1
|
Dong J, Xia L, Liu Y, Yang Q, Xu N, Ai X, Zhou S. Discovery of Potential Anthelmintic Agents Against Gyrodactylus kobayashii Through Computer-Aided Drug Design and In Vivo Evaluation. JOURNAL OF FISH DISEASES 2025; 48:e14102. [PMID: 39992024 DOI: 10.1111/jfd.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/01/2025] [Accepted: 01/24/2025] [Indexed: 02/25/2025]
Abstract
Monogeneans are ectoparasitic flatworms causing significant economic losses in aquaculture. This study aimed to identify potential anthelmintic agents against these parasites by integrating computer-aided drug design (CADD) and in vivo evaluation. The β-tubulin gene, a well-established anthelmintic target, was cloned from Gyrodactylus kobayashii and its three-dimensional structure was generated using homology modelling. Virtual screening of 2319 FDA-approved drugs and nine common benzimidazoles against the modelled β-tubulin identified several promising compounds with low binding energy. Subsequent in vivo anthelmintic efficacy and acute toxicity assays in goldfish revealed etravirine as a potent candidate with an EC50 value of 0.55 mg/L and a therapeutic index (TI) greater than 18.18. This favourable safety profile highlights etravirine's potential for controlling monogenean infections in aquaculture. Flubendazole and mebendazole also demonstrated potent anthelmintic activity, with EC50 values of 0.022 and 0.023 mg/L and therapeutic indices exceeding 45.45 and 43.48, respectively. Molecular dynamics simulations confirmed stable binding modes for flubendazole and mebendazole with β-tubulin, providing mechanistic insights into their anthelmintic activity. Overall, this study demonstrated the utility of CADD in identifying potential therapeutic agents against monogenean and underscored the importance of β-tubulin as a key target for anthelmintic therapy, contributing to the development of sustainable aquaculture practices.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Liwei Xia
- College of Life Science and Technology, Tarim University/Tarim Research Center of Rare Fishes, Alar, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
2
|
Elsaman T, Awadalla MKA, Mohamed MS, Eltayib EM, Mohamed MA. Identification of Microbial-Based Natural Products as Potential CYP51 Inhibitors for Eumycetoma Treatment: Insights from Molecular Docking, MM-GBSA Calculations, ADMET Analysis, and Molecular Dynamics Simulations. Pharmaceuticals (Basel) 2025; 18:598. [PMID: 40284033 PMCID: PMC12030664 DOI: 10.3390/ph18040598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/14/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Eumycetoma, caused by Madurella mycetomatis, is a chronic fungal infection with limited treatment options and increasing drug resistance. CYP51, a key enzyme in ergosterol biosynthesis, is a well-established target for azole antifungals. However, existing azole drugs demonstrate limited efficacy in treating eumycetoma. Microbial-based natural products, with their structural diversity and bioactivity, offer a promising source for novel CYP51 inhibitors. This study aimed to identify potential Madurella mycetomatis CYP51 inhibitors from microbial natural products using molecular docking, MM-GBSA calculations, ADMET analysis, and molecular dynamics (MD) simulations. Methods: Virtual screening was conducted on a library of microbial-based natural products using an in-house homology model of Madurella mycetomatis CYP51, with itraconazole as the reference drug. The top compounds from initial docking were refined through Standard and Extra Precision docking. MM-GBSA calculations assessed binding affinities, and ADMET analysis evaluated drug-like properties. Compounds with favorable properties underwent MD simulations. Results: The computational investigations identified 34 compounds with better docking scores and binding affinity than itraconazole. Of these, 9 compounds interacted with the heme group and key residues in the active site of Madurella mycetomatis CYP51. In silico pharmacokinetic profiling identified 3 compounds as promising candidates, and MD simulations confirmed their potential as CYP51 inhibitors. Conclusions: The study highlights microbial-derived natural products, particularly monacyclinone G, H, and I, as promising candidates for Madurella mycetomatis CYP51 inhibition, with the potential for treating eumycetoma, requiring further experimental validation.
