1
|
Xiang L, Zhang X, Lei Y, Wu J, Yan G, Chen W, Li S, Wang W, Jin JM, Liang C, Tang SY. Designing a highly efficient type III polyketide whole-cell catalyst with minimized byproduct formation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:93. [PMID: 38961423 PMCID: PMC11223281 DOI: 10.1186/s13068-024-02545-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Polyketide synthases (PKSs) are classified into three types based on their enzyme structures. Among them, type III PKSs, catalyzing the iterative condensation of malonyl-coenzyme A (CoA) with a CoA-linked starter molecule, are important synthases of valuable natural products. However, low efficiency and byproducts formation often limit their applications in recombinant overproduction. RESULTS Herein, a rapid growth selection system is designed based on the accumulation and derepression of toxic acyl-CoA starter molecule intermediate products, which could be potentially applicable to most type III polyketides biosynthesis. This approach is validated by engineering both chalcone synthases (CHS) and host cell genome, to improve naringenin productions in Escherichia coli. From directed evolution of key enzyme CHS, beneficial mutant with ~ threefold improvement in capability of naringenin biosynthesis was selected and characterized. From directed genome evolution, effect of thioesterases on CHS catalysis is first discovered, expanding our understanding of byproduct formation mechanism in type III PKSs. Taken together, a whole-cell catalyst producing 1082 mg L-1 naringenin in flask with E value (evaluating product specificity) improved from 50.1% to 96.7% is obtained. CONCLUSIONS The growth selection system has greatly contributed to both enhanced activity and discovery of byproduct formation mechanism in CHS. This research provides new insights in the catalytic mechanisms of CHS and sheds light on engineering highly efficient heterologous bio-factories to produce naringenin, and potentially more high-value type III polyketides, with minimized byproducts formation.
Collapse
Grants
- 2022M713331 the China Postdoctoral Science Foundation
- Grant No. 31970080, 31971337, 31961133016 and 31971382 the National Natural Science Foundation of China
- Grant No. 31970080, 31971337, 31961133016 and 31971382 the National Natural Science Foundation of China
- Grant No. 31970080, 31971337, 31961133016 and 31971382 the National Natural Science Foundation of China
- Grant 2021YFC2100502, 2021YFC2103300, 2018YFA0900701, and 2021YFC2103901 the National Key Research and Development Program of China
- Grant 2021YFC2100502, 2021YFC2103300, 2018YFA0900701, and 2021YFC2103901 the National Key Research and Development Program of China
- YJKYYQ20210032 Instrument Developing Project of Chinese Academy of Science
Collapse
Affiliation(s)
- La Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuanxuan Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Lei
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangru Yan
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhong Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenzhao Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing, 100048, China.
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- State Key Laboratory of Transducer Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Liu Y, Wang S, Wang L, Lu H, Zhang T, Zeng W. Characterization of Genomic, Physiological, and Probiotic Features of Lactiplantibacillus plantarum JS21 Strain Isolated from Traditional Fermented Jiangshui. Foods 2024; 13:1082. [PMID: 38611386 PMCID: PMC11011416 DOI: 10.3390/foods13071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
This study aimed to understand the genetic and metabolic traits of a Lactiplantibacillus plantarum JS21 strain and its probiotic abilities through laboratory tests and computer analysis. L. plantarum JS21 was isolated from a traditional fermented food known as "Jiangshui" in Hanzhong city. In this research, the complete genetic makeup of JS21 was determined using Illumina and PacBio technologies. The JS21 genome consisted of a 3.423 Mb circular chromosome and five plasmids. It was found to contain 3023 protein-coding genes, 16 tRNA genes, 64 rRNA operons, 40 non-coding RNA genes, 264 pseudogenes, and six CRISPR array regions. The GC content of the genome was 44.53%. Additionally, the genome harbored three complete prophages. The evolutionary relationship and the genome collinearity of JS21 were compared with other L. plantarum strains. The resistance genes identified in JS21 were inherent. Enzyme genes involved in the Embden-Meyerhof-Parnas (EMP) and phosphoketolase (PK) pathways were detected, indicating potential for facultative heterofermentative pathways. JS21 possessed bacteriocins plnE/plnF genes and genes for polyketide and terpenoid assembly, possibly contributing to its antibacterial properties against Escherichia coli (ATCC 25922), Escherichia coli (K88), Staphylococcus aureus (CMCC 26003), and Listeria monocytogenes (CICC 21635). Furthermore, JS21 carried genes for Na+/H+ antiporters, F0F1 ATPase, and other stress resistance genes, which may account for its ability to withstand simulated conditions of the human gastrointestinal tract in vitro. The high hydrophobicity of its cell surface suggested the potential for intestinal colonization. Overall, L. plantarum JS21 exhibited probiotic traits as evidenced by laboratory experiments and computational analysis, suggesting its suitability as a dietary supplement.
Collapse
Affiliation(s)
- Yang Liu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
| | - Shanshan Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., Shaanxi University of Technology, Hanzhong 723001, China
| | - Ling Wang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| | - Hongzhao Lu
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| | - Tao Zhang
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Province Key Laboratory of Bio-Resources, Shaanxi University of Technology, Hanzhong 723001, China
| | - Wenxian Zeng
- School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, China; (Y.L.); (W.Z.)
- Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Shaanxi University of Technology, Hanzhong 723001, China
- Shaanxi Union Research Center of University and Enterprise for Zhenba Bacon, Shaanxi University of Technology, Hanzhong 723001, China
| |
Collapse
|
3
|
Palkina KA, Karataeva TA, Perfilov MM, Fakhranurova LI, Markina NM, Somermeyer LG, Garcia-Perez E, Vazquez-Vilar M, Rodriguez-Rodriguez M, Vazquez-Vilriales V, Shakhova ES, Mitiouchkina T, Belozerova OA, Kovalchuk SI, Alekberova A, Malyshevskaia AK, Bugaeva EN, Guglya EB, Balakireva A, Sytov N, Bezlikhotnova A, Boldyreva DI, Babenko VV, Kondrashov FA, Choob VV, Orzaez D, Yampolsky IV, Mishin AS, Sarkisyan KS. A hybrid pathway for self-sustained luminescence. SCIENCE ADVANCES 2024; 10:eadk1992. [PMID: 38457503 PMCID: PMC10923510 DOI: 10.1126/sciadv.adk1992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/01/2024] [Indexed: 03/10/2024]
Abstract
The fungal bioluminescence pathway can be reconstituted in other organisms allowing luminescence imaging without exogenously supplied substrate. The pathway starts from hispidin biosynthesis-a step catalyzed by a large fungal polyketide synthase that requires a posttranslational modification for activity. Here, we report identification of alternative compact hispidin synthases encoded by a phylogenetically diverse group of plants. A hybrid bioluminescence pathway that combines plant and fungal genes is more compact, not dependent on availability of machinery for posttranslational modifications, and confers autonomous bioluminescence in yeast, mammalian, and plant hosts. The compact size of plant hispidin synthases enables additional modes of delivery of autoluminescence, such as delivery with viral vectors.
Collapse
Affiliation(s)
- Kseniia A. Palkina
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana A. Karataeva
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maxim M. Perfilov
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Liliia I. Fakhranurova
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nadezhda M. Markina
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Elena Garcia-Perez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Marta Vazquez-Vilar
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Marta Rodriguez-Rodriguez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Victor Vazquez-Vilriales
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Ekaterina S. Shakhova
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Tatiana Mitiouchkina
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Sergey I. Kovalchuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna Alekberova
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alena K. Malyshevskaia
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Elena B. Guglya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
| | - Anastasia Balakireva
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nikita Sytov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | | | - Daria I. Boldyreva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vladislav V. Babenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Fyodor A. Kondrashov
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0412, Japan
| | - Vladimir V. Choob
- Botanical Garden of Lomonosov Moscow State University, Vorobievy Gory 1 b.12, Moscow 119234 Russia
| | - Diego Orzaez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de Valéncia, 46022 Valencia, Spain
| | - Ilia V. Yampolsky
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University, Ostrovityanova 1, Moscow 117997, Russia
- Light Bio Inc., Ketchum, ID, USA
| | - Alexander S. Mishin
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Karen S. Sarkisyan
- Planta LLC, 121205 Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Light Bio Inc., Ketchum, ID, USA
- Synthetic Biology Group, MRC Laboratory of Medical Sciences, London, UK
- Institute of Clinical Sciences, Faculty of Medicine and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| |
Collapse
|
4
|
Targońska-Karasek M, Kwiatek M, Groszyk J, Walczewski J, Kowalczyk M, Pawelec S, Boczkowska M, Rucińska A. Characteristic of the gene candidate SecARS encoding alkylresorcinol synthase in Secale. Mol Biol Rep 2023; 50:8373-8383. [PMID: 37615923 PMCID: PMC10520190 DOI: 10.1007/s11033-023-08684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 07/17/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Alkylresorcinols (ARs) are compounds belonging to the class of phenolic lipids. A rich source of ARs are cereal grains such as rye, wheat, triticale or barley. ARs found in plants are characterized by a variety of biological properties such as antimicrobial, antifungal and cytotoxic activity. Moreover, they are proven to have a positive influence on human health. Here, we aimed to find and characterize the gene with ARs synthase activity in the species Secale cereale. METHODS AND RESULTS Using BAC library screening, two BAC clones containing the gene candidate were isolated and sequenced. Bioinformatic analyses of the resulting contigs were used to examine the structure and other features of the gene, including promoter, intron, 3'UTR and 5'UTR. Mapping using the FISH procedure located the gene on the 4R chromosome. Comparative analysis showed that the gene is highly similar to sequences coding for type III polyketide synthase. The level of gene expression in various parts of the plant was investigated, and the biochemical function of the gene was confirmed by heterologous expression in yeast. CONCLUSIONS The conducted analyses contributed to a better understanding of the processes related to ARs synthesis. Although the research concerned the rye model, the knowledge gained may help in understanding the genetic basis of ARs biosynthesis in other species of the Poaceae family as well.
