1
|
Miles SA, Nillama JA, Hunter L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules 2023; 28:6192. [PMID: 37687021 PMCID: PMC10489206 DOI: 10.3390/molecules28176192] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/17/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Side chain-fluorinated amino acids are useful tools in medicinal chemistry and protein science. In this review, we outline some general strategies for incorporating fluorine atom(s) into amino acid side chains and for elaborating such building blocks into more complex fluorinated peptides and proteins. We then describe the diverse benefits that fluorine can offer when located within amino acid side chains, including enabling 19F NMR and 18F PET imaging applications, enhancing pharmacokinetic properties, controlling molecular conformation, and optimizing target-binding.
Collapse
Affiliation(s)
| | | | - Luke Hunter
- School of Chemistry, The University of New South Wales (UNSW), Sydney 2052, Australia
| |
Collapse
|
2
|
Nonn M, Paizs C, Kiss L. Recent Progress in the Selective Fluorinations of Some Functionalized Cycloalkenes. CHEM REC 2022; 22:e202200130. [PMID: 35680609 DOI: 10.1002/tcr.202200130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Organofluorine compounds have had an increasing impact in synthetic organic chemistry and pharmaceutical research over the past two decades. Their syntheses and the development of novel synthetic approaches towards versatile fluorinated small molecules have received great interest. Our research team has designed various selective and stereocontrolled methods for the construction of fluorine-containing small molecular entities, involving the transformation of various functionalized cycloalkenes across their ring olefin bond. The synthetic methodologies developed to access various pharmacologically interesting fluorinated derivatives with multiple chiral centers might be valuable protocols for the preparation of other classes of organic compounds as well.
Collapse
Affiliation(s)
- Melinda Nonn
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences, Magyar Tudósok krt. 2, 1117, Budapest, Hungary
| | - Csaba Paizs
- Babeş-Bolyai University, Faculty of Chemistry and Chemical Engineering, Enzymology and Applied Biocatalysis Research Center, Arany János str. 11, 400028-, Cluj-Napoca, Romania
| | - Loránd Kiss
- Institute of Organic Chemistry, Research Centre for Natural Sciences, H-1117, Budapest, Magyar Tudósok krt. 2, Hungary
| |
Collapse
|
3
|
Kiss L, Nonn M, Ouchakour L, Remete AM. Application of Oxidative Ring Opening/Ring Closing by Reductive Amination Protocol for the Stereocontrolled Synthesis of Functionalized Azaheterocycles. Synlett 2021. [DOI: 10.1055/s-0040-1719850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThe current Account gives an insight into the synthesis of some N-heterocyclic β-amino acid derivatives and various functionalized saturated azaheterocycles accessed from substituted cycloalkenes via ring C=C bond oxidative cleavage followed by ring closing across double reductive amination. The ring-cleavage protocol has been accomplished according to two common approaches: a) Os-catalyzed dihydroxylation/NaIO4 vicinal diol oxidation and b) ozonolysis. A comparative study on these methodologies has been investigated. Due to the everincreasing relevance of organofluorine chemistry in drug research as well as of the high biological potential of β-amino acid derivatives several illustrative examples to the access of various fluorine-containing piperidine or azepane β-amino acid derivatives are also presented in the current Account.1 Introduction2 Olefin-Bond Transformation by Oxidative Ring Cleavage3 Synthesis of Saturated Azaheterocycles via Oxidative Ring-Opening/Ring-Closing Double Reductive Amination3.1 Importance of Fluorine-Containing Azaheterocycles in Pharmaceutical Research3.2 Synthesis of Azaheterocyclic Amino Acid Derivatives with a Piperidine or Azepane Framework through Oxidative Ring Opening/Reductive Amination3.2.1 Synthesis of Piperidine β-Amino Esters3.2.2 Synthesis of Azepane β-Amino Esters3.2.3 Synthesis of Fluorine-Containing Piperidine γ-Amino Esters3.3 Synthesis of Tetrahydroisoquinoline Derivatives through Oxidative Ring Opening/Reductive Amination Protocol3.4 Synthesis of Functionalized Benzazepines through Reductive Amination3.4.1 Synthesis of Benzo[c]azepines3.4.2 Synthesis of Benzo[d]azepines3.5 Synthesis of Various N-Heterocycles via Ozonolysis/Reductive Amination3.5.1 Synthesis of Compounds with an Azepane Ring3.5.2 Synthesis of Piperidine β-Amino Acids and Piperidine-Fused β-Lactams3.5.3 Synthesis of γ-Lactams with a Piperidine Ring3.5.4 Synthesis of other N-Heterocycles4 Summary and Outlook5 List of Abbreviations
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Organic Chemistry, Research Centre for Natural Sciences
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged
| | | | | |
Collapse
|
4
|
Remete AM, Novák TT, Nonn M, Haukka M, Fülöp F, Kiss L. Synthesis of novel fluorinated building blocks via halofluorination and related reactions. Beilstein J Org Chem 2020; 16:2562-2575. [PMID: 33133288 PMCID: PMC7590628 DOI: 10.3762/bjoc.16.208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/06/2020] [Indexed: 12/25/2022] Open
Abstract
A study exploring halofluorination and fluoroselenation of some cyclic olefins, such as diesters, imides, and lactams with varied functionalization patterns and different structural architectures is described. The synthetic methodologies were based on electrophilic activation through halonium ions of the ring olefin bonds, followed by nucleophilic fluorination with Deoxo-Fluor®. The fluorine-containing products thus obtained were subjected to elimination reactions, yielding various fluorine-containing small-molecular entities.