Collapse
Affiliation(s)
- Tilal Elsaman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | | | - Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (M.S.M.); (E.M.E.)
| | - Eyman Mohamed Eltayib
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia; (M.S.M.); (E.M.E.)
| | - Magdi Awadalla Mohamed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
3
|
Oliveira MDA, Dos S Andrade TDJA, Junior JSC, Lima NM, Machado HG, Tabudravu JN, Pinto FDCL, Fukui-Silva L, Amaro MC, de Moraes J, Silva DHS, Citó AMDGL, Feitosa CM. Anthelmintic Potential of Conjugated Long-Chain Fatty Acids Isolated from the Bioluminescent Mushroom Neonothopanus gardneri. JOURNAL OF NATURAL PRODUCTS 2025; 88:255-261. [PMID: 39754587 DOI: 10.1021/acs.jnatprod.4c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
With praziquantel being the sole available drug for schistosomiasis, identifying novel anthelmintic agents is imperative. A chemical investigation of the fruiting body of the bioluminescent mushroom Neonothopanus gardneri Berk. resulted in the isolation of new conjugated long-chain fatty acids (8E,10E,12S,13S)-12,13-dihydroxy-7-oxo-octadeca-8,10-dienoic acid (1) and (7S,8S,9E,11E)-7,8-dihydroxy-13-oxo-octadeca-9,11-dienoic acid (2) and three previously described compounds, (7R,8R,9Z)-7,8-dihydroxyoctadec-9-enoic acid (3), (2E)-dec-2-ene-1,10-dioic acid (4), and a ketolactone marasmeno-1,15-dione (5). Their planar structures were elucidated based on 1D and 2D NMR and MS/MS spectroscopic analyses. Compound 3 displayed significant antiparasitic activity against Schistosoma mansoni ex vivo (EC50 < 10 μM). No toxicity was observed in mammalian cells or Caenorhabditis elegans.
Collapse
Affiliation(s)
- Maria D A Oliveira
- Department of Chemistry, Federal University of Piaui, Campus Ministro Petrônio Portela, Teresina, PI 64049-550, Brazil
| | - Teresinha de Jesus A Dos S Andrade
- Nucleus of Applied Research to Sciences-NIAC, Federal Institute of Education, Science and Technology of Maranhao-IFMA, Presidente Dutra (Maranhao), Timon, Maranhao 65635-468, Brazil
| | - Joaquim S C Junior
- Department of Chemistry, Federal Institute of Piaui, Campus Central, Praça da Liberdade, Teresina, PI 64049-550, Brazil
| | | | - Hugo G Machado
- Institute of Chemistry, Federal University of Gioias, Goiania, GO 74690-900, Brazil
| | - Jioji N Tabudravu
- School of Natural Sciences, Faculty of Science and Technology, University of Central Lancashire, PR1 2HE Preston, U.K
| | - Francisco das Chagas L Pinto
- Institute of Exact Sciences and Nature, University of International Integration of Afro-Brazilian Lusophony, Redenção, CE 62790970, Brazil
| | - Lucas Fukui-Silva
- Research Center on Neglected Diseases, University of Guarulhos (NPDN-UNG), Guarulhos, SP 07030-010, Brazil
| | - Monique C Amaro
- Research Center on Neglected Diseases, University of Guarulhos (NPDN-UNG), Guarulhos, SP 07030-010, Brazil
| | - Josué de Moraes
- Research Center on Neglected Diseases, University of Guarulhos (NPDN-UNG), Guarulhos, SP 07030-010, Brazil
- Research Center on Neglected Diseases, University Brazil (NPDN-UB), São Paulo, SP 05508-070, Brazil
| | - Dulce Helena S Silva
- Nucleus of Bioassays, Biosynthesis and Ecophysiology of Natural Products (NuBBE), Department of Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), P.O. Box 355, Araraquara, SP 14800-900, Brazil
| | | | - Chistiane Mendes Feitosa
