1
|
Zhang Q, Si G, Chen L, Hu L, Cui G, Wang M, Zhao D. Current Status and Prospects of Pine Wilt Disease Management with Phytochemicals-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2129. [PMID: 39124247 PMCID: PMC11314518 DOI: 10.3390/plants13152129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
PWD (pine wilt disease) is a devastating forest disease caused by the Bursaphelenchus xylophilus, which is the major invasive species in Asian and European countries. To control this disease, fumigation, pesticide injection, and clear cutting of epidemic trees have been widely used. But these management strategies have many limitations in terms of the effectiveness and environmental impacts, especially for the overuse of chemical pesticides. Thus, PCs (phytochemicals), the various compounds extracted from plants, have drawn extensive attention owing to their special characteristics, including abundant sources, low toxicity, high efficacy, and easy degradation. This review provides an overview of the current status of using PCs as alternative approaches to manage PWD. It discusses the efficacy of various PCs, the factors influencing their nematicidal activity, and their mechanism of action against B. xylophilus. These results will reveal the application of PCs in combating these devastating diseases and the necessity for further research.
Collapse
Affiliation(s)
- Quanhong Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Q.Z.); (G.S.)
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| | - Guiling Si
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Q.Z.); (G.S.)
| | - Liusheng Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| | - Lili Hu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| | - Gaofeng Cui
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| | - Min Wang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Q.Z.); (G.S.)
| | - Danyang Zhao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| |
Collapse
|
2
|
Hu YJ, Liu MD, Mu YT, Li CC, Zhao MH, Guo DL, Huang LJ, Gu YC, Xue QC, Deng Y. Two Undescribed Coumarins from Notopterygium Incisum with Anti-Inflammatory Activity. Chem Biodivers 2024; 21:e202401093. [PMID: 38867371 DOI: 10.1002/cbdv.202401093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Two previously undescribed coumarins (1-2) were isolated from the root of Notopterygium incisum. The structures of new findings were elucidated by analyses of spectral evidences in HRESIMS, NMR, as well as ICD. The absolute configurations were further confirmed by chemical calculations. 1-2 exhibits obviously anti-inflammatory activity by inhibiting the expression of inflammatory mediators (COX-2, iNOS), as well as reducing the release of NO and the accumulation of ROS in cells. Western blotting analysis revealed that 2 could inhibit the PI3K/AKT pathway by reducing the expression of p-PI3K and p-AKT.
Collapse
Affiliation(s)
- Yun-Jie Hu
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meng-Dan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu-Ting Mu
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cong-Cong Li
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Min-Hong Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Da-Le Guo
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li-Jun Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Qing-Cai Xue
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resource, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Tang Z, Zheng R, Chen P, Li L. Phytochemistry and Biological Profile of the Chinese Endemic Herb Genus Notopterygium. Molecules 2024; 29:3252. [PMID: 39064831 PMCID: PMC11278698 DOI: 10.3390/molecules29143252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Notopterygium, a plant genus belonging to the Apiaceae family, is utilized in traditional Chinese medicine for its medicinal properties. Specifically, the roots and rhizomes of these plants are employed in phytotherapy to alleviate inflammatory conditions and headaches. This review provides a concise overview of the existing information regarding the botanical description, phytochemistry, pharmacology, and molecular mechanisms of the two Notopterygium species: Notopterygium incisum and N. franchetii. More than 500 distinct compounds have been derived from these plants, with the root being the primary source. These components include volatile oils, coumarins, enynes, sesquiterpenes, organic acids and esters, flavonoids, and various other compounds. Research suggests that Notopterygium incisum and N. franchetii exhibit a diverse array of pharmacological effects, encompassing antipyretic, analgesic, anti-inflammatory, antiarrhythmic, anticoagulant, antibacterial, antioxidant, and anticancer properties on various organs such as the brain, heart, digestive system, and respiratory system. Building activity screening models based on the pharmacological effects of Notopterygium species, as well as discovering and studying the pharmacological mechanisms of novel active ingredients, will constitute the primary development focus of Notopterygium medicinal research in the future.
Collapse
Affiliation(s)
| | | | | | - Liangchun Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; (Z.T.); (R.Z.); (P.C.)
| |
Collapse
|
4
|
Chen W, Wang J, Song J, Sun Q, Zhu B, Qin L. Exogenous and Endophytic Fungal Communities of Dendrobium nobile Lindl. across Different Habitats and Their Enhancement of Host Plants' Dendrobine Content and Biomass Accumulation. ACS OMEGA 2023; 8:12489-12500. [PMID: 37033800 PMCID: PMC10077458 DOI: 10.1021/acsomega.3c00608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Both the biosynthesis and array of bioactive and medicinal compounds in plants can be influenced by interactions with endophytic and exogenous fungi. However, the composition of endophytic and exogenous fungal communities associated with many medicinal plants is unknown, and the mechanism by which these fungi stimulate the secondary metabolism of host plants is unclear. In this study, we conducted a correlative analysis between endophytic and exogenous fungi and dendrobine and biomass accumulation in Dendrobium nobile across five Chinese habitats: wild Danxia rock, greenhouse-associated large Danxia stone, broken Danxia stone, broken coarse sandstone, and wood spile. Across habitats, fungal communities exhibited significant differences. The abundances of Phyllosticta, Trichoderma, and Hydropus were higher in wild habitats than in greenhouse habitats. Wild habitats were host to a higher diversity and richness of exogenous fungi than were greenhouse habitats. However, there was no significant difference in endophytic fungal diversity between habitats. The differences between the fungal communities' effects on the dendrobine content and biomass of D. nobile were attributable to the composition of endophytic and exogenous fungi. Exogenous fungi had a greater impact than endophytic fungi on the accumulation of fresh weight (FW) and dendrobine in D. nobile. Furthermore, D. nobile samples with higher exogenous fungal richness and diversity exhibited higher dendrobine content and FW. Phyllosticta was the only genus to be significantly positively correlated with both FW and dendrobine content. A total of 86 strains of endophytic fungi were isolated from the roots, stems, and leaves of D. nobile, of which 8 strains were found to be symbiotic with D. nobile tissue-cultured seedlings. The strain DN14 (Phyllosticta fallopiae) was found to promote not only biomass accumulation (11.44%) but also dendrobine content (33.80%) in D. nobile tissue-cultured seedlings. The results of this study will aid in the development of strategies to increase the production of dendrobine in D. nobile. This work could also facilitate the screening of beneficial endophytic and exogenous fungal probiotics for use as biofertilizers in D. nobile.
