1
|
Herczeg M, Demeter F, Nagy T, Rusznyák Á, Hodek J, Sipos É, Lekli I, Fenyvesi F, Weber J, Kéki S, Borbás A. Block Synthesis and Step-Growth Polymerization of C-6-Sulfonatomethyl-Containing Sulfated Malto-Oligosaccharides and Their Biological Profiling. Int J Mol Sci 2024; 25:677. [PMID: 38203849 PMCID: PMC10779578 DOI: 10.3390/ijms25010677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
Highly sulfated malto-oligomers, similar to heparin and heparan-sulfate, have good antiviral, antimetastatic, anti-inflammatory and cell growth inhibitory effects. Due to their broad biological activities and simple structure, sulfated malto-oligomer derivatives have a great therapeutic potential, therefore, the development of efficient synthesis methods for their production is of utmost importance. In this work, preparation of α-(1→4)-linked oligoglucosides containing a sulfonatomethyl moiety at position C-6 of each glucose unit was studied by different approaches. Malto-oligomeric sulfonic acid derivatives up to dodecasaccharides were prepared by polymerization using different protecting groups, and the composition of the product mixtures was analyzed by MALDI-MS methods and size-exclusion chromatography. Synthesis of lower oligomers was also accomplished by stepwise and block synthetic methods, and then the oligosaccharide products were persulfated. The antiviral, anti-inflammatory and cell growth inhibitory activity of the fully sulfated malto-oligosaccharide sulfonic acids were determined by in vitro tests. Four tested di- and trisaccharide sulfonic acids effectively inhibited the activation of the TNF-α-mediated inflammatory pathway without showing cytotoxicity.
Collapse
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
| | - Tibor Nagy
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (T.N.); (S.K.)
| | - Ágnes Rusznyák
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.R.); (F.F.)
- Institute of Healthcare Industry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| | - Jan Hodek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague, Czech Republic; (J.H.); (J.W.)
| | - Éva Sipos
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (É.S.); (I.L.)
| | - István Lekli
- Department of Pharmacodynamics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (É.S.); (I.L.)
| | - Ferenc Fenyvesi
- Department of Molecular and Nanopharmaceutics, Faculty of Pharmacy, University of Debrecen, Nagyerdei Körút 98, H-4032 Debrecen, Hungary; (Á.R.); (F.F.)
| | - Jan Weber
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam. 2, CZ-16000 Prague, Czech Republic; (J.H.); (J.W.)
| | - Sándor Kéki
- Department of Applied Chemistry, Faculty of Science and Technology, Institute of Chemistry, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary; (T.N.); (S.K.)
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary;
- HUN-REN-UD Molecular Recognition and Interaction Research Group, University of Debrecen, Egyetem tér 1, H-4032 Debrecen, Hungary
| |
Collapse
|
2
|
Lisztes E, Mező E, Demeter F, Horváth L, Bősze S, István Tóth B, Borbás A, Herczeg M. Synthesis and Cell Growth Inhibitory Activity of Six Non-glycosaminoglycan-Type Heparin-Analogue Trisaccharides. ChemMedChem 2021; 16:1467-1476. [PMID: 33433040 PMCID: PMC8247843 DOI: 10.1002/cmdc.202000917] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Indexed: 12/27/2022]
Abstract
The design and synthesis of heparin mimetics with high anticancer activity but no anticoagulant activity is an important task in medicinal chemistry. Herein, we present the efficient synthesis of five Glc-GlcA-Glc-sequenced and one Glc-IdoA-Glc-sequenced non-glycosaminoglycan, heparin-related trisaccharides with various sulfation/sulfonylation and methylation patterns. The cell growth inhibitory effects of the compounds were tested against four cancerous human cell lines and two non-cancerous cell lines. Two d-glucuronate-containing tetra-O-sulfated, partially methylated trisaccharides displayed remarkable and selective inhibitory effects on the growth of ovary carcinoma (A2780) and melanoma (WM35) cells. Methyl substituents on the glucuronide unit proved to be detrimental, whereas acetyl substituents were beneficial to the cytostatic activity of the sulfated derivatives.