Collapse
Affiliation(s)
- Małgorzata Targońska-Karasek
- Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, Warszawa, Poland.
| | - Michał Kwiatek
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Groszyk
- Plant Breeding and Acclimatization Institute (IHAR), National Research Institute, Radzików, Poland
| | - Jakub Walczewski
- Plant Breeding and Acclimatization Institute (IHAR), National Research Institute, Radzików, Poland
| | - Mariusz Kowalczyk
- Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Sylwia Pawelec
- Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100, Puławy, Poland
| | - Maja Boczkowska
- Plant Breeding and Acclimatization Institute (IHAR), National Research Institute, Radzików, Poland
| | - Anna Rucińska
- Polish Academy of Sciences Botanical Garden-Center for Biological Diversity Conservation in Powsin, Warszawa, Poland
| |
Collapse
|
5
|
Brouckaert M, Peng M, Höfer R, El Houari I, Darrah C, Storme V, Saeys Y, Vanholme R, Goeminne G, Timokhin VI, Ralph J, Morreel K, Boerjan W. QT-GWAS: A novel method for unveiling biosynthetic loci affecting qualitative metabolic traits. MOLECULAR PLANT 2023; 16:1212-1227. [PMID: 37349988 PMCID: PMC7614782 DOI: 10.1016/j.molp.2023.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/06/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023]
Abstract
Although the plant kingdom provides an enormous diversity of metabolites with potentially beneficial applications for humankind, a large fraction of these metabolites and their biosynthetic pathways remain unknown. Resolving metabolite structures and their biosynthetic pathways is key to gaining biological understanding and to allow metabolic engineering. In order to retrieve novel biosynthetic genes involved in specialized metabolism, we developed a novel untargeted method designated as qualitative trait GWAS (QT-GWAS) that subjects qualitative metabolic traits to a genome-wide association study, while the conventional metabolite GWAS (mGWAS) mainly considers the quantitative variation of metabolites. As a proof of the validity of QT-GWAS, 23 and 15 of the retrieved associations identified in Arabidopsis thaliana by QT-GWAS and mGWAS, respectively, were supported by previous research. Furthermore, seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this study through reverse genetics combined with metabolomics and/or in vitro enzyme assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is involved in the biosynthesis of chroman derivatives, UDP-GLYCOSYLTRANSFERASE 76C3 (UGT76C3) is able to hexosylate guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) catalyzes the sulfation of neolignans in vitro. Collectively, our study demonstrates that the untargeted QT-GWAS method can retrieve valid gene-metabolite associations at the level of enzyme-encoding genes, even new associations that cannot be found by the conventional mGWAS, providing a new approach for dissecting qualitative metabolic traits.
Collapse
Affiliation(s)
- Marlies Brouckaert
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Meng Peng
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - René Höfer
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ilias El Houari
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Chiarina Darrah
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Véronique Storme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Yvan Saeys
- Ghent University, Department of Applied Mathematics, Computer Science and Statistics, 9000 Ghent, Belgium; VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Ruben Vanholme
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Geert Goeminne
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium; VIB Metabolomics Core, 9052 Ghent, Belgium
| | - Vitaliy I Timokhin
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - John Ralph
- Department of Biochemistry, and US Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kris Morreel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wout Boerjan
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9000 Ghent, Belgium; VIB Center for Plant Systems Biology, 9052 Ghent, Belgium.
| |
Collapse
|
6
|
Mrudulakumari Vasudevan U, Mai DHA, Krishna S, Lee EY. Methanotrophs as a reservoir for bioactive secondary metabolites: Pitfalls, insights and promises. Biotechnol Adv 2023; 63:108097. [PMID: 36634856 DOI: 10.1016/j.biotechadv.2023.108097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/10/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Methanotrophs are potent natural producers of several bioactive secondary metabolites (SMs) including isoprenoids, polymers, peptides, and vitamins. Cryptic biosynthetic gene clusters identified from these microbes via genome mining hinted at the vast and hidden SM biosynthetic potential of these microbes. Central carbon metabolism in methanotrophs offers rare pathway intermediate pools that could be further diversified using advanced synthetic biology tools to produce valuable SMs; for example, plant polyketides, rare carotenoids, and fatty acid-derived SMs. Recent advances in pathway reconstruction and production of isoprenoids, squalene, ectoine, polyhydroxyalkanoate copolymer, cadaverine, indigo, and shinorine serve as proof-of-concept. This review provides theoretical guidance for developing methanotrophs as microbial chassis for high-value SMs. We summarize the distinct secondary metabolic potentials of type I and type II methanotrophs, with specific attention to products relevant to biomedical applications. This review also includes native and non-native SMs from methanotrophs, their therapeutic potential, strategies to induce silent biosynthetic gene clusters, and challenges.
Collapse
Affiliation(s)
- Ushasree Mrudulakumari Vasudevan
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dung Hoang Anh Mai
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Shyam Krishna
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
7
|
Zhou Y, Mirts EN, Yook S, Waugh M, Martini R, Jin Y, Lu Y. Reshaping the 2-Pyrone Synthase Active Site for Chemoselective Biosynthesis of Polyketides. Angew Chem Int Ed Engl 2023; 62:e202212440. [PMID: 36398563 PMCID: PMC10107152 DOI: 10.1002/anie.202212440] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Engineering enzymes with novel reactivity and applying them in metabolic pathways to produce valuable products are quite challenging due to the intrinsic complexity of metabolic networks and the need for high in vivo catalytic efficiency. Triacetic acid lactone (TAL), naturally generated by 2-pyrone synthase (2PS), is a platform molecule that can be produced via microbial fermentation and further converted into value-added products. However, these conversions require extra synthetic steps under harsh conditions. We herein report a biocatalytic system for direct generation of TAL derivatives under mild conditions with controlled chemoselectivity by rationally engineering the 2PS active site and then rewiring the biocatalytic pathway in the metabolic network of E. coli to produce high-value products, such as kavalactone precursors, with yields up to 17 mg/L culture. Computer modeling indicates sterics and hydrogen-bond interactions play key roles in tuning the selectivity, efficiency and yield.
Collapse
Affiliation(s)
- Yu Zhou
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana-Champaign1206 W Gregory DrUrbanaIL 61801USA
- Department of ChemistryThe University of Texas at Austin105 E 24th StAustinTX 78712USA
| | - Evan N. Mirts
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana-Champaign1206 W Gregory DrUrbanaIL 61801USA
| | - Sangdo Yook
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana-Champaign1206 W Gregory DrUrbanaIL 61801USA
- Department of Food Science and Human NutritionUniversity of Illinois at Urbana-Champaign905 S. Goodwin AvenueUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-Champaign1206 W Gregory DrUrbanaIL 61801USA
| | - Matthew Waugh
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana-Champaign1206 W Gregory DrUrbanaIL 61801USA
| | - Rachel Martini
- Department of BiochemistryUniversity of Illinois at Urbana-Champaign600 South Mathews AvenueUrbanaIL 61801USA
| | - Yong‐Su Jin
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana-Champaign1206 W Gregory DrUrbanaIL 61801USA
- Department of Food Science and Human NutritionUniversity of Illinois at Urbana-Champaign905 S. Goodwin AvenueUrbanaIL 61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana-Champaign1206 W Gregory DrUrbanaIL 61801USA
| | - Yi Lu
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUniversity of Illinois at Urbana-Champaign1206 W Gregory DrUrbanaIL 61801USA
- Department of ChemistryThe University of Texas at Austin105 E 24th StAustinTX 78712USA
| |
Collapse
|
8
|
Zhu TT, Sun CJ, Liu XY, Zhang JZ, Hou XB, Ni R, Zhang J, Cheng AX, Lou HX. Interaction of PKR with STCS1: an indispensable step in the biosynthesis of lunularic acid in Marchantia polymorpha. THE NEW PHYTOLOGIST 2023; 237:515-531. [PMID: 36062450 DOI: 10.1111/nph.18408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Unlike bibenzyls derived from the vascular plants, lunularic acid (LA), a key precursor for macrocyclic bisbibenzyl synthesis in nonvascular liverworts, exhibits the absence of one hydroxy group within the A ring. It was hypothesized that both polyketide reductase (PKR) and stilbenecarboxylate synthase 1 (STCS1) were involved in the LA biosynthesis, but the underlined mechanisms have not been clarified. This study used bioinformatics analysis with molecular, biochemical and physiological approaches to characterize STCS1s and PKRs involved in the biosynthesis of LA. The results indicated that MpSTCS1s from Marchantia polymorpha catalyzed both C2→C7 aldol-type and C6→C1 Claisen-type cyclization using dihydro-p-coumaroyl-coenzyme A (CoA) and malonyl-CoA as substrates to yield a C6-C2-C6 skeleton of dihydro-resveratrol following decarboxylation and the C6-C3-C6 type of phloretin in vitro. The protein-protein interaction of PKRs with STCS1 (PPI-PS) was revealed and proved essential for LA accumulation when transiently co-expressed in Nicotiana benthamiana. Moreover, replacement of the active domain of STCS1 with an 18-amino-acid fragment from the chalcone synthase led to the PPI-PS greatly decreasing and diminishing the formation of LA. The replacement also increased the chalcone formation in STCS1s. Our results highlight a previously unrecognized PPI in planta that is indispensable for the formation of LA.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Chun-Jing Sun
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xin-Yan Liu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiao-Zhen Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xu-Ben Hou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Rong Ni
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jing Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ai-Xia Cheng
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong-Xiang Lou
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| |
Collapse
|
9
|
Zhu L, Pietiäinen M, Kontturi J, Turkkelin A, Elomaa P, Teeri TH. Polyketide reductases in defense-related parasorboside biosynthesis in Gerbera hybrida share processing strategies with microbial polyketide synthase systems. THE NEW PHYTOLOGIST 2022; 236:296-308. [PMID: 35719102 PMCID: PMC9541798 DOI: 10.1111/nph.18328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 06/13/2022] [Indexed: 05/14/2023]
Abstract
Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside. Their synthesis is known to be initiated by GERBERA 2-PYRONE SYNTHASE 1 (G2PS1), but the polyketide reductases (PKRs) that determine their final structure have not yet been identified. We identified two PKR candidates in the pathway, GERBERA REDUCTASE 1 (GRED1) and GRED2. Gene expression and metabolite analysis of different gerbera tissues, cultivars, and transgenic gerbera plants, and in vitro enzyme assays, were performed for functional characterization of the enzymes. GRED1 and GRED2 catalyze the second reduction step in parasorboside biosynthesis. They reduce the proximal keto domain of the linear CoA bound intermediate before lactonization. We identified a crucial tailoring step in an important gerbera PKS pathway and show that plant polyketide biosynthesis shares processing strategies with fungi and bacteria. The two tailoring enzymes are recruited from the ancient sporopollenin biosynthetic pathway to a defense-related PKS pathway in gerbera. Our data provide an example of how plants recruit conserved genes to new functions in secondary metabolism that are important for environmental adaptation.
