1
|
Yang X, Wei A, Cao X, Wang Z, Wan H, Wang B, Peng H. Identification and Biological Evaluation of a Novel Small-Molecule Inhibitor of Ricin Toxin. Molecules 2024; 29:1435. [PMID: 38611715 PMCID: PMC11012547 DOI: 10.3390/molecules29071435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The plant-derived toxin ricin is classified as a type 2 ribosome-inactivating protein (RIP) and currently lacks effective clinical antidotes. The toxicity of ricin is mainly due to its ricin toxin A chain (RTA), which has become an important target for drug development. Previous studies have identified two essential binding pockets in the active site of RTA, but most existing inhibitors only target one of these pockets. In this study, we used computer-aided virtual screening to identify a compound called RSMI-29, which potentially interacts with both active pockets of RTA. We found that RSMI-29 can directly bind to RTA and effectively attenuate protein synthesis inhibition and rRNA depurination induced by RTA or ricin, thereby inhibiting their cytotoxic effects on cells in vitro. Moreover, RSMI-29 significantly reduced ricin-mediated damage to the liver, spleen, intestine, and lungs in mice, demonstrating its detoxification effect against ricin in vivo. RSMI-29 also exhibited excellent drug-like properties, featuring a typical structural moiety of known sulfonamides and barbiturates. These findings suggest that RSMI-29 is a novel small-molecule inhibitor that specifically targets ricin toxin A chain, providing a potential therapeutic option for ricin intoxication.
Collapse
Affiliation(s)
- Xinran Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (X.Y.)
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| | - Aili Wei
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| | - Xiyuan Cao
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| | - Zicheng Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (X.Y.)
| | - Hongzhi Wan
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| | - Bo Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Academy of Military Sciences, Beijing 100850, China; (X.Y.)
| | - Hui Peng
- Department of Operational Medicine, Institute of Environmental and Operational Medicine, Academy of Military Medical Sciences, Academy of Military Sciences, Tianjin 300050, China
| |
Collapse
|
2
|
Stellwagen SD, Sarkes DA, Adams BL, Hunt MA, Renberg RL, Hurley MM, Stratis-Cullum DN. The next generation of biopanning: next gen sequencing improves analysis of bacterial display libraries. BMC Biotechnol 2019; 19:100. [PMID: 31864334 PMCID: PMC6925417 DOI: 10.1186/s12896-019-0577-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/12/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Bacterial surface display libraries are a popular tool for novel ligand discovery due to their ease of manipulation and rapid growth rates. These libraries typically express a scaffold protein embedded within the outer membrane with a short, surface-exposed peptide that is either terminal or is incorporated into an outer loop, and can therefore interact with and bind to substrates of interest. RESULTS In this study, we employed a novel bacterial peptide display library which incorporates short 15-mer peptides on the surface of E. coli, co-expressed with the inducible red fluorescent protein DsRed in the cytosol, to investigate population diversity over two rounds of biopanning. The naive library was used in panning trials to select for binding affinity against 3D printing plastic coupons made from polylactic acid (PLA). Resulting libraries were then deep-sequenced using next generation sequencing (NGS) to investigate selection and diversity. CONCLUSIONS We demonstrated enrichment for PLA binding versus a sapphire control surface, analyzed population composition, and compared sorting rounds using a binding assay and fluorescence microscopy. The capability to produce and describe display libraries through NGS across rounds of selection allows a deeper understanding of population dynamics that can be better directed towards peptide discovery.