Collapse
|
5
|
Li GH, Zhang KQ. Natural nematicidal metabolites and advances in their biocontrol capacity on plant parasitic nematodes. Nat Prod Rep 2023; 40:646-675. [PMID: 36597965 DOI: 10.1039/d2np00074a] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Covering: 2010 to 2021Natural nematicidal metabolites are important sources of nematode control. This review covers the isolation and structural determination of nematicidal metabolites from 2010 to 2021. We summarise chemical structures, bioactivity, metabolic regulation and biosynthesis of potential nematocides, and structure-activity relationship and application potentiality of natural metabolites in plant parasitic nematodes' biocontrol. In doing so, we aim to provide a comprehensive overview of the potential roles that natural metabolites can play in anti-nematode strategies.
Collapse
Affiliation(s)
- Guo-Hong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Key Laboratory for Southwest Microbial Diversity of the Ministry of Education, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
6
|
Shi S, Zhang X, Liu X, Chen Z, Tang H, Hu D, Li H. GC-MS Analysis of the Essential Oil from Seseli mairei H. Wolff (Apiaceae) Roots and Their Nematicidal Activity. Molecules 2023; 28:molecules28052205. [PMID: 36903449 PMCID: PMC10004270 DOI: 10.3390/molecules28052205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
The essential oil (EO) was extracted from aerial parts with insecticidal and fungicidal activity. Herein, the hydro-distilled essential oils of Seseli mairei H. Wolff roots were determined by GC-MS. A total of 37 components were identified, (E)-beta-caryophyllene (10.49%), β-geranylgeranyl (6.64%), (E)-2-decenal (6.17%) and germacrene-D (4.28%). The essential oil of Seseli mairei H. Wolff had nematicidal toxicity against Bursaphelenchus xylophilus with a LC50 value of 53.45 μg/mL. The subsequent bioassay-guided investigation led to the isolation of three active constituents: falcarinol, (E)-2-decenal, and octanoic acid. The falcarinol demonstrated the strongest toxicity against B. Xylophilus (LC50 = 8.52 μg/mL). The octanoic acid and (E)-2-decenal also exhibited moderate toxicity against B. xylophilus (LC50 = 65.56 and 176.34 μg/mL, respectively). The LC50 of falcarinol for the toxicity of B. xylophilus was 7.7 and 21 times than that of octanoic acid and (E)-2-decenal, respectively. Our findings demonstrate that the essential oil from Seseli mairei H. Wolff roots and their isolates may be developed as a promising natural nematicide.
Collapse
Affiliation(s)
- Shengli Shi
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Xinsha Zhang
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Xianbin Liu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Zhen Chen
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
| | - Hewen Tang
- Faculty Affairs Center, Yuxi Normal University, Yuxi 653100, China
| | - Dongbao Hu
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
- Correspondence: (D.H.); (H.L.)
| | - Hongmei Li
- School of Chemistry, Biology and Environment, Yuxi Normal University, Yuxi 653100, China
- Correspondence: (D.H.); (H.L.)
| |
Collapse
|
7
|
Nematicidal Activities of Saccharin and Erythritol Against Pinewood Nematode. J Nematol 2022; 54:20220038. [PMID: 36338425 PMCID: PMC9583419 DOI: 10.2478/jofnem-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/09/2022] Open
Abstract
The pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner & Bührer), causes pine wilt disease (PWD) resulting in severe environmental damage to pine forest ecosystems worldwide. To develop alternative strategies for managing PWD, the nematicidal activities of two sweeteners, erythritol and saccharin, were investigated. Among these two sweeteners, saccharin induced higher mortality in a dose-dependent manner. The LC50 and LC90 values of saccharin were estimated to be 0.321 M and 0.615 M, respectively. However, erythritol did not exhibit nematicidal activities. The results of our study demonstrated that saccharin is lethal to PWN and shows nematicidal effects in a dose-dependent manner. Although the mechanisms of saccharin toxicity are not yet investigated, saccharin could be used as an effective alternative for the management of PWN.
Collapse
|
8
|
One-Pot Synthesis of Benzopyrano-Pyrimidine Derivatives Catalyzed by P-Toluene Sulphonic Acid and Their Nematicidal and Molecular Docking Study. Catalysts 2022. [DOI: 10.3390/catal12050531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
A cost-effective and environmentally benign benzopyrano-pyrimidine derivative synthesis has been established with the condensation of different salicylaldehyde derivatives, piperidine/morpholine with malononitrile, in the presence of a catalyst containing p-toluene sulphonic acid (PTSA) at 80 °C temperature. This procedure offers a new and enriched approach for synthesizing benzopyrano-pyrimidine derivatives with high yields, a straightforward experimental method, and short reaction times. The synthesized compounds were investigated for their nematocidal activity, and the result shows that among the four compounds, compounds 4 and 5 showed strong nematocidal activity against egg hatching and J2s mortality. The nematocidal efficacy of the compounds might be due to the toxicity of chemicals which are soluble in ethanol. The nematocidal effectiveness was directly related to the concentration of ethanolic dilutions of the compounds, i.e., the maximum treatment concentration, the higher the nematocidal action, or the higher the mortality and egg hatching inhibition. In the present study, with support from docking analysis, the relation between chemical reactivity and nematocidal activity of compound 4 was inferred.