Collapse
Affiliation(s)
- Lingping Zhu
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Milla Pietiäinen
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Juha Kontturi
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Anna Turkkelin
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Paula Elomaa
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| | - Teemu H. Teeri
- Department of Agricultural Sciences, Viikki Plant Science CentreUniversity of HelsinkiHelsinki00014 UHFinland
| |
Collapse
|
10
|
Peniche-Pavía HA, Guzmán TJ, Magaña-Cerino JM, Gurrola-Díaz CM, Tiessen A. Maize Flavonoid Biosynthesis, Regulation, and Human Health Relevance: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165166. [PMID: 36014406 PMCID: PMC9413827 DOI: 10.3390/molecules27165166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
Maize is one of the most important crops for human and animal consumption and contains a chemical arsenal essential for survival: flavonoids. Moreover, flavonoids are well known for their beneficial effects on human health. In this review, we decided to organize the information about maize flavonoids into three sections. In the first section, we include updated information about the enzymatic pathway of maize flavonoids. We describe a total of twenty-one genes for the flavonoid pathway of maize. The first three genes participate in the general phenylpropanoid pathway. Four genes are common biosynthetic early genes for flavonoids, and fourteen are specific genes for the flavonoid subgroups, the anthocyanins, and flavone C-glycosides. The second section explains the tissue accumulation and regulation of flavonoids by environmental factors affecting the expression of the MYB-bHLH-WD40 (MBW) transcriptional complex. The study of transcription factors of the MBW complex is fundamental for understanding how the flavonoid profiles generate a palette of colors in the plant tissues. Finally, we also include an update of the biological activities of C3G, the major maize anthocyanin, including anticancer, antidiabetic, and antioxidant effects, among others. This review intends to disclose and integrate the existing knowledge regarding maize flavonoid pigmentation and its relevance in the human health sector.
Collapse
Affiliation(s)
- Héctor A. Peniche-Pavía
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| | - Tereso J. Guzmán
- Department of Pharmacology, Institute of Pharmaceutical and Medicinal Chemistry, University of Münster, Corrensstraße 48, 48149 Münster, Germany
| | - Jesús M. Magaña-Cerino
- División Académica de Ciencias de la Salud, Centro de Investigación y Posgrado, Universidad Juárez Autónoma de Tabasco, Av. Gregorio Méndez Magaña 2838-A, Col. Tamulté de las Barrancas, Villahermosa 86150, Tabasco, Mexico
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Enfermedades Crónico Degenerativas, Instituto Transdisciplinar de Investigación e Innovación en Salud, Universidad de Guadalajara, C. Sierra Mojada 950. Col. Independencia, Guadalajara 44340, Jalisco, Mexico
- Correspondence: ; Tel.: +52-33-10585200 (ext. 33930)
| | - Axel Tiessen
- Departamento de Bioquímica y Biotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Irapuato, Libramiento Norte Km. 9.6, Irapuato 36824, Guanajuato, Mexico
| |
Collapse
|
11
|
Delineating biosynthesis of Huperzine A, A plant-derived medicine for the treatment of Alzheimer's disease. Biotechnol Adv 2022; 60:108026. [DOI: 10.1016/j.biotechadv.2022.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022]
|
12
|
Reimer C, Kufs JE, Rautschek J, Regestein L, Valiante V, Hillmann F. Engineering the amoeba Dictyostelium discoideum for biosynthesis of a cannabinoid precursor and other polyketides. Nat Biotechnol 2022; 40:751-758. [PMID: 34992245 DOI: 10.1038/s41587-021-01143-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
Aromatic polyketides are natural polyphenolic compounds with a broad spectrum of pharmacological activities. Production of those metabolites in the model organisms Escherichia coli and Saccharomyces cerevisiae has been limited by the extensive cellular engineering needed for the coordinated biosynthesis of polyketides and their precursors. In contrast, the amoeba Dictyostelium discoideum is a native producer of secondary metabolites and harbors a wide, but largely unexplored, repertoire of genes for the biosynthesis of polyketides and terpenoids. Here we present D. discoideum as an advantageous chassis for the production of aromatic polyketides. By expressing its native and cognate plant polyketide synthase genes in D. discoideum, we demonstrate production of phlorocaprophenone, methyl-olivetol, resveratrol and olivetolic acid (OA), which is the central intermediate in the biosynthesis of cannabinoids. To facilitate OA synthesis, we further engineered an amoeba/plant inter-kingdom hybrid enzyme that produced OA from primary metabolites in two enzymatic steps, providing a shortcut in a synthetic cannabinoid pathway using the D. discoideum host system.
Collapse
Affiliation(s)
- Christin Reimer
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Johann E Kufs
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany.,Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.,Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Julia Rautschek
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Lars Regestein
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (Leibniz-HKI), Jena, Germany.
| |
Collapse
|
13
|
Zhao DS, Hu ZW, Dong LL, Wan XJ, Wang S, Li N, Wang Y, Li SM, Zou HX, Yan X. A Type III Polyketide Synthase (SfuPKS1) Isolated from the Edible Seaweed Sargassum fusiforme Exhibits Broad Substrate and Catalysis Specificity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14643-14649. [PMID: 34812623 DOI: 10.1021/acs.jafc.1c05868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A type III polyketide synthase (SfuPKS1) from the edible seaweed Sargassum fusiforme was molecularly cloned and biochemically characterized. The recombinant SfuPKS1 catalyzed the condensation of fatty acyl-CoA with two or three malonyl-CoA using lactone-type intramolecular cyclization to produce tri- and/or tetraketides. Moreover, it can also utilize phenylpropanoyl-CoA to synthesize phloroglucinol derivatives through Claisen-type cyclization, exhibiting broad substrate and catalysis specificity. Furthermore, the catalytic efficiency (kcat/KM) for acetyl-CoA was 11.8-fold higher than that for 4-coumaroyl-CoA. A pathway for the synthesis of naringenin involving SfuPKS1 was also constructed in Escherichia coli by recombinant means, resulting in 4.9 mg of naringenin per liter.
Collapse
Affiliation(s)
- Dong-Sheng Zhao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Zhi-Wei Hu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Ling-Li Dong
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Xiao-Jie Wan
- Women's Hospital, School of Medicine, Zhejiang University, Xue-Shi Street 1, 310006 Hangzhou, China
| | - Shengqin Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Nan Li
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Yao Wang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Shu-Ming Li
- Institut für Pharmazeutische Biologie und Biotechnologie, Philipps-Universität Marburg, Robert-Koch-Strasse 4, 35037 Marburg, Germany
| | - Hui-Xi Zou
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| | - Xiufeng Yan
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Zhong-Xin Street, 325035 Wenzhou, China
| |
Collapse
|
14
|
In Silico/In Vitro Strategies Leading to the Discovery of New Nonribosomal Peptide and Polyketide Antibiotics Active against Human Pathogens. Microorganisms 2021; 9:microorganisms9112297. [PMID: 34835423 PMCID: PMC8625390 DOI: 10.3390/microorganisms9112297] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Antibiotics are majorly important molecules for human health. Following the golden age of antibiotic discovery, a period of decline ensued, characterised by the rediscovery of the same molecules. At the same time, new culture techniques and high-throughput sequencing enabled the discovery of new microorganisms that represent a potential source of interesting new antimicrobial substances to explore. The aim of this review is to present recently discovered nonribosomal peptide (NRP) and polyketide (PK) molecules with antimicrobial activity against human pathogens. We highlight the different in silico/in vitro strategies and approaches that led to their discovery. As a result of technological progress and a better understanding of the NRP and PK synthesis mechanisms, these new antibiotic compounds provide an additional option in human medical treatment and a potential way out of the impasse of antibiotic resistance.