Collapse
Affiliation(s)
- Sarah D. Stellwagen
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, 21250 MD USA
| | - Deborah A. Sarkes
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | - Bryn L. Adams
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | - Mia A. Hunt
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- General Technical Services, Suite 301, 1451 Route 34 South, Wall Township, 07727 NJ USA
| | - Rebecca L. Renberg
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
- General Technical Services, Suite 301, 1451 Route 34 South, Wall Township, 07727 NJ USA
| | - Margaret M. Hurley
- Biotechnology Branch, CCDC US Army Research Laboratory, 2800 Powder Mill Rd, Adelphi, 20783 MD USA
| | | |
Collapse
|
3
|
Dong H, Sarkes DA, Rice JJ, Hurley MM, Fu AJ, Stratis-Cullum DN. Living Bacteria-Nanoparticle Hybrids Mediated through Surface-Displayed Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5837-5848. [PMID: 29692178 DOI: 10.1021/acs.langmuir.8b00114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we investigated the preparation of living bacteria-nanoparticle hybrids mediated by surface-displayed peptides. The assembly of metallic nanoparticles on living bacteria has been achieved under mild conditions utilizing metal-peptide interactions, whereas the viability of the bacterial cells was greatly preserved. Escherichia coli was engineered with inducible gene circuits to control the display of peptides with desired sequences. Several designed peptide sequences as well as known gold-binding peptides were expressed on the cell surface using enhanced circularly permuted outer membrane protein X (eCPX) scaffolds. Driven by metal-peptide affinity, "biofriendly" citrate-stabilized gold nanoparticles were self-assembled onto the surface of bacteria with displayed peptides, which required overcoming the repulsive force between negatively charged nanoparticles and negatively charged cells. The bacteria/Au nanoparticle hybrids were highly viable and maintained the ability to grow and divide, which is a crucial step toward the creation of living material systems. Further activity and preservation of the bacterial hybrid assembly was demonstrated. The method described herein enables the conjugation of bacterial surfaces with diverse metal-rich nanoparticles in an inducible, and therefore easily controlled, manner. The expressed peptide sequences can be easily modified to alter the binding affinity and specificity for a wide variety of materials to form on-demand, high-density living biohybrids.
Collapse
Affiliation(s)
- Hong Dong
- Biotechnology Branch , US Army Research Laboratory , 2800 Powder Mill Road , Adelphi , Maryland 20783 , United States
- General Technical Services , 1451 Route 34 South , Wall Township , New Jersey 07727 , United States
| | - Deborah A Sarkes
- Biotechnology Branch , US Army Research Laboratory , 2800 Powder Mill Road , Adelphi , Maryland 20783 , United States
| | - Jeffrey J Rice
- Department of Chemical Engineering , Auburn University , 212 Ross Hall , Auburn , Alabama 36849 , United States
- Oak Ridge Associated Universities , 4692 Millennium Drive, Suite 101 , Belcamp , Maryland 21017 , United States
| | - Margaret M Hurley
- Biotechnology Branch , US Army Research Laboratory , 2800 Powder Mill Road , Adelphi , Maryland 20783 , United States
| | - Adele J Fu
- Biotechnology Branch , US Army Research Laboratory , 2800 Powder Mill Road , Adelphi , Maryland 20783 , United States
- Oak Ridge Associated Universities , 4692 Millennium Drive, Suite 101 , Belcamp , Maryland 21017 , United States
| | - Dimitra N Stratis-Cullum
- Biotechnology Branch , US Army Research Laboratory , 2800 Powder Mill Road , Adelphi , Maryland 20783 , United States
| |
Collapse
|
4
|
Sarkes DA, Jahnke JP, Stratis-Cullum DN. Semi-automated Biopanning of Bacterial Display Libraries for Peptide Affinity Reagent Discovery and Analysis of Resulting Isolates. J Vis Exp 2017. [PMID: 29286465 PMCID: PMC5755526 DOI: 10.3791/56061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Biopanning bacterial display libraries is a proven technique for peptide affinity reagent discovery for recognition of both biotic and abiotic targets. Peptide affinity reagents can be used for similar applications to antibodies, including sensing and therapeutics, but are more robust and able to perform in more extreme environments. Specific enrichment of peptide capture agents to a protein target of interest is enhanced using semi-automated sorting methods which improve binding and wash steps and therefore decrease the occurrence of false positive binders. A semi-automated sorting method is described herein for use with a commercial automated magnetic-activated cell sorting device with an unconstrained bacterial display sorting library expressing random 15-mer peptides. With slight modifications, these methods are extendable to other automated devices, other sorting libraries, and other organisms. A primary goal of this work is to provide a comprehensive methodology and expound the thought process applied in analyzing and minimizing the resulting pool of candidates. These techniques include analysis of on-cell binding using fluorescence-activated cell sorting (FACS), to assess affinity and specificity during sorting and in comparing individual candidates, and the analysis of peptide sequences to identify trends and consensus sequences for understanding and potentially improving the affinity to and specificity for the target of interest.
Collapse
Affiliation(s)
- Deborah A Sarkes
- Sensors and Electron Devices Directorate, US Army Research Laboratory;
| | - Justin P Jahnke
- Sensors and Electron Devices Directorate, US Army Research Laboratory
| | | |
Collapse
|