Collapse
|
9
|
Zhao Y, Yuan Z, Wang S, Wang H, Chao Y, Sederoff RR, Sederoff H, Yan H, Pan J, Peng M, Wu D, Borriss R, Niu B. Gene sdaB Is Involved in the Nematocidal Activity of Enterobacter ludwigii AA4 Against the Pine Wood Nematode Bursaphelenchus xylophilus. Front Microbiol 2022; 13:870519. [PMID: 35602027 PMCID: PMC9121001 DOI: 10.3389/fmicb.2022.870519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bursaphelenchus xylophilus, a plant parasitic nematode, is the causal agent of pine wilt, a devastating forest tree disease. Essentially, no efficient methods for controlling B. xylophilus and pine wilt disease have yet been developed. Enterobacter ludwigii AA4, isolated from the root of maize, has powerful nematocidal activity against B. xylophilus in a new in vitro dye exclusion test. The corrected mortality of the B. xylophilus treated by E. ludwigii AA4 or its cell extract reached 98.3 and 98.6%, respectively. Morphological changes in B. xylophilus treated with a cell extract from strain AA4 suggested that the death of B. xylophilus might be caused by an increased number of vacuoles in non-apoptotic cell death and the damage to tissues of the nematodes. In a greenhouse test, the disease index of the seedlings of Scots pine (Pinus sylvestris) treated with the cells of strain AA4 plus B. xylophilus or those treated by AA4 cell extract plus B. xylophilus was 38.2 and 30.3, respectively, was significantly lower than 92.5 in the control plants treated with distilled water and B. xylophilus. We created a sdaB gene knockout in strain AA4 by deleting the gene that was putatively encoding the beta-subunit of L-serine dehydratase through Red homologous recombination. The nematocidal and disease-suppressing activities of the knockout strain were remarkably impaired. Finally, we revealed a robust colonization of P. sylvestris seedling needles by E. ludwigii AA4, which is supposed to contribute to the disease-controlling efficacy of strain AA4. Therefore, E. ludwigii AA4 has significant potential to serve as an agent for the biological control of pine wilt disease caused by B. xylophilus.
Collapse
Affiliation(s)
- Yu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhibo Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Shuang Wang
- Administrative Office of the Summer Palace, Beijing Municipal Administration Center of Parks, Beijing, China
| | - Haoyu Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - He Yan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Jialiang Pan
- Center for Biological Disaster Prevention and Control, National Forestry and Grassland Administration, Shenyang, China
| | - Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Enshi, China
| | - Di Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Rainer Borriss
- Nord Reet UG, Greifswald, Germany
- Institute of Marine Biotechnology e.V. (IMaB), Greifswald, Germany
- *Correspondence: Rainer Borriss,
| | - Ben Niu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Ben Niu,
| |
Collapse
|
10
|
Mwamula AO, Kabir MF, Lee D. A Review of the Potency of Plant Extracts and Compounds from Key Families as an Alternative to Synthetic Nematicides: History, Efficacy, and Current Developments. THE PLANT PATHOLOGY JOURNAL 2022; 38:53-77. [PMID: 35385913 PMCID: PMC9343895 DOI: 10.5423/ppj.rw.12.2021.0179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 03/10/2022] [Indexed: 06/02/2023]
Abstract
The global nematicides market is expected to continue growing. With an increasing demand for synthetic chemical-free organic foods, botanical nematicides are taking the lead as replacements. Consequently, in the recent years, there have been vigorous efforts towards identification of the active secondary metabolites from various plants. These include mostly glucosinolates and their hydrolysis products such as isothiocyanates; flavonoids, alkaloids, limonoids, quassinoids, saponins, and the more recently probed essential oils, among others. And despite their overwhelming potential, variabilities in quality, efficacy, potency and composition continue to persist, and commercialization of new botanical nematicides is still lagging. Herein, we have reviewed the history of botanical nematicides and regional progresses, the potency of the identified phytochemicals from the key important plant families, and deciphered some of the impediments involved in standardization of the active compounds in addition to the concerns over the safety of the purified compounds to non-target microbial communities.
Collapse
Affiliation(s)
- Abraham Okki Mwamula
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Korea
- Department of Plant Protection and Quarantine, Graduate School of Plant Protection and Quarantine, Kyungpook National University, Daegu 41566, Korea
| | - Md. Faisal Kabir
- Agriculture and Natural Resources, Research and Knowledge Management Division, DM WATCH, Dhaka-1216, Bangladesh
| | - DongWoon Lee
- Department of Ecological Science, Kyungpook National University, Sangju 37224, Korea
- Department of Plant Protection and Quarantine, Graduate School of Plant Protection and Quarantine, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
11
|
Zheng X, Qin Z, Kang J, Wan C, Li G, Wang X. An Active Compound From Pseudomonas aeruginosa B27. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221086897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A compound was isolated from the fermented broth of Pseudomonas aeruginosa. The compound was determined as acridine-4-carboxylic acid based on nuclear magnetic resonance, mass spectrometry (MS), and single-crystal x-ray diffraction analysis. Acridine-4-carboxylic acid showed significant antibacterial activities against Staphylococcus aureus, Bacillus cereus, Bacillus subtilis, Bacillus megaterium, and Shinella sp. Moreover, the compound showed certain antitumor activities against HCT116, ST486, HCC1806, and A549 with IC50values of 38.38, 6.59, 20.69, and 82.81 μg/mL, respectively. In the test of nematicidal activity, acridine-4-carboxylic acid showed certain nematicidal activity against Caenorhabditis elegans and Meloidogyne incognita. In addition, the compound also exhibited 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity. Therefore, this compound may be used as a potential antibacterial, antitumor, nematicidal, and antioxidative agent.
