Synthesis, physiochemical property and antimicrobial activity of novel quaternary ammonium salts. J Enzyme Inhib Med Chem 2017; 33:98-105. [PMID: 29148294 PMCID: PMC6010013 DOI: 10.1080/14756366.2017.1396456] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Twenty-four novel 5-phenyl-1,3,4-oxadiazole-2-thiol (POT) analogues, benzo[d]oxazole-2-thiol, benzo[d]thiazole-2-thiol and 5-methyl-1,3,4-thiadiazole-2-thiol-substituted N,N-bis(2-hydroxyethyl) quaternary ammonium salts (QAS) (5a-d, 6a-d, 7a-d, 10a-d, 13a-d, 16a-d) were prepared and characterised by FTIR, NMR and elemental analysis. Part of target compounds (5d, 6d, 7d, 10d, 13d, 16d) displayed potent antimicrobial effect against ten common pathogens (S. aureus, α-H-tococcus, β-H-tococcus, E. coli, P. aeruginosa, Proteus vulgaris, Canidia Albicans, Cytospora mandshurica, Physalospora piricola, Aspergillus niger) and had relatively low cytotoxity against two human cell lines (HaCat and LO2). TEM and SEM images of E. coli and S. aureus morphologies treated with 7d showed that the antibacterial mechanism might be the QAS fixing on cell wall surfaces and puncturing to result in the release of bacterial cytoplasm. This study provides new information of QAS, which could be used to design novel antimicrobial agents applied in clinic or agriculture.
Collapse
Affiliation(s)
- Xianrui Xie
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Wei Cong
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Feng Zhao
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Hongjuan Li
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Wenyu Xin
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Guige Hou
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| | - Chunhua Wang
- a School of Pharmacy, the Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China , Binzhou Medical University , Yantai , P. R. China
| |
Collapse
|
15
|
Pulido SA, Nguyen VH, Alzate JF, Cedeño DL, Makurath MA, Ríos-Vásquez A, Duque-Benítez SM, Jones MA, Robledo SM, Friesen JA. Insights into the phosphatidylcholine and phosphatidylethanolamine biosynthetic pathways in Leishmania parasites and characterization of a choline kinase from Leishmania infantum. Comp Biochem Physiol B Biochem Mol Biol 2017; 213:45-54. [PMID: 28754315 DOI: 10.1016/j.cbpb.2017.07.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 11/25/2022]
Abstract
The protozoan parasite Leishmania infantum is a causative agent of the disease visceral leishmaniasis, which can be fatal if not properly treated. Phosphatidylcholine (PC) and phosphatidylethanolamine (PE) biosynthesis pathways are attractive targets for new antileishmanial compounds since these Leishmania cell membrane phospholipids are important for parasite morphology and physiology. In this work we observed Leishmania synthesize PC and PE from extracellular choline and ethanolamine, respectively, suggesting the presence of CDP-choline and CDP-ethanolamine pathways. In addition, Leishmania converted PE to PC, indicating the parasite possesses phosphatidylethanolamine N-methyltransferase (PEMT) activity. The first step in the biosynthesis of PC or PE requires the phosphorylation of choline or ethanolamine by a kinase. We cloned the gene encoding a putative choline/ethanolamine kinase from Leishmania infantum and expressed and purified the encoded recombinant protein. The enzyme possesses choline kinase activity with a Vmax of 3.52μmol/min/mg and an apparent Km value of 0.089mM with respect to choline. The enzyme can also phosphorylate ethanolamine in vitro, but the apparent Km for ethanolamine is 850-fold greater than for choline. In an effort to probe requirements for small molecule inhibition of Leishmania choline kinase, the recombinant enzyme was evaluated for the ability to be inhibited by novel quaternary ammonium salts. The most effective inhibitor was N-iodomethyl-N,N,-dimethyl-N-(6,6-diphenyl hex-5-en-1-yle) ammonium iodide, denoted compound C6. In the presence of 4mM compound C6, the Vmax/Km decreased to approximately 1% of the wild-type catalytic efficiency. In addition, in Leishmania cells treated with compound C6 choline transport was inhibited.
Collapse
Affiliation(s)
- Sergio A Pulido
- Program for Study and Control of Tropical Diseases-PECET, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Victoria H Nguyen
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | - Juan F Alzate
- Parasitology Group, School of Medicine, University of Antioquia, Medellin, Colombia
| | - David L Cedeño
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | - Monika A Makurath
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | | | | | - Marjorie A Jones
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA
| | - Sara M Robledo
- Program for Study and Control of Tropical Diseases-PECET, School of Medicine, University of Antioquia, Medellin, Colombia
| | - Jon A Friesen
- Department of Chemistry, Illinois State University, Normal, IL 61790, USA.
| |
Collapse
|
16
|
Special Issue "Recent Synthetic Aspects on the Chemistry of Nitro, Nitroso and Amino Compounds". Molecules 2016; 22:molecules22010009. [PMID: 28025551 PMCID: PMC6155920 DOI: 10.3390/molecules22010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
Nitrogen-containing molecules are key scaffolds that are widely applied in organic synthesis as precursors of highly functionalized materials, and are also investigated for their biological activities. This Special Issue collects seven innovative contributions which expand our knowledge of the chemistry of nitro compounds, amines, diazonium salts, and peptides, and that provide a good overview about their main reactivities.
Collapse
|