1
|
Liu JR, Jiang EY, Sukhbaatar O, Zhang WH, Zhang MZ, Yang GF, Gu YC. Natural and synthetic 5-(3'-indolyl)oxazoles: Biological activity, chemical synthesis and advanced molecules. Med Res Rev 2025; 45:97-143. [PMID: 39152525 DOI: 10.1002/med.22078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/02/2024] [Accepted: 08/04/2024] [Indexed: 08/19/2024]
Abstract
5-(3'-Indolyl)oxazole moiety is a privileged heterocyclic scaffold, embedded in many biologically interesting natural products and potential therapeutic agents. Compounds containing this scaffold, whether from natural sources or synthesized, have demonstrated a wide array of biological activities. This has piqued the interest of synthetic chemists, leading to a large number of reported synthetic approaches to 5-(3'-indolyl)oxazole scaffold in recent years. In this review, we comprehensively overviewed the different biological activities and chemical synthetic methods for the 5-(3'-indolyl)oxazole scaffold reported in the literatures from 1963 to 2024. The focus of this study is to highlight the significance of 5-(3'-indolyl)oxazole derivatives as the lead compounds for the lead discovery of anticancer, pesticidal, antimicrobial, antiviral, antioxidant and anti-inflammatory agents, to summarize the synthetic methods for the 5-(3'-indolyl)oxazole scaffold. In addition, the reported mechanism of action of 5-(3'-indolyl)oxazoles and advanced molecules studied in animal models are also reviewed. Furthermore, this review offers perspectives on how 5-(3'-indolyl)oxazole scaffold as a privileged structure might be exploited in the future.
Collapse
Affiliation(s)
- Jing-Rui Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - En-Yu Jiang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Otgonpurev Sukhbaatar
- Department of Chemistry, School of Applied Sciences, Mongolian University of Life Sciences, Ulaanbaatar, Mongolia
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, China
| | - Yu-Cheng Gu
- Jealott's Hill International Research Centre, Syngenta, Bracknell, Berkshire, UK
| |
Collapse
|
2
|
Song ZL, Zhu Y, Liu JR, Guo SK, Gu YC, Han X, Dong HQ, Sun Q, Zhang WH, Zhang MZ. Diversity-oriented synthesis and antifungal activities of novel pimprinine derivative bearing a 1,3,4-oxadiazole-5-thioether moiety. Mol Divers 2020; 25:205-221. [PMID: 32056130 DOI: 10.1007/s11030-020-10048-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/05/2020] [Indexed: 10/25/2022]
Abstract
Based on the strategy of diversity-oriented synthesis and the structures of natural product pimprinine and streptochlorin, two series of novel pimprinine derivatives containing 1,3,4-oxadiazole-5-thioether moieties were efficiently synthesized under the optimized reaction conditions. Biological assays conducted at Syngenta showed the designed derivatives displayed an altered pattern of biological activity, of which 5h was identified as the most promising compound with strong activity against Pythium dissimile and also a broad antifungal spectrum in primary screening. Further structural optimization of pimprinine and streptochlorin derivatives is well under way, aiming to discover synthetic analogues with improved antifungal activity. Two series of novel pimprinine derivatives containing 1,3,4-oxadiazole-5-thioether moieties were efficiently synthesized through diversity-oriented synthesis strategy under the optimized conditions. Biological assays showed the designed derivatives exhibited potential activity.