Collapse
Affiliation(s)
- Xi Zheng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
- The Central Laboratory, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Zixian Qin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Jialei Kang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Chunping Wan
- The Central Laboratory, First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Guohong Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| | - Xin Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, China
| |
Collapse
|
12
|
Liang Y, Wei G, Ning K, Zhang G, Liu Y, Dong L, Chen S. Contents of lobetyolin, syringin, and atractylolide III in Codonopsis pilosula are related to dynamic changes of endophytes under drought stress. Chin Med 2021; 16:122. [PMID: 34809641 PMCID: PMC8607676 DOI: 10.1186/s13020-021-00533-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Background Codonopsis pilosula, an important medicinal plant, can accumulate certain metabolites under moderate drought stress. Endophytes are involved in the metabolite accumulations within medicinal plants. It is still unknown that the endophytes of C. pilosula are associated with the accumulations of metabolites. This study aims to investigate the promoting effect of endophytes on the accumulations of active substances in C. pilosula under drought stress. Methods High–performance liquid chromatography and high–throughput sequencing technology were performed to investigate changes in the contents of secondary metabolite and endophyte abundances of C. pilosula under drought stress, respectively. Spearman’s correlation analysis was further conducted to identify the endophytic biomarkers related to accumulations of pharmacodynamic compounds. Culture-dependent experiments were performed to confirm the functions of endophytes in metabolite accumulations. Results The distribution of pharmacological components and diversity and composition of endophytes showed tissue specificity within C. pilosula. The contents of lobetyolin, syringin, and atractylolide III in C. pilosula under drought stress were increased by 8.47%‒86.47%, 28.78%‒230.98%, and 32.17%‒177.86%, respectively, in comparison with those in untreated groups. The Chao 1 and Shannon indices in different parts of drought–stressed C. pilosula increased compared with those in untreated parts. The composition of endophytic communities in drought treatment parts of C. pilosula was different from that in control parts. A total of 226 microbial taxa were identified as potential biomarkers, of which the abundances of 42 taxa were significantly and positively correlated to the pharmacodynamic contents. Culture-dependent experiments confirmed that the contents of lobetyolin and atractylolide III were increased by the application of Epicoccum thailandicum, Filobasidium magnum, and Paraphoma rhaphiolepidis at the rates of 11.12%‒46.02%, and that the content of syringin was increased by Pseudomonas nitroreducens at the rates of 118.61%‒119.36%. Conclusions Certain endophytes participated in the accumulations of bioactive metabolites, which provided a scientific evidence for the development and application of microorganisms to improve the quality of traditional Chinese medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s13020-021-00533-z.
Collapse
Affiliation(s)
- Yichuan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.,Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guangfei Wei
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Kang Ning
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Guozhuang Zhang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China.
| | - Shilin Chen
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei Ave., Beijing, 100700, China.
| |
Collapse
|
13
|
Nishidono Y, Niwa K, Kitajima A, Watanabe S, Tezuka Y, Arita M, Takabayashi J, Tanaka K. α-Linolenic acid in Papilio machaon larvae regurgitant induces a defensive response in Apiaceae. PHYTOCHEMISTRY 2021; 188:112796. [PMID: 34052696 DOI: 10.1016/j.phytochem.2021.112796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Papilio machaon hippocrates C. Felder et R. Felder, 1864 (Papilionidae) larvae are pests of plants of the family Apiaceae. It is unclear whether Apiaceae plants show induced defensive responses against P. machaon hippocrates larvae, and if so, how these responses are induced. Comparison of the fatty acid (FA) composition of the leaves of host plants and the regurgitant of P. machaon hippocrates larvae by LC-MS revealed a great increase in α-linolenic acid (α-LA) in the regurgitant compared with the FAs contained in the leaves. However, specific FA amino acid conjugates, known as elicitor compounds, such as volicitin, were not detected. Sterile host plants (Saposhnikovia divaricata (Turcz.) Schischk., Apiaceae) were treated with α-LA to mimic the damage made by P. machaon hippocrates larvae. After α-LA treatment to leaves, induced defensive reactions, i.e., release of volatile compounds such as α- and β-pinene and camphene (possible induced indirect defense) and the accumulation of specialized metabolites such as (R)-falcarinol and bergapten (possible induced direct defense) were observed. These findings highlight the role of α-LA in the interaction between P. machaon hippocrates larvae and Apiaceae host plants.
Collapse
Affiliation(s)
- Yuto Nishidono
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Kotaro Niwa
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Aoi Kitajima
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| | - Shiro Watanabe
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Yasuhiro Tezuka
- Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa, Ishikawa, 920-1181, Japan.
| | - Masanori Arita
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| | - Junji Takabayashi
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.