- Department of Chemistry, Federal University of Piaui, Campus Ministro Petrônio Portela, Teresina, PI 64049-550, Brazil
| |
Collapse
|
4
|
Muñoz-Vega MC, López-Hernández S, Sierra-Chavarro A, Scotti MT, Scotti L, Coy-Barrera E, Herrera-Acevedo C. Machine-Learning- and Structure-Based Virtual Screening for Selecting Cinnamic Acid Derivatives as Leishmania major DHFR-TS Inhibitors. Molecules 2023; 29:179. [PMID: 38202763 PMCID: PMC10779987 DOI: 10.3390/molecules29010179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
The critical enzyme dihydrofolate reductase-thymidylate synthase in Leishmania major (LmDHFR-TS) serves a dual-purpose role and is essential for DNA synthesis, a cornerstone of the parasite's reproductive processes. Consequently, the development of inhibitors against LmDHFR-TS is crucial for the creation of novel anti-Leishmania chemotherapies. In this study, we employed an in-house database containing 314 secondary metabolites derived from cinnamic acid that occurred in the Asteraceae family. We conducted a combined ligand/structure-based virtual screening to identify potential inhibitors against LmDHFR-TS. Through consensus analysis of both approaches, we identified three compounds, i.e., lithospermic acid (237), diarctigenin (306), and isolappaol A (308), that exhibited a high probability of being inhibitors according to both approaches and were consequently classified as promising hits. Subsequently, we expanded the binding mode examination of these compounds within the active site of the test enzyme through molecular dynamics simulations, revealing a high degree of structural stability and minimal fluctuations in its tertiary structure. The in silico predictions were then validated through in vitro assays to examine the inhibitory capacity of the top-ranked naturally occurring compounds against LmDHFR-TS recombinant protein. The test compounds effectively inhibited the enzyme with IC50 values ranging from 6.1 to 10.1 μM. In contrast, other common cinnamic acid derivatives (i.e., flavonoid glycosides) from the Asteraceae family, such as hesperidin, isovitexin 4'-O-glucoside, and rutin, exhibited low activity against this target. The selective index (SI) for all tested compounds was determined using HsDHFR with moderate inhibitory effect. Among these hits, lignans 306 and 308 demonstrated the highest selectivity, displaying superior SI values compared to methotrexate, the reference inhibitor of DHFR-TS. Therefore, continued research into the anti-leishmanial potential of these C6C3-hybrid butyrolactone lignans may offer a brighter outlook for combating this neglected tropical disease.
Collapse
Affiliation(s)
- Maria Camila Muñoz-Vega
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
- Laboratorio de Investigación en Biocatálisis y Biotransformaciones (LIBB), Grupo de Investigación en Ingeniería de los Procesos Agroalimentarios y Biotecnológicos (GIPAB), Departamento de Química Universidad del Valle, Cali 760042, Colombia
| | - Sofía López-Hernández
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
| | - Adrián Sierra-Chavarro
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Chonny Herrera-Acevedo
- Department of Chemical Engineering, Universidad ECCI, Bogotá, Distrito Capital 111311, Colombia; (M.C.M.-V.); (S.L.-H.); (A.S.-C.)
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (M.T.S.); (L.S.)