Collapse
|
15
|
Ren CY, Liu Y, Wei WP, Dai J, Ye BC. Reconstruction of Secondary Metabolic Pathway to Synthesize Novel Metabolite in Saccharopolyspora erythraea. Front Bioeng Biotechnol 2021; 9:628569. [PMID: 34277577 PMCID: PMC8283810 DOI: 10.3389/fbioe.2021.628569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/16/2021] [Indexed: 12/31/2022] Open
Abstract
Natural polyketides play important roles in clinical treatment, agriculture, and animal husbandry. Compared to natural hosts, heterologous chassis (especially Actinomycetes) have many advantages in production of polyketide compounds. As a widely studied model Actinomycete, Saccharopolyspora erythraea is an excellent host to produce valuable heterologous polyketide compounds. However, many host factors affect the expression efficiency of heterologous genes, and it is necessary to modify the host to adapt heterologous production. In this study, the CRISPR-Cas9 system was used to knock out the erythromycin biosynthesis gene cluster of Ab (erythromycin high producing stain). A fragment of 49491 bp in genome (from SACE_0715 to SACE_0733) was deleted, generating the recombinant strain AbΔery in which erythromycin synthesis was blocked and synthetic substrates methylmalonyl-CoA and propionyl-CoA accumulated enormously. Based on AbΔery as heterologous host, three genes, AsCHS, RgTAL, and Sc4CL, driven by strong promoters Pj23119, PermE, and PkasO, respectively, were introduced to produce novel polyketide by L-tyrosine and methylmalonyl-CoA. The product (E)-4-hydroxy-6-(4-hydroxystyryl)-3,5-dimethyl-2H-pyrone was identified in fermentation by LC-MS. High performance liquid chromatography analysis showed that knocking out ery BGC resulted in an increase of methylmalonyl-CoA by 142% and propionyl-CoA by 57.9% in AbΔery compared to WT, and the yield of heterologous product in AbΔery:AsCHS-RgTAL-Sc4CL was higher than WT:AsCHS-RgTAL-Sc4CL. In summary, this study showed that AbΔery could potentially serve as a precious heterologous host to boost the synthesis of other valuable polyketone compounds using methylmalonyl-CoA and propionyl-CoA in the future.
Collapse
Affiliation(s)
- Chong-Yang Ren
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Yong Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wen-Ping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Junbiao Dai
- Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Key Laboratory of Synthetic Genomics and Center for Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China.,Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
16
|
Klamrak A, Nabnueangsap J, Nualkaew N. Biotransformation of Benzoate to 2,4,6-Trihydroxybenzophenone by Engineered Escherichia coli. Molecules 2021; 26:molecules26092779. [PMID: 34066831 PMCID: PMC8125937 DOI: 10.3390/molecules26092779] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/01/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
The synthesis of natural products by E. coli is a challenging alternative method of environmentally friendly minimization of hazardous waste. Here, we establish a recombinant E. coli capable of transforming sodium benzoate into 2,4,6-trihydroxybenzophenone (2,4,6-TriHB), the intermediate of benzophenones and xanthones derivatives, based on the coexpression of benzoate-CoA ligase from Rhodopseudomonas palustris (BadA) and benzophenone synthase from Garcinia mangostana (GmBPS). It was found that the engineered E. coli accepted benzoate as the leading substrate for the formation of benzoyl CoA by the function of BadA and subsequently condensed, with the endogenous malonyl CoA by the catalytic function of BPS, into 2,4,6-TriHB. This metabolite was excreted into the culture medium and was detected by the high-resolution LC-ESI-QTOF-MS/MS. The structure was elucidated by in silico tools: Sirius 4.5 combined with CSI FingerID web service. The results suggested the potential of the new artificial pathway in E. coli to successfully catalyze the transformation of sodium benzoate into 2,4,6-TriHB. This system will lead to further syntheses of other benzophenone derivatives via the addition of various genes to catalyze for functional groups.
Collapse
Affiliation(s)
- Anuwatchakij Klamrak
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Jaran Nabnueangsap
- Salaya Central Instrument Facility RSPG, Mahidol University, Nakhon Pathom 73170, Thailand;
| | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand;
- Correspondence:
| |
Collapse
|
17
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
18
|
Tan YQ, Xue B, Yew WS. Genetically Encodable Scaffolds for Optimizing Enzyme Function. Molecules 2021; 26:molecules26051389. [PMID: 33806660 PMCID: PMC7961827 DOI: 10.3390/molecules26051389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Abstract
Enzyme engineering is an indispensable tool in the field of synthetic biology, where enzymes are challenged to carry out novel or improved functions. Achieving these goals sometimes goes beyond modifying the primary sequence of the enzyme itself. The use of protein or nucleic acid scaffolds to enhance enzyme properties has been reported for applications such as microbial production of chemicals, biosensor development and bioremediation. Key advantages of using these assemblies include optimizing reaction conditions, improving metabolic flux and increasing enzyme stability. This review summarizes recent trends in utilizing genetically encodable scaffolds, developed in line with synthetic biology methodologies, to complement the purposeful deployment of enzymes. Current molecular tools for constructing these synthetic enzyme-scaffold systems are also highlighted.
Collapse
Affiliation(s)
- Yong Quan Tan
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Bo Xue
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
| | - Wen Shan Yew
- Synthetic Biology for Clinical and Technological Innovation, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore; (Y.Q.T.); (B.X.)
- Synthetic Biology Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 14 Medical Drive, Singapore 117599, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore
- Correspondence: ; Tel.: +65-6516-8624
| |
Collapse
|
19
|
Bisht R, Bhattacharyya A, Shrivastava A, Saxena P. An Overview of the Medicinally Important Plant Type III PKS Derived Polyketides. FRONTIERS IN PLANT SCIENCE 2021; 12:746908. [PMID: 34721474 PMCID: PMC8551677 DOI: 10.3389/fpls.2021.746908] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 09/08/2021] [Indexed: 05/06/2023]
Abstract
Plants produce interesting secondary metabolites that are a valuable source of both medicines for human use, along with significant advantages for the manufacturer species. The active compounds which lead to these instrumental effects are generally secondary metabolites produced during various plant growth phases, which provide the host survival advantages while affecting human health inadvertently. Different chemical classes of secondary metabolites are biosynthesized by the plant type III polyketide synthases (PKSs). They are simple homodimeric proteins with the unique mechanistic potential to produce a broad array of secondary metabolites by utilizing simpler starter and extender units. These PKS derived products are majorly the precursors of some important secondary metabolite pathways leading to products such as flavonoids, stilbenes, benzalacetones, chromones, acridones, xanthones, cannabinoids, aliphatic waxes, alkaloids, anthrones, and pyrones. These secondary metabolites have various pharmaceutical, medicinal and industrial applications which make biosynthesizing type III PKSs an important tool for bioengineering purposes. Because of their structural simplicity and ease of manipulation, these enzymes have garnered interest in recent years due to their application in the generation of unnatural natural polyketides and modified products in the search for newer drugs for a variety of health problems. The following review covers the biosynthesis of a variety of type III PKS-derived secondary metabolites, their biological relevance, the associated enzymes, and recent research.
Collapse
|
20
|
Martinelli L, Redou V, Cochereau B, Delage L, Hymery N, Poirier E, Le Meur C, Le Foch G, Cladiere L, Mehiri M, Demont-Caulet N, Meslet-Cladiere L. Identification and Characterization of a New Type III Polyketide Synthase from a Marine Yeast, Naganishia uzbekistanensis. Mar Drugs 2020; 18:E637. [PMID: 33322429 PMCID: PMC7763939 DOI: 10.3390/md18120637] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/02/2020] [Accepted: 12/09/2020] [Indexed: 01/22/2023] Open
Abstract
A putative Type III Polyketide synthase (PKSIII) encoding gene was identified from a marine yeast, Naganishia uzbekistanensis strain Mo29 (UBOCC-A-208024) (formerly named as Cryptococcus sp.) isolated from deep-sea hydrothermal vents. This gene is part of a distinct phylogenetic branch compared to all known terrestrial fungal sequences. This new gene encodes a C-terminus extension of 74 amino acids compared to other known PKSIII proteins like Neurospora crassa. Full-length and reduced versions of this PKSIII were successfully cloned and overexpressed in a bacterial host, Escherichia coli BL21 (DE3). Both proteins showed the same activity, suggesting that additional amino acid residues at the C-terminus are probably not required for biochemical functions. We demonstrated by LC-ESI-MS/MS that these two recombinant PKSIII proteins could only produce tri- and tetraketide pyrones and alkylresorcinols using only long fatty acid chain from C8 to C16 acyl-CoAs as starter units, in presence of malonyl-CoA. In addition, we showed that some of these molecules exhibit cytotoxic activities against several cancer cell lines.