| | - Ken Tanaka
- College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
14
|
Sousa RMOF, Cunha AC, Fernandes-Ferreira M. The potential of Apiaceae species as sources of singular phytochemicals and plant-based pesticides. PHYTOCHEMISTRY 2021; 187:112714. [PMID: 33845406 DOI: 10.1016/j.phytochem.2021.112714] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/31/2021] [Accepted: 02/21/2021] [Indexed: 05/23/2023]
Abstract
The Apiaceae Lindl. (=Umbelliferae Juss.), which includes several economical important vegetables, herbs, and spices, is one of the most numerous plant family. Umbelliferous crops (namely anise, fennel, carrot, coriander, parsley, etc.) are also valuable sources of botanical flavoring agents and fragrances. In addition, Apiaceae species yield a wide variety of distinctive specialized metabolites (i.e, volatile phenylpropanoids, furanocoumarins, sesquiterpene coumarins, polyacetylenes, and phthalides), some of them been described as uncommon natural phytochemicals exclusive of the family, which offers a great potential for bioprospection. Numerous studies have pointed out the outstanding biological activity of extracts and several classes of phytochemicals from Apiaceae species. Emphasis has been given to essential oils (EOs) and their constituents activities, most likely because this type of plant added value product benefits from a larger acceptance and application potential in integrated pest management (IPM) and integrated vector management (IVM) programs. Several species of the family offer a variety of unique compounds with great potential as biopesticidal and/or synergizing agents. Investigations covering their activity toward agricultural pests and phytopathogens have increased in the last years, nevertheless the interest remains strongly focus on arthropod species, predominantly those acting as vectors of human diseases. From our survey, it is patent the gap of knowledge concerning the potential molluscicidal properties of Apiaceae extracts/phytochemicals, as well as their herbicidal activities against invasive plant species. In this review, we propose to highlight the potential of Apiaceae species as suitable sources of bioactive phytochemicals with great relevance within the frame of plant-based pesticides R&D, and will discuss their applicability in real-world scenarios considering the recent developments regarding the design of stable formulations incorporating Apiaceae bioactive products. We expect that this review will encourage researchers to consider undervalued Apiaceae species as alternative sources of bioactive compounds and will give a contribute to the field by suggesting new research topics.
Collapse
Affiliation(s)
- Rose Marie O F Sousa
- Biology Department, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; GreenUPorto - Sustainable Agrifood Production, Research Centre, Department of Biology, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal.
| | - Ana C Cunha
- CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; Biology Department & CBMA - Centre of Molecular and Environmental Biology (CBMA), School of Sciences, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Manuel Fernandes-Ferreira
- Biology Department, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; GreenUPorto - Sustainable Agrifood Production, Research Centre, Department of Biology, Faculty of Science, University of Porto, Rua Do Campo Alegre S/n, 4169-007, Porto, Portugal; CITAB, Centre for the Research and Technology of Agro-Environmental and Biological Sciences, Universidade de Trás-os-Montes e Alto Douro, 5000-801, Vila Real, Portugal; MAPPROD Lda, Rua António de Mariz, 22, 4715-279, Braga, Portugal.
| |
Collapse
|
15
|
Merad N, Andreu V, Chaib S, de Carvalho Augusto R, Duval D, Bertrand C, Boumghar Y, Pichette A, Djabou N. Essential Oils from Two Apiaceae Species as Potential Agents in Organic Crops Protection. Antibiotics (Basel) 2021; 10:antibiotics10060636. [PMID: 34073295 PMCID: PMC8228736 DOI: 10.3390/antibiotics10060636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 11/28/2022] Open
Abstract
Chemical composition and herbicidal, antifungal, antibacterial and molluscicidal activities of essential oils from Choukzerk, Eryngium triquetrum, and Alexander, Smyrnium olusatrum, from western Algeria were characterized. Capillary GC-FID and GC/MS were used to investigate chemical composition of both essential oils, and the antifungal, antibacterial, molluscicidal and herbicidal activities were determined by % inhibition. Collective essential oil of E. triquetrum was dominated by falcarinol (74.8%) and octane (5.6%). The collective essential oil of S. olusatrum was dominated by furanoeremophilone (31.5%), furanodiene+curzurene (19.3%) and (E)-β-caryophyllene (11%). The E. triquetrum oil was tested and a pure falcarinol (99%) showed virtuous herbicidal and antibacterial activities against potato blackleg disease, Pectobacterium atrosepticum, and Gram-negative soil bacterium, Pseudomonas cichorii (85 and 100% inhibition, respectively), and high ecotoxic activity against brine shrimp, Artemia salina, and the freshwater snail, Biomphalaria glabrata, with an IC50 of 0.35 µg/mL and 0.61 µg/mL, respectively. Essential oil of S. olusatrum showed interesting antibacterial and ecotoxic activity and good herbicidal activity against watercress seeds, Lepidium sativum (74% inhibition of photosynthesis, 80% mortality on growth test on model watercress), while the furanoeremophilone isolated from the oil (99% pure) showed moderate herbicidal activity. Both oils showed excellent antifungal activity against Fusarium. Both oils and especially falcarinol demonstrated good potential as new biocontrol agents in organic crop protection.
Collapse
Affiliation(s)
- Nadjiya Merad
- Laboratoire COSNA, Département de Chimie, Faculté des Sciences, BP 119, Université de Tlemcen, Tlemcen 13000, Algeria;
| | - Vanessa Andreu
- AKINAO, 52 Avenue. Paul Alduy, 66860 Perpignan, France; (V.A.); (C.B.)
| | - Slimane Chaib
- Université de Perpignan, PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France;
| | - Ronaldo de Carvalho Augusto
- Université Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France; (R.d.C.A.); (D.D.)
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, Université Lyon, 69007 Lyon, France
| | - David Duval
- Université Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France; (R.d.C.A.); (D.D.)
| | - Cédric Bertrand
- AKINAO, 52 Avenue. Paul Alduy, 66860 Perpignan, France; (V.A.); (C.B.)