Collapse
Affiliation(s)
- Attila Márió Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Tamás T Novák
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, FIN-40014, Jyväskylä, Finland
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,Interdisciplinary Excellence Centre, Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
5
|
Nonn M, Remete AM, Kiss L. Structural Diversity‐Oriented Synthesis of Orthogonally Protected Cyclic Amino Acid Derivatives with Multiple Stereogenic Centers. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Melinda Nonn
- Institute of Pharmaceutical ChemistryUniversity of Szeged Eötvös u. 6 HU-6720 Szeged Hungary
- Interdisciplinary Excellence CentreInstitute of Pharmaceutical ChemistryUniversity of Szeged Eötvös u. 6, HU 6720 Szeged Hungary
- MTA-SZTE Stereochemistry Research GroupHungarian Academy of Sciences Eötvös u. 6 HU-6720 Szeged Hungary
| | - Attila M. Remete
- Institute of Pharmaceutical ChemistryUniversity of Szeged Eötvös u. 6 HU-6720 Szeged Hungary
- Interdisciplinary Excellence CentreInstitute of Pharmaceutical ChemistryUniversity of Szeged Eötvös u. 6, HU 6720 Szeged Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical ChemistryUniversity of Szeged Eötvös u. 6 HU-6720 Szeged Hungary
- Interdisciplinary Excellence CentreInstitute of Pharmaceutical ChemistryUniversity of Szeged Eötvös u. 6, HU 6720 Szeged Hungary
| |
Collapse
|
6
|
Mohammadkhani L, Heravi MM. XtalFluor-E: A useful and versatile reagent in organic transformations. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Remete AM, Kiss L. Synthesis of Fluorine-Containing Molecular Entities Through Fluoride Ring Opening of Oxiranes and Aziridines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900981] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Attila Márió Remete
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
- Interdisciplinary Excellence Centre; Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
- Interdisciplinary Excellence Centre; Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| |
Collapse
|
8
|
Remete AM, Nonn M, Fustero S, Fülöp F, Kiss L. Synthesis of fluorinated amino acid derivatives through late-stage deoxyfluorinations. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Remete AM, Nonn M, Fustero S, Haukka M, Fülöp F, Kiss L. Fluorine-Containing Functionalized Cyclopentene Scaffolds Through Ring Contraction and Deoxofluorination of Various Substituted Cyclohexenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Attila Márió Remete
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| | - Melinda Nonn
- MTA-SZTE Stereochemistry Research Group; Hungarian Academy of Sciences; Eötvös u. 6 6720 Szeged Hungary
| | - Santos Fustero
- Departamento de Química Orgánica; Facultad de Farmàcia; Universidad de Valencia; Av. Vicente Andrés Estellés, s/n 46100 Valencia Spain
| | - Matti Haukka
- Department of Chemistry; University of Jyväskylä; 40014 Jyväskylä Finland
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
- MTA-SZTE Stereochemistry Research Group; Hungarian Academy of Sciences; Eötvös u. 6 6720 Szeged Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry; University of Szeged; Eötvös u. 6 6720 Szeged Hungary
| |
Collapse
|
10
|
Remete AM, Nonn M, Fustero S, Haukka M, Fülöp F, Kiss L. Fluorination of some highly functionalized cycloalkanes: chemoselectivity and substrate dependence. Beilstein J Org Chem 2017; 13:2364-2371. [PMID: 29181116 PMCID: PMC5687045 DOI: 10.3762/bjoc.13.233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023] Open
Abstract
A study exploring the chemical behavior of some dihydroxylated β-amino ester stereo- and regioisomers, derived from unsaturated cyclic β-amino acids is described. The nucleophilic fluorinations involving hydroxy-fluorine exchange of some highly functionalized alicyclic diol derivatives have been carried out in view of selective fluorination, investigating substrate dependence, neighboring group assistance and chemodifferentiation.
Collapse
Affiliation(s)
- Attila Márió Remete
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Melinda Nonn
- MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Santos Fustero
- Departamento de Química Orgánica, Facultad de Farmàcia, Universidad de Valencia, Av. Vicente Andrés Estellés, s/n 46100 Valencia, Spain
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, FIN-40014, Jyväskylä, Finland
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, H-6720 Szeged, Eötvös u. 6, Hungary
| | - Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, H-6720 Szeged, Eötvös u. 6, Hungary
| |
Collapse
|
11
|
|
12
|
Kiss L, Mándity IM, Fülöp F. Highly functionalized cyclic β-amino acid moieties as promising scaffolds in peptide research and drug design. Amino Acids 2017. [PMID: 28634827 DOI: 10.1007/s00726-017-2439-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Peptide-based drug research has received high attention in the field of medicinal chemistry over the past decade. For drug design, to improve proteolytic stability, it is desirable to include unnatural building blocks, such as conformationally restricted β-amino acid moieties, into the peptide sequence. Accordingly, the synthesis and incorporation of such conformationally rigid systems into novel type of peptides has gained large interest. Our research group has designed highly efficient methods for the construction of potential antimicrobial peptides. Moreover, a number of synthetic approaches have been developed for the synthesis of various pharmacologically interesting cyclic β-amino acid derivatives as monomers with multiple stereogenic centers.
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.
| | - István M Mándity
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary
| | - Ferenc Fülöp
- Institute of Pharmaceutical Chemistry, University of Szeged, Eötvös u. 6, 6720, Szeged, Hungary.,MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, Eötvös u. 6, 6720, Szeged, Hungary
| |
Collapse
|