Collapse
Affiliation(s)
- Laure Martinelli
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Vanessa Redou
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Bastien Cochereau
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Ludovic Delage
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR),CNRS, UMR8227, Sorbonne Université, 29680 Roscoff, France; (L.D.); (L.C.)
| | - Nolwenn Hymery
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Elisabeth Poirier
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Christophe Le Meur
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Gaetan Le Foch
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| | - Lionel Cladiere
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR),CNRS, UMR8227, Sorbonne Université, 29680 Roscoff, France; (L.D.); (L.C.)
| | - Mohamed Mehiri
- Marine Natural Products Team, CNRS, UMR 7272, Institut de Chimie de Nice, Université Côte d’Azur, 06108 Nice, France;
| | - Nathalie Demont-Caulet
- UMR ECOSYS, INRAE, INRAE, University of Paris, 78026 Versailles, France;
- AgroParisTech, Université Paris-Saclay, 78026 Versailles, France
| | - Laurence Meslet-Cladiere
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, University Brest, F-29280 Plouzané, France; (L.M.); (V.R.); (B.C.); (N.H.); (E.P.); (C.L.M.); (G.L.F.)
| |
Collapse
|
21
|
Songsiriritthigul C, Nualkaew N, Ketudat-Cairns J, Chen CJ. The crystal structure of benzophenone synthase from Garcinia mangostana L. pericarps reveals the basis for substrate specificity and catalysis. Acta Crystallogr F Struct Biol Commun 2020; 76:597-603. [PMID: 33263571 PMCID: PMC7716263 DOI: 10.1107/s2053230x20014818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/09/2020] [Indexed: 11/10/2022] Open
Abstract
Benzophenone synthase (BPS) catalyzes the production of 2,4,6-trihydroxybenzophenone via the condensation of benzoyl-CoA and three units of malonyl-CoA. The biosynthetic pathway proceeds with the formation of the prenylated xanthone α-mangostin from 2,4,6-trihydroxybenzophenone. Structural elucidation was performed to gain a better understanding of the structural basis of the function of Garcinia mangostana L. (mangosteen) BPS (GmBPS). The structure reveals the common core consisting of a five-layer αβαβα fold as found in other type III polyketide synthase enzymes. The three residues Met264, Tyr266 and Gly339 are proposed to have a significant impact on the substrate-binding specificity of the active site. Crystallographic and docking studies indicate why benzoyl-CoA is preferred over 4-coumaroyl-CoA as the substrate for GmBPS. Met264 and Tyr266 in GmBPS are properly oriented for accommodation of the 2,4,6-trihydroxybenzophenone product but not of naringenin. Gly339 offers a minimal steric hindrance to accommodate the extended substrate. Moreover, the structural arrangement of Thr133 provides the elongation activity and consequently facilitates extension of the polyketide chain. In addition to its impact on the substrate selectivity, Ala257 expands the horizontal cavity and might serve to facilitate the initiation/cyclization reaction. The detailed structure of GmBPS explains its catalytic function, facilitating further structure-based engineering to alter its substrate specificity and obtain the desired products.
Collapse
Affiliation(s)
- Chomphunuch Songsiriritthigul
- Synchrotron Light Research Institute (Public Organization), 111 University Avenue, Nakhon Ratchasima 30000, Thailand
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Natsajee Nualkaew
- Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittrapap Road, Khon Kaen 40002, Thailand
| | - James Ketudat-Cairns
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
- School of Chemistry, Institute of Science, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000, Thailand
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| |
Collapse
|
22
|
Muhammad A, Feng X, Rasool A, Sun W, Li C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol Adv 2020; 43:107555. [DOI: 10.1016/j.biotechadv.2020.107555] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
23
|
Tan Z, Clomburg JM, Cheong S, Qian S, Gonzalez R. A polyketoacyl-CoA thiolase-dependent pathway for the synthesis of polyketide backbones. Nat Catal 2020. [DOI: 10.1038/s41929-020-0471-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
24
|
Bacteria as genetically programmable producers of bioactive natural products. Nat Rev Chem 2020; 4:172-193. [PMID: 37128046 DOI: 10.1038/s41570-020-0176-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2020] [Indexed: 12/17/2022]
Abstract
Next to plants, bacteria account for most of the biomass on Earth. They are found everywhere, although certain species thrive only in specific ecological niches. These microorganisms biosynthesize a plethora of both primary and secondary metabolites, defined, respectively, as those required for the growth and maintenance of cellular functions and those not required for survival but offering a selective advantage for the producer under certain conditions. As a result, bacterial fermentation has long been used to manufacture valuable natural products of nutritional, agrochemical and pharmaceutical interest. The interactions of secondary metabolites with their biological targets have been optimized by millions of years of evolution and they are, thus, considered to be privileged chemical structures, not only for drug discovery. During the last two decades, functional genomics has allowed for an in-depth understanding of the underlying biosynthetic logic of secondary metabolites. This has, in turn, paved the way for the unprecedented use of bacteria as programmable biochemical workhorses. In this Review, we discuss the multifaceted use of bacteria as biological factories in diverse applications and highlight recent advances in targeted genetic engineering of bacteria for the production of valuable bioactive compounds. Emphasis is on current advances to access nature's abundance of natural products.
Collapse
|
25
|
Navarro-Muñoz JC, Collemare J. Evolutionary Histories of Type III Polyketide Synthases in Fungi. Front Microbiol 2020; 10:3018. [PMID: 32038517 PMCID: PMC6985275 DOI: 10.3389/fmicb.2019.03018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/16/2019] [Indexed: 12/30/2022] Open
Abstract
Type III polyketide synthases (PKSs) produce secondary metabolites with diverse biological activities, including antimicrobials. While they have been extensively studied in plants and bacteria, only a handful of type III PKSs from fungi has been characterized in the last 15 years. The exploitation of fungal type III PKSs to produce novel bioactive compounds requires understanding the diversity of these enzymes, as well as of their biosynthetic pathways. Here, phylogenetic and reconciliation analyses of 522 type III PKSs from 1,193 fungal genomes revealed complex evolutionary histories with massive gene duplications and losses, explaining their discontinuous distribution in the fungal tree of life. In addition, horizontal gene transfer events from bacteria to fungi and, to a lower extent, between fungi, could be inferred. Ancestral gene duplication events have resulted in the divergence of eight phylogenetic clades. Especially, two clades show ancestral linkage and functional co-evolution between a type III PKS and a reducing PKS genes. Investigation of the occurrence of protein domains in fungal type III PKS predicted gene clusters highlighted the diversity of biosynthetic pathways, likely reflecting a large chemical landscape. Type III PKS genes are most often located next to genes encoding cytochrome P450s, MFS transporters and transcription factors, defining ancestral core gene clusters. This analysis also allowed predicting gene clusters for the characterized fungal type III PKSs and provides working hypotheses for the elucidation of the full biosynthetic pathways. Altogether, our analyses provide the fundamental knowledge to motivate further characterization and exploitation of fungal type III PKS biosynthetic pathways.
Collapse
|
26
|
Chevrette MG, Gutiérrez-García K, Selem-Mojica N, Aguilar-Martínez C, Yañez-Olvera A, Ramos-Aboites HE, Hoskisson PA, Barona-Gómez F. Evolutionary dynamics of natural product biosynthesis in bacteria. Nat Prod Rep 2019; 37:566-599. [PMID: 31822877 DOI: 10.1039/c9np00048h] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Covering: 2008 up to 2019The forces of biochemical adaptive evolution operate at the level of genes, manifesting in complex phenotypes and the global biodiversity of proteins and metabolites. While evolutionary histories have been deciphered for some other complex traits, the origins of natural product biosynthesis largely remain a mystery. This fundamental knowledge gap is surprising given the many decades of research probing the genetic, chemical, and biophysical mechanisms of bacterial natural product biosynthesis. Recently, evolutionary thinking has begun to permeate this otherwise mechanistically dominated field. Natural products are now sometimes referred to as 'specialized' rather than 'secondary' metabolites, reinforcing the importance of their biological and ecological functions. Here, we review known evolutionary mechanisms underlying the overwhelming chemical diversity of bacterial secondary metabolism, focusing on enzyme promiscuity and the evolution of enzymatic domains that enable metabolic traits. We discuss the mechanisms that drive the assembly of natural product biosynthetic gene clusters and propose formal definitions for 'specialized' and 'secondary' metabolism. We further explore how biosynthetic gene clusters evolve to synthesize related molecular species, and in turn how the biological and ecological roles that emerge from metabolic diversity are acted on by selection. Finally, we reconcile chemical, functional, and genetic data into an evolutionary model, the dynamic chemical matrix evolutionary hypothesis, in which the relationships between chemical distance, biomolecular activity, and relative fitness shape adaptive landscapes.