- Université de Perpignan, PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, 52 Avenue Paul Alduy, CEDEX, 66860 Perpignan, France;
| | - Yacine Boumghar
- CÉPROCQ, College of Maisonneuve, 6220 Rue Sherbrooke est, Montréal, QC H1N 1C1, Canada
- Correspondence: (Y.B.); (N.D.)
| | - André Pichette
- Centre de Recherche sur la Boréalie (CREB), Laboratoire LASEVE, Université du Québec à Chicoutimi (UQAC), 555, Boulevard de l’Université, Chicoutimi, QC G7H 2B1, Canada;
| | - Nassim Djabou
- Laboratoire COSNA, Département de Chimie, Faculté des Sciences, BP 119, Université de Tlemcen, Tlemcen 13000, Algeria;
- Correspondence: (Y.B.); (N.D.)
| |
Collapse
|
16
|
Sato K, Uehara T, Holbein J, Sasaki-Sekimoto Y, Gan P, Bino T, Yamaguchi K, Ichihashi Y, Maki N, Shigenobu S, Ohta H, Franke RB, Siddique S, Grundler FMW, Suzuki T, Kadota Y, Shirasu K. Transcriptomic Analysis of Resistant and Susceptible Responses in a New Model Root-Knot Nematode Infection System Using Solanum torvum and Meloidogyne arenaria. FRONTIERS IN PLANT SCIENCE 2021; 12:680151. [PMID: 34122492 PMCID: PMC8194700 DOI: 10.3389/fpls.2021.680151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Root-knot nematodes (RKNs) are among the most devastating pests in agriculture. Solanum torvum Sw. (Turkey berry) has been used as a rootstock for eggplant (aubergine) cultivation because of its resistance to RKNs, including Meloidogyne incognita and M. arenaria. We previously found that a pathotype of M. arenaria, A2-J, is able to infect and propagate in S. torvum. In vitro infection assays showed that S. torvum induced the accumulation of brown pigments during avirulent pathotype A2-O infection, but not during virulent A2-J infection. This experimental system is advantageous because resistant and susceptible responses can be distinguished within a few days, and because a single plant genome can yield information about both resistant and susceptible responses. Comparative RNA-sequencing analysis of S. torvum inoculated with A2-J and A2-O at early stages of infection was used to parse the specific resistance and susceptible responses. Infection with A2-J did not induce statistically significant changes in gene expression within one day post-inoculation (DPI), but afterward, A2-J specifically induced the expression of chalcone synthase, spermidine synthase, and genes related to cell wall modification and transmembrane transport. Infection with A2-O rapidly induced the expression of genes encoding class III peroxidases, sesquiterpene synthases, and fatty acid desaturases at 1 DPI, followed by genes involved in defense, hormone signaling, and the biosynthesis of lignin at 3 DPI. Both isolates induced the expression of suberin biosynthetic genes, which may be triggered by wounding during nematode infection. Histochemical analysis revealed that A2-O, but not A2-J, induced lignin accumulation at the root tip, suggesting that physical reinforcement of cell walls with lignin is an important defense response against nematodes. The S. torvum-RKN system can provide a molecular basis for understanding plant-nematode interactions.
Collapse
Affiliation(s)
- Kazuki Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Taketo Uehara
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Julia Holbein
- INRES – Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Yuko Sasaki-Sekimoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Pamela Gan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Takahiro Bino
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Katsushi Yamaguchi
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | | | - Noriko Maki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shuji Shigenobu
- NIBB Core Research Facilities, National Institute for Basic Biology, Okazaki, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Rochus B. Franke
- Institute of Cellular and Molecular Botany, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Shahid Siddique
- INRES – Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, United States
| | - Florian M. W. Grundler
- INRES – Molecular Phytomedicine, Rheinische Friedrich-Wilhelms-University of Bonn, Bonn, Germany
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Yasuhiro Kadota
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Science, The University of Tokyo, Bunkyo, Japan
| |
Collapse
|
17
|
Chen J, Fan J, Wang D, Yue S, Zhai X, Gong Y, Wang J. Rapid and intelligent discrimination of Notopterygium incisum and Notopterygium franchetii by infrared spectroscopic fingerprints and electronic olfactory fingerprints. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 232:118176. [PMID: 32106026 DOI: 10.1016/j.saa.2020.118176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
This preliminary research evaluated mid-infrared (MIR) spectroscopy, near-infrared (NIR) spectroscopy and electronic nose (E-nose) for the rapid identification of Notopterygium incisum and Notopterygium franchetii, which were both approved sources of Notopterygii Rhizoma et Radix (Chinese Pharmacopoeia, 2015) but possessed different chemical compositions and pharmacological activities. At the level of single variables, MIR showed quite a few discriminating peaks in the regions of 3000-2800 cm-1 (the stretching bands of CH), 1770-1670 cm-1 (the stretching bands of CO), and 1400-1200 cm-1 (the bending bands of CH and the stretching bands of CO). Meanwhile, NIR only showed an intuitive discriminating peak near 4736 cm-1 (the combination band of OH and CO stretching modes). E-nose response signals of N. incisum and N. franchetii were significant different (p < 0.05) on four sensors, i.e., LY2/LG, LY2/GH, LY2/gCT and LY2/gCTI. Using the infrared spectra or E-nose sensor responses as fingerprints, support vector machine (SVM) models can provide good recognition accuracy (100% for MIR and NIR models, 92.9% for E-nose model). This research indicated the feasibility of MIR, NIR and E-nose for the accurate, rapid, cheap and green identification of N. incisum and N. franchetii, which was desirable to assure the authenticity, efficacy and safety of related herb materials and products.