Collapse
Affiliation(s)
- Erika Lisztes
- Department of PhysiologyUniversity of Debrecen PO Box 224012DebrecenHungary
| | - Erika Mező
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Fruzsina Demeter
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- Doctoral School of ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- MTA-DE Molecular Recognition and Interaction Research Group, ELKHUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Lilla Horváth
- MTA-ELTE Research Group of Peptide ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Szilvia Bősze
- MTA-ELTE Research Group of Peptide ChemistryEötvös Loránd UniversityPázmány Péter sétány 1/a1117BudapestHungary
| | - Balázs István Tóth
- Department of PhysiologyUniversity of Debrecen PO Box 224012DebrecenHungary
| | - Anikó Borbás
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
| | - Mihály Herczeg
- Department of Pharmaceutical ChemistryUniversity of DebrecenEgyetem tér 14032DebrecenHungary
- MTA-DE Research Group for Oligosaccharide Chemistry, ELKHEgyetem tér 14032DebrecenHungary
| |
Collapse
|
3
|
Caputo HE, Straub JE, Grinstaff MW. Design, synthesis, and biomedical applications of synthetic sulphated polysaccharides. Chem Soc Rev 2019; 48:2338-2365. [DOI: 10.1039/c7cs00593h] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the synthetic methods to sulphated polysaccharides, describes their compositional and structural diversity in regards to activity, and showcases their biomedical applications.
Collapse
Affiliation(s)
| | | | - Mark W. Grinstaff
- Department of Chemistry
- Boston University
- Boston
- USA
- Department of Biomedical Engineering
| |
Collapse
|
4
|
Demeter F, Veres F, Herczeg M, Borbás A. Short Synthesis of Idraparinux by Applying a 2-O
-Methyl-4,6-O
-arylmethylene Thioidoside as a 1,2-trans
-α-Selective Glycosyl Donor. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fruzsina Demeter
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 4032 Debrecen Hungary
| | - Fanni Veres
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 4032 Debrecen Hungary
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 4032 Debrecen Hungary
- Research Group for Oligosaccharide Chemistry; Hungarian Academy of Sciences; Egyetem tér 1 4032 Debrecen Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 4032 Debrecen Hungary
| |
Collapse
|
5
|
Demeter F, Gyöngyösi T, Bereczky Z, Kövér KE, Herczeg M, Borbás A. Replacement of the L-iduronic acid unit of the anticoagulant pentasaccharide idraparinux by a 6-deoxy-L-talopyranose - Synthesis and conformational analysis. Sci Rep 2018; 8:13736. [PMID: 30213971 PMCID: PMC6137110 DOI: 10.1038/s41598-018-31854-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/23/2018] [Indexed: 01/05/2023] Open
Abstract
One critical part of the synthesis of heparinoid anticoagulants is the creation of the L-iduronic acid building block featured with unique conformational plasticity which is crucial for the anticoagulant activity. Herein, we studied whether a much more easily synthesizable sugar, the 6-deoxy-L-talose, built in a heparinoid oligosaccharide, could show a similar conformational plasticity, thereby can be a potential substituent of the L-idose. Three pentasaccharides related to the synthetic anticoagulant pentasaccharide idraparinux were prepared, in which the L-iduronate was replaced by a 6-deoxy-L-talopyranoside unit. The talo-configured building block was formed by C4 epimerisation of the commercially available L-rhamnose with high efficacy at both the monosaccharide and the disaccharide level. The detailed conformational analysis of these new derivatives, differing only in their methylation pattern, was performed and the conformationally relevant NMR parameters, such as proton-proton coupling constants and interproton distances were compared to the corresponding ones measured in idraparinux. The lack of anticoagulant activity of these novel heparin analogues could be explained by the biologically not favorable 1C4 chair conformation of their 6-deoxy-L-talopyranoside residues.
Collapse
Affiliation(s)
- Fruzsina Demeter
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary
| | - Tamás Gyöngyösi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 400, Debrecen, 4002, Hungary
| | - Zsuzsanna Bereczky
- Division of Clinical Laboratory Sciences, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen, 4032, Hungary
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, University of Debrecen, P.O. Box 400, Debrecen, 4002, Hungary.
| | - Mihály Herczeg
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry, University of Debrecen, Egyetem tér 1, Debrecen, 4032, Hungary.
| |
Collapse
|
6
|
Herczeg M, Demeter F, Balogh T, Kelemen V, Borbás A. Rapid Synthesis of l
-Idosyl Glycosyl Donors from α-Thioglucosides for the Preparation of Heparin Disaccharides. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mihály Herczeg
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Fruzsina Demeter
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Tímea Balogh
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Viktor Kelemen
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| | - Anikó Borbás
- Department of Pharmaceutical Chemistry; University of Debrecen; Egyetem tér 1 H-4032 Debrecen Hungary
| |
Collapse
|