Collapse
Affiliation(s)
- Marc G Chevrette
- Wisconsin Institute for Discovery, Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Pandith SA, Ramazan S, Khan MI, Reshi ZA, Shah MA. Chalcone synthases (CHSs): the symbolic type III polyketide synthases. PLANTA 2019; 251:15. [PMID: 31776718 DOI: 10.1007/s00425-019-03307-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 11/02/2019] [Indexed: 05/08/2023]
Abstract
Present review provides a thorough insight on some significant aspects of CHSs over a period of about past three decades with a better outlook for future studies toward comprehending the structural and mechanistic intricacy of this symbolic enzyme. Polyketide synthases (PKSs) form a large family of iteratively acting multifunctional proteins that are involved in the biosynthesis of spectrum of natural products. They exhibit remarkable versatility in the structural configuration and functional organization with an incredible ability to generate different classes of compounds other than the characteristic secondary metabolite constituents. Architecturally, chalcone synthase (CHS) is considered to be the simplest representative of Type III PKSs. The enzyme is pivotal for phenylpropanoid biosynthesis and is also well known for catalyzing the initial step of the flavonoid/isoflavonoid pathway. Being the first Type III enzyme to be discovered, CHS has been subjected to ample investigations which, to a greater extent, have tried to understand its structural complexity and promiscuous functional behavior. In this context, we vehemently tried to collect the fragmented information entirely focussed on this symbolic enzyme from about past three-four decades. The aim of this review is to selectively summarize data on some of the fundamental aspects of CHSs viz, its history and distribution, localization, structure and analogs in non-plant hosts, promoter analyses, and role in defense, with an emphasis on mechanistic studies in different species and vis-à-vis mutation-led changes, and evolutionary significance which has been discussed in detail. The present review gives an insight with a better perspective for the scientific community for future studies devoted towards delimiting the mechanistic and structural basis of polyketide biosynthetic machinery vis-à-vis CHS.
Collapse
Affiliation(s)
- Shahzad A Pandith
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| | - Salika Ramazan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Mohd Ishfaq Khan
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Zafar A Reshi
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India.
| |
Collapse
|
28
|
Engineering 4-coumaroyl-CoA derived polyketide production in Yarrowia lipolytica through a β-oxidation mediated strategy. Metab Eng 2019; 57:174-181. [PMID: 31740389 DOI: 10.1016/j.ymben.2019.11.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022]
Abstract
Polyketides are a diverse class of molecules sought after for their valuable properties, including as potential pharmaceuticals. Previously, we demonstrated that the oleaginous yeast Yarrowia lipolytica is an optimal host for production of the simple polyketide, triacetic acid lactone (TAL). We here expand the capacities of this host by overcoming previous media challenges and enabling production of more complex polyketides. Specifically, we employ a β-oxidation related strategy to improve polyketide production directly from defined media. Beyond TAL production, we establish biosynthesis of the 4-coumaroyl-CoA derived polyketides: naringenin, resveratrol, and bisdemethoxycurcumin, as well as the diketide intermediate, (E)-5-(4-hydroxyphenyl)-3-oxopent-4-enoic acid. In this background, we enable high-level de novo production of naringenin through import of both a heterologous pathway and a mutant Y. lipolytica allele. In doing so, we generated an averaged maximum titer of 898 mg/L naringenin, the highest titer reported to date in any host. These results demonstrate that Y. lipolytica is an ideal polyketide production host for more complex 4-coumaroyl-CoA derived products.
Collapse
|
29
|
Li H, Alper HS. Producing Biochemicals in
Yarrowia lipolytica
from Xylose through a Strain Mating Approach. Biotechnol J 2019; 15:e1900304. [DOI: 10.1002/biot.201900304] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/16/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Haibo Li
- Institute for Cellular and Molecular BiologyThe University of Texas at Austin Austin TX 78712 USA
| | - Hal S. Alper
- Institute for Cellular and Molecular BiologyThe University of Texas at Austin Austin TX 78712 USA
- McKetta Department of Chemical EngineeringThe University of Texas at Austin Austin TX 78712 USA
| |
Collapse
|
30
|
Morita H, Wong CP, Abe I. How structural subtleties lead to molecular diversity for the type III polyketide synthases. J Biol Chem 2019; 294:15121-15136. [PMID: 31471316 DOI: 10.1074/jbc.rev119.006129] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Type III polyketide synthases (PKSs) produce an incredibly diverse group of plant specialized metabolites with medical importance despite their structural simplicity compared with the modular type I and II PKS systems. The type III PKSs use homodimeric proteins to construct the molecular scaffolds of plant polyketides by iterative condensations of starter and extender CoA thioesters. Ever since the structure of chalcone synthase (CHS) was disclosed in 1999, crystallographic and mutational studies of the type III PKSs have explored the intimate structural features of these enzyme reactions, revealing that seemingly minor alterations in the active site can drastically change the catalytic functions and product profiles. New structures described in this review further build on this knowledge, elucidating the detailed catalytic mechanism of enzymes that make curcuminoids, use extender substrates without the canonical CoA activator, and use noncanonical starter substrates, among others. These insights have been critical in identifying structural features that can serve as a platform for enzyme engineering via structure-guided and precursor-directed engineered biosynthesis of plant polyketides. In addition, we describe the unique properties of the recently discovered "second-generation" type III PKSs that catalyzes the one-pot formation of complex molecular scaffolds from three distinct CoA thioesters or from "CoA-free" substrates, which are also providing exciting new opportunities for synthetic biology approaches. Finally, we consider post-type III PKS tailoring enzymes, which can also serve as useful tools for combinatorial biosynthesis of further unnatural novel molecules. Recent progress in the field has led to an exciting time of understanding and manipulating these fascinating enzymes.
Collapse
Affiliation(s)
- Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Chin Piow Wong
- Institute of Natural Medicine, University of Toyama, 2630-Sugitani, Toyama 930-0194, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
31
|
Hayashi K, Ogawa S, Watanabe H, Fujimaki Y, Oaki Y, Imai H. Pyrolytic Production of Fluorescent Pyrone Derivatives Produced in the Confined Space of Super-Microporous Silicas. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kosei Hayashi
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Shumpei Ogawa
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroto Watanabe
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yasuto Fujimaki
- Tokyo Metropolitan Industrial Technology Research Institute, 2-4-10 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Yuya Oaki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Hiroaki Imai
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
32
|
Ziko L, Adel M, Malash MN, Siam R. Insights into Red Sea Brine Pool Specialized Metabolism Gene Clusters Encoding Potential Metabolites for Biotechnological Applications and Extremophile Survival. Mar Drugs 2019; 17:md17050273. [PMID: 31071993 PMCID: PMC6562949 DOI: 10.3390/md17050273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/12/2019] [Accepted: 04/19/2019] [Indexed: 12/21/2022] Open
Abstract
The recent rise in antibiotic and chemotherapeutic resistance necessitates the search for novel drugs. Potential therapeutics can be produced by specialized metabolism gene clusters (SMGCs). We mined for SMGCs in metagenomic samples from Atlantis II Deep, Discovery Deep and Kebrit Deep Red Sea brine pools. Shotgun sequence assembly and secondary metabolite analysis shell (antiSMASH) screening unraveled 2751 Red Sea brine SMGCs, pertaining to 28 classes. Predicted categorization of the SMGC products included those (1) commonly abundant in microbes (saccharides, fatty acids, aryl polyenes, acyl-homoserine lactones), (2) with antibacterial and/or anticancer effects (terpenes, ribosomal peptides, non-ribosomal peptides, polyketides, phosphonates) and (3) with miscellaneous roles conferring adaptation to the environment/special structure/unknown function (polyunsaturated fatty acids, ectoine, ladderane, others). Saccharide (80.49%) and putative (7.46%) SMGCs were the most abundant. Selected Red Sea brine pool sites had distinct SMGC profiles, e.g., for bacteriocins and ectoine. Top promising candidates, SMs with pharmaceutical applications, were addressed. Prolific SM-producing phyla (Proteobacteria, Actinobacteria, Cyanobacteria), were ubiquitously detected. Sites harboring the largest numbers of bacterial and archaeal phyla, had the most SMGCs. Our results suggest that the Red Sea brine niche constitutes a rich biological mine, with the predicted SMs aiding extremophile survival and adaptation.
Collapse
Affiliation(s)
- Laila Ziko
- Graduate Program of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| | - Mustafa Adel
- Graduate Program of Biotechnology, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| | - Mohamed N Malash
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
- Microbiology and Immunology Department, Faculty of Pharmacy, Ahram Canadian University, Giza 12581, Egypt.
| | - Rania Siam
- Biology Department, School of Sciences and Engineering, American University in Cairo, New Cairo, Cairo 11835, Egypt.
| |
Collapse
|
33
|
Biosynthesis of Polyketides in Streptomyces. Microorganisms 2019; 7:microorganisms7050124. [PMID: 31064143 PMCID: PMC6560455 DOI: 10.3390/microorganisms7050124] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 12/12/2022] Open
Abstract
Polyketides are a large group of secondary metabolites that have notable variety in their structure and function. Polyketides exhibit a wide range of bioactivities such as antibacterial, antifungal, anticancer, antiviral, immune-suppressing, anti-cholesterol, and anti-inflammatory activity. Naturally, they are found in bacteria, fungi, plants, protists, insects, mollusks, and sponges. Streptomyces is a genus of Gram-positive bacteria that has a filamentous form like fungi. This genus is best known as one of the polyketides producers. Some examples of polyketides produced by Streptomyces are rapamycin, oleandomycin, actinorhodin, daunorubicin, and caprazamycin. Biosynthesis of polyketides involves a group of enzyme activities called polyketide synthases (PKSs). There are three types of PKSs (type I, type II, and type III) in Streptomyces responsible for producing polyketides. This paper focuses on the biosynthesis of polyketides in Streptomyces with three structurally-different types of PKSs.