Collapse
Affiliation(s)
- Jianbo Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Jing Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shiyan Yue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaolin Zhai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuan Gong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jingjuan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
18
|
Ponpandian LN, Rim SO, Shanmugam G, Jeon J, Park YH, Lee SK, Bae H. Phylogenetic characterization of bacterial endophytes from four Pinus species and their nematicidal activity against the pine wood nematode. Sci Rep 2019; 9:12457. [PMID: 31462655 PMCID: PMC6713757 DOI: 10.1038/s41598-019-48745-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 07/31/2019] [Indexed: 11/16/2022] Open
Abstract
Recently, bacterial endophytes (BEs) have gained importance in the agricultural sector for their use as biocontrol agents to manage plant pathogens. Outbreak of the pine wilt disease (PWD) in Korea has led researchers to test the feasibility of BEs in controlling the pine wood nematode (PWN) Bursaphelenchus xylophilus. In this study, we have reported the diversity and biocontrol activity of BEs against the PWN. By employing a culture-dependent approach, 1,622 BEs were isolated from the needle, stem, and root tissues of P. densiflora, P. rigida, P. thunbergii, and P. koraiensis across 18 sampling sites in Korea. We classified 389 members based on 16S rDNA analysis and taxonomic binning, of which, 215 operational taxonomic units (OTUs) were determined. Using Shannon’s indices, diversity across the Pinus species and tissues was estimated to reveal the composition of BEs and their tissue-specific preferences. When their ethyl acetate crude extracts were analysed for biocontrol activity, 44 candidates with nematicidal activity were obtained. Among these, Stenotrophomonas and Bacillus sp. exhibited significant inhibitory activity against PWN during their developmental stages. Altogether, our study furnishes a basic comprehension of bacterial communities found in the Pinus species and highlights the potential of BEs as biocontrol agents to combat PWD.
Collapse
Affiliation(s)
| | - Soon Ok Rim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Gnanendra Shanmugam
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Young-Hwan Park
- Nakdonggang National Institute of Biological Resources, Sangju, 37242, Republic of Korea
| | - Sun-Keun Lee
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
19
|
Liu Y, Ponpandian LN, Kim H, Jeon J, Hwang BS, Lee SK, Park SC, Bae H. Distribution and diversity of bacterial endophytes from four Pinus species and their efficacy as biocontrol agents for devastating pine wood nematodes. Sci Rep 2019; 9:12461. [PMID: 31462658 PMCID: PMC6713764 DOI: 10.1038/s41598-019-48739-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 07/19/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, we isolated a total of 238 culturable putative bacterial endophytes from four Pinus species (Pinus densiflora, P. koraiensis, P. rigida, and P. thunbergii) across 18 sampling sites in Korea. The samples were cultured in de Man Rogosa Sharpe and humic acid-vitamin agar media. These selective media were used to isolate lactic acid bacteria and Actinobacteria, respectively. Analysis using 16S ribosomal DNA sequencing grouped the isolated putative bacterial endophytes into 107 operational taxonomic units (OTUs) belonging to 48 genera. Gamma-proteobacteria were the most abundant bacteria in each sampling site and three tissues (needle, stem and root). The highest OTU richness and diversity indices were observed in the roots, followed by stem and needle tissues. Total metabolites extracted from three isolates (two isolates of Escherichia coli and Serratia marcescens) showed significant nematicidal activity against the pine wood nematode (Bursaphelenchus xylophilus). Our findings demonstrated the potential use of bacterial endophytes from pine trees as alternative biocontrol agents against pine wood nematodes.
Collapse
Affiliation(s)
- Yunran Liu
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Hoki Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Junhyun Jeon
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Buyng Su Hwang
- Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, Republic of Korea
| | - Sun Keun Lee
- Division of Forest Insect Pests and Diseases, National Institute of Forest Science, Seoul, 02455, Republic of Korea
| | - Soo-Chul Park
- Crop Biotechnology Institute, Green Bio Science & Technology, Seoul National University, Pyeongchang, Kangwon, 25354, Republic of Korea
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
20
|
Li C, Lo I, Hsueh Y, Chung Y, Wang S, Korinek M, Tsai Y, Cheng Y, Hwang T, Wang CCC, Chang F, Wu Y. Epigenetic Manipulation Induces the Production of Coumarin‐Type Secondary Metabolite from
Arthrobotrys foliicola. Isr J Chem 2019. [DOI: 10.1002/ijch.201800162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Chi‐Ying Li
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Pharmacology and Pharmaceutical Sciences University of Southern CaliforniaSchool of Pharmacy Los Angeles CA 90089 USA
| | - I‐Wen Lo
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yen‐Ping Hsueh
- Institute of Molecular BiologyAcademia Sinica Taipei 11529 Taiwan
| | - Yu‐Ming Chung
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Shih‐Wei Wang
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of MedicineMackay Medical College New Taipei City 252 Taiwan
| | - Michal Korinek
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research CenterChang Gung University Taoyuan 33302 Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human EcologyChang Gung University of Science and Technology Taoyuan 33302 Taiwan
| | - Yi‐Hong Tsai
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
| | - Yuan‐Bin Cheng
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
| | - Tsong‐Long Hwang
- Graduate Institute of Natural Products, College of Medicine, and Chinese Herbal Medicine Research Team, Healthy Aging Research CenterChang Gung University Taoyuan 33302 Taiwan
- Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human EcologyChang Gung University of Science and Technology Taoyuan 33302 Taiwan
- Department of AnesthesiologyChang Gung Memorial Hospital Taoyuan 33305 Taiwan
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences University of Southern CaliforniaSchool of Pharmacy Los Angeles CA 90089 USA
- Department of Chemistry, University of Southern CaliforniaCollege of Letters, Arts, and Sciences Los Angeles CA 90089 USA
| | - Fang‐Rong Chang
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- National Research Institute of Chinese Medicine Taipei 112 Taiwan
| | - Yang‐Chang Wu
- Graduate Institute of Natural ProductsCollege of Pharmacy Kaohsiung Medical University Kaohsiung 807 Taiwan
- Department of Medical ResearchKaohsiung Medical University Kaohsiung 807 Taiwan
- Research Center for Natural Products & Drug DevelopmentKaohsiung Medical University Kaohsiung 807 Taiwan
| |
Collapse
|
21
|
Xiao L, Zhou YM, Zhang XF, Du FY. Notopterygium incisum extract and associated secondary metabolites inhibit apple fruit fungal pathogens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 150:59-65. [PMID: 30195388 DOI: 10.1016/j.pestbp.2018.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/17/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
In the search for antifungal lead compounds from natural resources, Notopterygium incisum, a medicine plant only distributed in China, showed antifungal potential against apple fruit pathogens. Based on the bioassay-guided isolation, chromatography fraction 6 of the ethyl acetate partition exhibited significant in vitro and in vivo antifungal activities against apple fruit pathogens. Furthermore, nine antifungal secondary metabolites, including five linear furocoumarins (1-5), two phenylethyl esters (6-7), one falcarindiol (8), and one sesquiterpenoid (9), were isolated and elucidated from fraction 6. Compound 5 is a new metabolite, and 9 isolated from the genus Notopterygium for the first time. The purified compounds (1-9) were firstly reported to exhibit antifungal activities against apple fruit pathogens of Colletotrichum gloeosporioides and Botryosphaeria dothidea with the MIC values ranging from 8 to 250 mg L-1, especially 8 of 16 and 8 mg L-1, respectively. Moreover, 8 could inhibit the spore germination and new sporulation of B. dothidea, as well as enhance the membrane permeabilization of B. dothidea spores. This was the first investigation for the antifungal components against apple fruit pathogens from Notopterygium incisum, which has great potential to be developed into bio-fungicides.