| |
Collapse
|
5
|
Kashif M, Subbarao N. Identification of potential novel inhibitors against glutamine synthetase enzyme of Leishmania major by using computational tools. J Biomol Struct Dyn 2023; 41:13914-13922. [PMID: 36744549 DOI: 10.1080/07391102.2023.2175382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023]
Abstract
Glutamine Synthetase (GS) is functionally important in many pathogens, so its viability as a drug target has been widely investigated. We identified Leishmania major glutamine synthetase (Lm-GS) as an appealing target for developing potential leishmaniasis inhibitors. Comparative modeling, virtual screening, MD simulations along with MM-PBSA analyses were performed and two FDA approved compounds namely Chlortalidone (id ZINC00020253) and Ciprofloxacin (id ZINC00020220) were identified as potential inhibitor among the screened library. These compounds may be used as a lead molecule, although additional in vitro and in vivo testing is required to establish its anti-leishmanial effect. Hence, the goal of this study was to locate and identify certain medications that were previously FDA-approved for definite disorders and that might show anti-leishmanial effect. Due to GS's presence in additional Leishmania species, a novel medication docked with Lm-GS may have broad anti-leishmania efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Kashif
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
6
|
Mtemeli FL, Ndlovu J, Mugumbate G, Makwikwi T, Shoko R. Advances in schistosomiasis drug discovery based on natural products. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2080281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- F. L. Mtemeli
- Department of Biology, School of Natural Sciences and Mathematics Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - J. Ndlovu
- Department of Biology, School of Natural Sciences and Mathematics Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| | - G. Mugumbate
- Department of Chemical Technology, Midlands State University, Gweru, Zimbabwe
| | - T. Makwikwi
- Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - R. Shoko
- Department of Biology, School of Natural Sciences and Mathematics Chinhoyi University of Technology, Chinhoyi, Zimbabwe
| |
Collapse
|
7
|
Adegboye O, Field MA, Kupz A, Pai S, Sharma D, Smout MJ, Wangchuk P, Wong Y, Loiseau C. Natural-Product-Based Solutions for Tropical Infectious Diseases. Clin Microbiol Rev 2021; 34:e0034820. [PMID: 34494873 PMCID: PMC8673330 DOI: 10.1128/cmr.00348-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
About half of the world's population and 80% of the world's biodiversity can be found in the tropics. Many diseases are specific to the tropics, with at least 41 diseases caused by endemic bacteria, viruses, parasites, and fungi. Such diseases are of increasing concern, as the geographic range of tropical diseases is expanding due to climate change, urbanization, change in agricultural practices, deforestation, and loss of biodiversity. While traditional medicines have been used for centuries in the treatment of tropical diseases, the active natural compounds within these medicines remain largely unknown. In this review, we describe infectious diseases specific to the tropics, including their causative pathogens, modes of transmission, recent major outbreaks, and geographic locations. We further review current treatments for these tropical diseases, carefully consider the biodiscovery potential of the tropical biome, and discuss a range of technologies being used for drug development from natural resources. We provide a list of natural products with antimicrobial activity, detailing the source organisms and their effectiveness as treatment. We discuss how technological advancements, such as next-generation sequencing, are driving high-throughput natural product screening pipelines to identify compounds with therapeutic properties. This review demonstrates the impact natural products from the vast tropical biome have in the treatment of tropical infectious diseases and how high-throughput technical capacity will accelerate this discovery process.
Collapse
Affiliation(s)
- Oyelola Adegboye
- Public Health and Tropical Medicine, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- World Health Organization Collaborating Center for Vector-Borne and Neglected Tropical Diseases, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Matt A. Field
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
- Garvin Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Andreas Kupz
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Saparna Pai
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Dileep Sharma
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Medicine & Dentistry, James Cook University, Cairns, QLD, Australia
| | - Michael J. Smout
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Phurpa Wangchuk
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Yide Wong
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| | - Claire Loiseau
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
8
|