Collapse
Affiliation(s)
- Zi-Long Song
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yun Zhu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing-Rui Liu
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shu-Ke Guo
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Xinya Han
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, 243002, China.
| | - Hong-Qiang Dong
- College of Plant Science, Tarim University, Alaer, 843300, Xinjiang, China
| | - Qi Sun
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Zhang MZ, Jia CY, Gu YC, Mulholland N, Turner S, Beattie D, Zhang WH, Yang GF, Clough J. Synthesis and antifungal activity of novel indole-replaced streptochlorin analogues. Eur J Med Chem 2016; 126:669-674. [PMID: 27936445 DOI: 10.1016/j.ejmech.2016.12.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/29/2016] [Accepted: 12/01/2016] [Indexed: 12/13/2022]
Abstract
Based on examples of the successful applications in drug discovery of bioisosterism, a series of streptochlorin analogues in which indole has been replaced by other heterocycles has been designed and synthesized, as a continuation of our studies aimed at the discovery of novel streptochlorin analogues with improved antifungal activity. Biological testing showed that most of the indole-replaced streptochlorin analogues were inactive, though compound 6f had a broad spectrum of antifungal activity with significant activity against Alternaria solani. The SAR study demonstrated that indole ring is an essential moiety for the antifungal activity of streptochlorin analogues, promoting the idea of indole ring as a framework that might be exploited in the future.
Collapse
Affiliation(s)
- Ming-Zhi Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Chen-Yang Jia
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China; Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Nick Mulholland
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Sarah Turner
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - David Beattie
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Wei-Hua Zhang
- Jiangsu Key Laboratory of Pesticide Science, College of Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - John Clough
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| |
Collapse
|
4
|
Lu Q, Sun Y, Shu Y, Tan S, Yin L, Guo Y, Tang L. HSCCC Separation of the Two Iridoid Glycosides and Three Phenolic Compounds from Veronica ciliata and Their in Vitro Antioxidant and Anti-Hepatocarcinoma Activities. Molecules 2016; 21:molecules21091234. [PMID: 27649125 PMCID: PMC6273391 DOI: 10.3390/molecules21091234] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 01/25/2023] Open
Abstract
Five main compounds, including two iridoid glycosides (catalposide, verproside) and three phenolic compounds (luteolin, 4-hydroxy benzoic acid, 3,4-dihydroxy benzoic acid), were separated and prepared from the crude extract of Veronica ciliata by high-speed countercurrent chromatography. n-Hexane/n-butanol/water (1.5:5:5, v/v/v) was used for the separation of catalposide and verproside. n-Hexane/n-butanol/water (3:2:5, v/v/v) was used for the separation of luteolin, 4-hydroxy benzoic acid and 3,4-dihydroxy benzoic acid. The head-to-tail elution mode was used with a flow rate of 5.0 mL/min and a rotary speed of 800 rpm. Finally, a total of 1.28 mg luteolin, 6 mg 4-hydroxy benzoic acid, 2 mg 3,4-dihydroxy benzoic acid, 2 mg verproside and 10 mg catalposide with purities of 98%, 99.1%, 99.5%, 99.8% and 99%, respectively, were obtained from 200 mg of crude extract. In addition, their structure was identified using MS, 1H-NMR and 13C-NMR. To the best of our knowledge, this is the first report of the separation and purification of iridoid glycosides and phenolic compounds from V. ciliata by high-speed countercurrent chromatography (HSCCC). Among these compounds, luteolin, 4-hydroxy benzoic acid and 3,4-dihydroxy benzoic acid were separated from V. ciliata Fisch. for the first time. The results of the antioxidant activity show that protocatechuic acid and luteolin have strong antioxidant activity compared to 2,6-di-tert-butyl-4-methylphenol (BHT) and vitamin C (Vc). Five compounds also exhibited strong anti-hepatocarcinoma activities.
Collapse
Affiliation(s)
- Qiuxia Lu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610065, Sichuan, China.
| | - Yiran Sun
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610065, Sichuan, China.
| | - Yueyue Shu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610065, Sichuan, China.
| | - Shancai Tan
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610065, Sichuan, China.
| | - Li Yin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610065, Sichuan, China.
| | - Yiran Guo
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610065, Sichuan, China.
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, China.
- National and Local Joint Engineering Laboratory for Energy Plant Bio-Oil Production and Application, Chengdu 610065, Sichuan, China.
| |
Collapse
|