Collapse
Affiliation(s)
- Lin Xiao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong 266109, PR China
| | - Yuan-Ming Zhou
- Analytical and Testing Center, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Xiang-Fei Zhang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong 266109, PR China
| | - Feng-Yu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Changcheng Road 700, Qingdao, Shandong 266109, PR China.
| |
Collapse
|
22
|
Cheng C, Qin J, Wu C, Lei M, Wang Y, Zhang L. Suppressing a plant-parasitic nematode with fungivorous behavior by fungal transformation of a Bt cry gene. Microb Cell Fact 2018; 17:116. [PMID: 30037328 PMCID: PMC6055344 DOI: 10.1186/s12934-018-0960-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/09/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Pine wilt disease, caused by the pinewood nematode Bursaphelenchus xylophilus (PWN), is an important destructive disease of pine forests worldwide. In addition to behaving as a plant-parasitic nematode that feeds on epithelial cells of pines, this pest relies on fungal associates for completing its life cycle inside pine trees. Manipulating microbial symbionts to block pest transmission has exhibited an exciting prospect in recent years; however, transforming the fungal mutualists to toxin delivery agents for suppressing PWN growth has received little attention. RESULTS In the present study, a nematicidal gene cry5Ba3, originally from a soil Bacillus thuringiensis (Bt) strain, was codon-preferred as cry5Ba3Φ and integrated into the genome of a fungus eaten by PWN, Botrytis cinerea, using Agrobacterium tumefaciens-mediated transformation. Supplementing wild-type B. cinerea extract with that from the cry5Ba3Φ transformant significantly suppressed PWN growth; moreover, the nematodes lost fitness significantly when feeding on the mycelia of the cry5Ba3Φ transformant. N-terminal deletion of Cry5Ba3Φ protein weakened the nematicidal activity more dramatically than did the C-terminal deletion, indicating that domain I (endotoxin-N) plays a more important role in its nematicidal function than domain III (endotoxin-C), which is similar to certain insecticidal Cry proteins. CONCLUSIONS Transformation of Bt nematicidal cry genes in fungi can alter the fungivorous performance of B. xylophilus and reduce nematode fitness. This finding provides a new prospect of developing strategies for breaking the life cycle of this pest in pines and controlling pine wilt disease.
Collapse
Affiliation(s)
- Chihang Cheng
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
- School of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Jialing Qin
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
| | - Choufei Wu
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China
- School of Life Sciences, Huzhou University, Huzhou, 313000, China
| | - Mengying Lei
- Guangdong Eco-Engineering Polytechnic, Guangdong, 510520, China
| | - Yongjun Wang
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
| | - Liqin Zhang
- Collaborative Innovation Center of Zhejiang Green Pesticide, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, China.
- School of Life Sciences, Huzhou University, Huzhou, 313000, China.
| |
Collapse
|
23
|
Singh M, Kumar A, Singh R, Pandey KD. Endophytic bacteria: a new source of bioactive compounds. 3 Biotech 2017; 7:315. [PMID: 28955612 DOI: 10.1007/s13205-017-0942-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/05/2017] [Indexed: 12/20/2022] Open
Abstract
In recent years, bioactive compounds are in high demand in the pharmaceuticals and naturopathy, due to their health benefits to human and plants. Microorganisms synthesize these compounds and some enzymes either alone or in association with plants. Microbes residing inside the plant tissues, known as endophytes, also produce an array of these compounds. Endophytic actinomycetes act as a promising resource of biotechnologically valuable bioactive compounds and secondary metabolites. Endophytic Streptomyces sp. produced some novel antibiotics which are effective against multi-drug-resistant bacteria Antimicrobial agents produced by endophytes are eco-friendly, toxic to pathogens and do not harm the human. Endophytic inoculation of the plants modulates the synthesis of bioactive compounds with high pharmaceutical properties besides promoting growth of the plants. Hydrolases, the extracellular enzymes, produced by endophytic bacteria, help the plants to establish systemic resistance against pathogens invasion. Phytohormones produced by endophytes play an essential role in plant development and drought resistance management. The high diversity of endophytes and their adaptation to various environmental stresses seem to be an untapped source of new secondary metabolites. The present review summarizes the role of endophytic bacteria in synthesis and modulation of bioactive compounds.
Collapse
|