Collapse
|
34
|
Abstract
Enzymes that catalyze a Michael-type addition in polyketide biosynthesis are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
35
|
Lim YP, Go MK, Raida M, Inoue T, Wenk MR, Keasling JD, Chang MW, Yew WS. Synthetic Enzymology and the Fountain of Youth: Repurposing Biology for Longevity. ACS OMEGA 2018; 3:11050-11061. [PMID: 30320257 PMCID: PMC6173508 DOI: 10.1021/acsomega.8b01620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Caloric restriction (CR) is an intervention that can increase maximal lifespan in organisms, but its application to humans remains challenging. A more feasible approach to achieve lifespan extension is to develop CR mimetics that target biochemical pathways affected by CR. Recent studies in the engineering and structural characterization of polyketide synthases (PKSs) have facilitated their use as biocatalysts to produce novel polyketides. Here, we show that by establishing a combinatorial biosynthetic route in Escherichia coli and exploring the substrate promiscuity of a mutant PKS from alfalfa, 413 potential anti-ageing polyketides were biosynthesized. In this approach, novel acyl-coenzyme A (CoA) precursors generated by promiscuous acid-CoA ligases were utilized by PKS to generate polyketides which were then fed to Caenorhabditis elegans to study their potential efficacy in lifespan extension. It was found that CR mimetics like resveratrol can counter the age-associated decline in mitochondrial function and increase the lifespan of C. elegans. Using the mitochondrial respiration profile of C. elegans supplemented for 8 days with 50 μM resveratrol as a blueprint, we can screen our novel polyketides for potential CR mimetics with improved potency. This study highlights the utility of synthetic enzymology in the development of novel anti-ageing therapeutics.
Collapse
Affiliation(s)
- Yan Ping Lim
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Maybelle K. Go
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Manfred Raida
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Takao Inoue
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
| | - Markus R. Wenk
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Jay D. Keasling
- Department
of Chemical & Biomolecular Engineering, University of California at Berkeley, 5885 Hollis Street, Emeryville, California 94608, United States
| | - Matthew W. Chang
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| | - Wen Shan Yew
- Department
of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 8 Medical Drive, 117597, Singapore
- NUS
Synthetic Biology for Clinical and Technological Innovation,
Centre for Life Sciences, and Singapore Lipidomics Incubator, Life Sciences
Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore
| |
Collapse
|
36
|
A comprehensive catalogue of polyketide synthase gene clusters in lichenizing fungi. J Ind Microbiol Biotechnol 2018; 45:1067-1081. [PMID: 30206732 DOI: 10.1007/s10295-018-2080-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022]
Abstract
Lichens are fungi that form symbiotic partnerships with algae. Although lichens produce diverse polyketides, difficulties in establishing and maintaining lichen cultures have prohibited detailed studies of their biosynthetic pathways. Creative, albeit non-definitive, methods have been developed to assign function to biosynthetic gene clusters in lieu of techniques such as gene knockout and heterologous expressions that are commonly applied to easily cultivatable organisms. We review a total of 81 completely sequenced polyketide synthase (PKS) genes from lichenizing fungi, comprising to our best efforts all complete and reported PKS genes in lichenizing fungi to date. This review provides an overview of the approaches used to locate and sequence PKS genes in lichen genomes, current approaches to assign function to lichen PKS gene clusters, and what polyketides are proposed to be biosynthesized by these PKS. We conclude with remarks on prospects for genomics-based natural products discovery in lichens. We hope that this review will serve as a guide to ongoing research efforts on polyketide biosynthesis in lichenizing fungi.
Collapse
|
37
|
Parvez A, Giri S, Bisht R, Saxena P. New Insights on Cyclization Specificity of Fungal Type III Polyketide Synthase, PKSIII Nc in Neurospora crassa. Indian J Microbiol 2018; 58:268-277. [PMID: 30013270 PMCID: PMC6023819 DOI: 10.1007/s12088-018-0738-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 12/13/2022] Open
Abstract
Type III polyketide synthases (PKSs) biosynthesize varied classes of metabolites with diverse bio-functionalities. Inherent promiscuous substrate specificity, multiple elongations of reaction intermediates and several modes of ring-closure, confer the proteins with the ability to generate unique scaffolds from limited substrate pools. Structural studies have identified crucial amino acid residues that dictate type III PKS functioning, though cyclization specific residues need further investigation. PKSIIINc, a functionally and structurally characterized type III PKS from the fungus, Neurospora crassa, is known to biosynthesize alkyl-resorcinol, alkyl-triketide- and alkyl-tetraketide-α-pyrone products. In this study, we attempted to identify residue positions governing cyclization specificity in PKSIIINc through comparative structural analysis. Structural comparisons with other type III PKSs revealed a motif with conserved hydroxyl/thiol groups that could dictate PKSIIINc catalysis. Site-directed mutagenesis of Cys120 and Ser186 to Ser and Cys, respectively, altered product profiles of mutant proteins. While both C120S and S186C proteins retained wild-type PKSIIINc product activity, S186C favoured lactonization and yielded higher amounts of the α-pyrone products. Notably, C120S gained new cyclization capability and biosynthesized acyl-phloroglucinol in addition to wild-type PKSIIINc products. Generation of alkyl-resorcinol and acyl-phloroglucinol by a single protein is a unique observation in fungal type III PKS family. Mutation of Cys120 to bulky Phe side-chain abrogated formation of tetraketide products and adversely affected overall protein stability as revealed by molecular dynamics simulation studies. Our investigations identify residue positions governing cyclization programming in PKSIIINc protein and provide insights on how subtle variations in protein cores dictate product profiles in type III PKS family.
Collapse
Affiliation(s)
- Amreesh Parvez
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Samir Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
- Present Address: Department of Ecology, School of Biology, University of Osnabrück, Osnabrück, 49076 Germany
| | - Renu Bisht
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021 India
| |
Collapse
|
38
|
Marcella AM, Barb AW. Acyl-coenzyme A:(holo-acyl carrier protein) transacylase enzymes as templates for engineering. Appl Microbiol Biotechnol 2018; 102:6333-6341. [PMID: 29858956 DOI: 10.1007/s00253-018-9114-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/16/2018] [Accepted: 05/17/2018] [Indexed: 01/18/2023]
Abstract
This review will cover the structure, enzymology, and related aspects that are important for structure-based engineering of the transacylase enzymes from fatty acid biosynthesis and polyketide synthesis. Furthermore, this review will focus on in vitro characteristics and not cover engineering of the upstream or downstream reactions or strategies to manipulate metabolic flux in vivo. The malonyl-coenzyme A(CoA)-holo-acyl-carrier protein (holo-ACP) transacylase (FabD) from Escherichia coli serves as a model for this enzyme with thorough descriptions of structure, enzyme mechanism, and effects of mutation on substrate binding presented in the literature. Here, we discuss multiple practical and theoretical considerations regarding engineering transacylase enzymes to accept non-cognate substrates and form novel acyl-ACPs for downstream reactions.
Collapse
Affiliation(s)
- Aaron M Marcella
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA
| | - Adam W Barb
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, 2437 Pammel Drive, Molecular Biology Building, rm 4210, Ames, IA, 50011, USA.
| |
Collapse
|
39
|
Parvez A, Giri S, Giri GR, Kumari M, Bisht R, Saxena P. Novel Type III Polyketide Synthases Biosynthesize Methylated Polyketides in Mycobacterium marinum. Sci Rep 2018; 8:6529. [PMID: 29695799 PMCID: PMC5916927 DOI: 10.1038/s41598-018-24980-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/12/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterial pathogenesis is hallmarked by lipidic polyketides that decorate the cell envelope and mediate infection. However, factors mediating persistence remain largely unknown. Dynamic cell wall remodeling could facilitate the different pathogenic phases. Recent studies have implicated type III polyketide synthases (PKSs) in cell wall alterations in several bacteria. Comparative genome analysis revealed several type III pks gene clusters in mycobacteria. In this study, we report the functional characterization of two novel type III PKSs, MMAR_2470 and MMAR_2474, in Mycobacterium marinum. These type III pkss belong to a unique pks genomic cluster conserved exclusively in pathogenic mycobacteria. Cell-free reconstitution assays and high-resolution mass spectrometric analyses revealed methylated polyketide products in independent reactions of both proteins. MMAR_2474 protein exceptionally biosynthesized methylated alkyl-resorcinol and methylated acyl-phloroglucinol products from the same catalytic core. Structure-based homology modeling, product docking, and mutational studies identified residues that could facilitate the distinctive catalysis of these proteins. Functional investigations in heterologous mycobacterial strain implicated MMAR_2474 protein to be vital for mycobacterial survival in stationary biofilms. Our investigations provide new insights into type III PKSs conserved in pathogenic mycobacterial species.
Collapse
Affiliation(s)
- Amreesh Parvez
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Samir Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Ecology, School of Biology, University of Osnabrück, Osnabrück, 49076, Germany
| | - Gorkha Raj Giri
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Monika Kumari
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.,Department of Biochemistry, University College of Medical Sciences, Delhi, 110095, India
| | - Renu Bisht
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India
| | - Priti Saxena
- Chemical Biology Group, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi, 110021, India.
| |
Collapse
|
40
|
Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation. Proc Natl Acad Sci U S A 2018; 115:2096-2101. [PMID: 29440400 DOI: 10.1073/pnas.1721203115] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Polyketides represent an extremely diverse class of secondary metabolites often explored for their bioactive traits. These molecules are also attractive building blocks for chemical catalysis and polymerization. However, the use of polyketides in larger scale chemistry applications is stymied by limited titers and yields from both microbial and chemical production. Here, we demonstrate that an oleaginous organism (specifically, Yarrowia lipolytica) can overcome such production limitations owing to a natural propensity for high flux through acetyl-CoA. By exploring three distinct metabolic engineering strategies for acetyl-CoA precursor formation, we demonstrate that a previously uncharacterized pyruvate bypass pathway supports increased production of the polyketide triacetic acid lactone (TAL). Ultimately, we establish a strain capable of producing over 35% of the theoretical conversion yield to TAL in an unoptimized tube culture. This strain also obtained an averaged maximum titer of 35.9 ± 3.9 g/L with an achieved maximum specific productivity of 0.21 ± 0.03 g/L/h in bioreactor fermentation. Additionally, we illustrate that a β-oxidation-related overexpression (PEX10) can support high TAL production and is capable of achieving over 43% of the theoretical conversion yield under nitrogen starvation in a test tube. Next, through use of this bioproduct, we demonstrate the utility of polyketides like TAL to modify commodity materials such as poly(epichlorohydrin), resulting in an increased molecular weight and shift in glass transition temperature. Collectively, these findings establish an engineering strategy enabling unprecedented production from a type III polyketide synthase as well as establish a route through O-functionalization for converting polyketides into new materials.
Collapse
|
41
|
Mallika V, Sivakumar KC, Aiswarya G, Soniya EV. In silico approaches illustrate the evolutionary pattern and protein-small molecule interactions of quinolone synthase from Aegle marmelos Correa. J Biomol Struct Dyn 2018; 37:195-209. [PMID: 29308712 DOI: 10.1080/07391102.2017.1422991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quinolone synthase from Aegle marmelos (AmQNS) is a Rutacean-specific plant type III polyketide synthase that synthesizes quinolone, acridone, and benzalacetone with therapeutic potential. Simple architecture and broad substrate affinity of AmQNS make it as one of the target enzymes to produce novel structural scaffolds. Another unique feature of AmQNS despite its high similarity to acridone forming type III polyketide synthase from Citrus microcarpa is the variation in the product formation. Hence, to explore the characteristic features of AmQNS, an in-depth sequence and structure-based bioinformatics analyses were performed. Our studies indicated that AmQNS and its nearest homologs have evolved by a series of gene duplication events and strong purifying selection pressure constrains them in the evolutionary process. Additionally, some amino acid alterations were identified in the functionally important region(s), which can contribute to the functional divergence of the enzyme. Prediction of favorable amino acid substitutions will be advantageous in the metabolic engineering of AmQNS for the production of novel compounds. Furthermore, comparative modeling and docking studies were utilized to investigate the structural behavior and small molecule interaction pattern of AmQNS. The observations and results reported here are crucial for advancing our understanding of AmQNS's phylogenetic position, selection pressure, evolvability, interaction pattern and thus providing the foundation for further studies on the structural and reaction mechanism.
Collapse
Affiliation(s)
- V Mallika
- a Plant Disease Biology & Biotechnology Division , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - K C Sivakumar
- b Bioinformatics Facility , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - G Aiswarya
- a Plant Disease Biology & Biotechnology Division , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| | - E V Soniya
- a Plant Disease Biology & Biotechnology Division , Rajiv Gandhi Centre for Biotechnology , Thiruvananthapuram , Kerala , India
| |
Collapse
|
42
|
Miyanaga A, Kudo F, Eguchi T. Protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrid assembly lines. Nat Prod Rep 2018; 35:1185-1209. [DOI: 10.1039/c8np00022k] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The protein–protein interactions in polyketide synthase–nonribosomal peptide synthetase hybrids are summarized and discussed.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Fumitaka Kudo
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| | - Tadashi Eguchi
- Department of Chemistry
- Tokyo Institute of Technology
- Tokyo 152-8551
- Japan
| |
Collapse
|
43
|
Miyanaga A. Structure and function of polyketide biosynthetic enzymes: various strategies for production of structurally diverse polyketides. Biosci Biotechnol Biochem 2017; 81:2227-2236. [DOI: 10.1080/09168451.2017.1391687] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Polyketides constitute a large family of natural products that display various biological activities. Polyketides exhibit a high degree of structural diversity, although they are synthesized from simple acyl building blocks. Recent biochemical and structural studies provide a better understanding of the biosynthetic logic of polyketide diversity. This review highlights the biosynthetic mechanisms of structurally unique polyketides, β-amino acid-containing macrolactams, enterocin, and phenolic lipids. Functional and structural studies of macrolactam biosynthetic enzymes have revealed the unique biosynthetic machinery used for selective incorporation of a rare β-amino acid starter unit into the polyketide skeleton. Biochemical and structural studies of cyclization enzymes involved in the biosynthesis of enterocin and phenolic lipids provide mechanistic insights into how these enzymes diversify the carbon skeletons of their products.
Collapse
Affiliation(s)
- Akimasa Miyanaga
- Department of Chemistry, Tokyo Institute of Technology, Tokyo, Japan
| |
Collapse
|
44
|
Gutiérrez-García K, Neira-González A, Pérez-Gutiérrez RM, Granados-Ramírez G, Zarraga R, Wrobel K, Barona-Gómez F, Flores-Cotera LB. Phylogenomics of 2,4-Diacetylphloroglucinol-Producing Pseudomonas and Novel Antiglycation Endophytes from Piper auritum. JOURNAL OF NATURAL PRODUCTS 2017; 80:1955-1963. [PMID: 28704049 DOI: 10.1021/acs.jnatprod.6b00823] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
2,4-Diacetylphloroglucinol (DAPG) (1) is a phenolic polyketide produced by some plant-associated Pseudomonas species, with many biological activities and ecological functions. Here, we aimed at reconstructing the natural history of DAPG using phylogenomics focused at its biosynthetic gene cluster or phl genes. In addition to around 1500 publically available genomes, we obtained and analyzed the sequences of nine novel Pseudomonas endophytes isolated from the antidiabetic medicinal plant Piper auritum. We found that 29 organisms belonging to six Pseudomonas species contain the phl genes at different frequencies depending on the species. The evolution of the phl genes was then reconstructed, leading to at least two clades postulated to correlate with the known chemical diversity surrounding DAPG biosynthesis. Moreover, two of the newly obtained Pseudomonas endophytes with high antiglycation activity were shown to exert their inhibitory activity against the formation of advanced glycation end-products via DAPG and related congeners. Its isomer, 5-hydroxyferulic acid (2), detected during bioactivity-guided fractionation, together with other DAPG congeners, were found to enhance the detected inhibitory activity. This report provides evidence of a link between the evolution and chemical diversity of DAPG and congeners.
Collapse
Affiliation(s)
- Karina Gutiérrez-García
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN , Irapuato 36821, Guanajuato, Mexico
- Laboratory of Microbial Secondary Metabolism, Department of Biotechnology, Cinvestav-IPN Mexico City 07360, Mexico
| | - Adriana Neira-González
- Laboratory of Microbial Secondary Metabolism, Department of Biotechnology, Cinvestav-IPN Mexico City 07360, Mexico
| | - Rosa Martha Pérez-Gutiérrez
- Laboratory of Natural Products Research, ESIQUIE-IPN , Unidad Profesional Adolfo López Mateos, Avenida Instituto Politécnico Nacional, Mexico City 07708, Mexico
| | | | - Ramon Zarraga
- Chemistry Department, Division of Natural and Exact Sciences, University of Guanajuato , Guanajuato 36000, Guanajuato, Mexico
| | - Kazimierz Wrobel
- Chemistry Department, Division of Natural and Exact Sciences, University of Guanajuato , Guanajuato 36000, Guanajuato, Mexico
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN , Irapuato 36821, Guanajuato, Mexico
| | - Luis B Flores-Cotera
- Laboratory of Microbial Secondary Metabolism, Department of Biotechnology, Cinvestav-IPN Mexico City 07360, Mexico
| |
Collapse
|
45
|
Sanichar R, Vederas JC. One-Step Transformation of Coenzyme A into Analogues by Transamidation. Org Lett 2017; 19:1950-1953. [PMID: 28393528 DOI: 10.1021/acs.orglett.7b00291] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several coenzyme A (CoA) analogues are made in a single step under mild conditions via transamidation reactions catalyzed by boric acid in water. This approach offers rapid access to compounds useful for the study of a wide spectrum of enzyme catalyzed reactions, especially processes involving acyl carrier proteins (ACP) of polyketide synthases (PKS), fatty acid synthases (FAS), and nonribosomal peptide synthetases (NRPS). The CoA analogues presented are readily elaborated or extended by precedented reactions for specific applications that may be required.
Collapse
Affiliation(s)
- Randy Sanichar
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| | - John C Vederas
- Department of Chemistry, University of Alberta , Edmonton, Alberta, Canada T6G 2G2
| |
Collapse
|