Herrera-Acevedo C, Dos Santos Maia M, Cavalcanti ÉBVS, Coy-Barrera E, Scotti L, Scotti MT. Selection of antileishmanial sesquiterpene lactones from SistematX database using a combined ligand-/structure-based virtual screening approach. Mol Divers 2021; 25:2411-2427. [PMID: 32909084 DOI: 10.1007/s11030-020-10139-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/30/2020] [Indexed: 12/20/2022]
Abstract
Leishmaniasis refers to a complex of diseases, caused by the intracellular parasitic protozoans belonging to the genus Leishmania. Among the three types of disease manifestations, the most severe type is visceral leishmaniasis, which is caused by Leishmania donovani, and is diagnosed in more than 20,000 cases annually, worldwide. Because the current therapeutic options for disease treatment are associated with several limitations, the identification of new potential leads/drugs remains necessary. In this study, a combined approach was used, based on two different virtual screening (VS) methods, which were designed to select promising antileishmanial agents from among the entire sesquiterpene lactone (SL) dataset registered in SistematX, a web interface for managing a secondary metabolite database that is accessible by multiple platforms on the Internet. Thus, a ChEMBL dataset, including 3159 and 1569 structures that were previously tested against L. donovani amastigotes and promastigotes in vitro, respectively, was used to develop two random forest models, which performed with greater than 74% accuracy in both the cross-validation and test sets. Subsequently, a ligand-based VS assay was performed against the 1306 SistematX-registered SLs. In parallel, the crystal structures of three L. donovani target proteins, N-myristoyltransferase, ornithine decarboxylase, and mitogen-activated protein kinase 3, and a homology model of pteridine reductase 1 were used to perform a structure-based VS, using molecular docking, of the entire SistematX SL dataset. The consensus analysis of these two VS approaches resulted in the normalization of probability scores and identified 13 promising, enzyme-targeting, antileishmanial SLs from SistematX that may act against L. donovani. A combined approach based on two different virtual screening methods (structure-based and ligand-based) was performed using an in-house dataset composed of 1306 sesquiterpene lactones to identify potential antileishmanial (Leishmania donovani) structures.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Mayara Dos Santos Maia
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | | | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá, 250247, Colombia
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
9
|
de Araújo RSA, da Silva-Junior EF, de Aquino TM, Scotti MT, Ishiki HM, Scotti L, Mendonça-Junior FJB. Computer-Aided Drug Design Applied to Secondary Metabolites as Anticancer Agents. Curr Top Med Chem 2021; 20:1677-1703. [PMID: 32515312 DOI: 10.2174/1568026620666200607191838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/06/2019] [Accepted: 01/05/2020] [Indexed: 12/11/2022]
Abstract
Computer-Aided Drug Design (CADD) techniques have garnered a great deal of attention in academia and industry because of their great versatility, low costs, possibilities of cost reduction in in vitro screening and in the development of synthetic steps; these techniques are compared with highthroughput screening, in particular for candidate drugs. The secondary metabolism of plants and other organisms provide substantial amounts of new chemical structures, many of which have numerous biological and pharmacological properties for virtually every existing disease, including cancer. In oncology, compounds such as vimblastine, vincristine, taxol, podophyllotoxin, captothecin and cytarabine are examples of how important natural products enhance the cancer-fighting therapeutic arsenal. In this context, this review presents an update of Ligand-Based Drug Design and Structure-Based Drug Design techniques applied to flavonoids, alkaloids and coumarins in the search of new compounds or fragments that can be used in oncology. A systematical search using various databases was performed. The search was limited to articles published in the last 10 years. The great diversity of chemical structures (coumarin, flavonoids and alkaloids) with cancer properties, associated with infinite synthetic possibilities for obtaining analogous compounds, creates a huge chemical environment with potential to be explored, and creates a major difficulty, for screening studies to select compounds with more promising activity for a selected target. CADD techniques appear to be the least expensive and most efficient alternatives to perform virtual screening studies, aiming to selected compounds with better activity profiles and better "drugability".
Collapse
Affiliation(s)
| | | | - Thiago Mendonça de Aquino
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Marcus Tullius Scotti
- Laboratory of Medicinal Chemistry, Nursing and Pharmacy School, Federal University of Alagoas, Maceio-AL, Brazil
| | - Hamilton M Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente- SP, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, Joao Pessoa-PB, Brazil
| | | |
Collapse
|
10
|
Herrera-Acevedo C, Flores-Gaspar A, Scotti L, Mendonça-Junior FJB, Scotti MT, Coy-Barrera E. Identification of Kaurane-Type Diterpenes as Inhibitors of Leishmania Pteridine Reductase I. Molecules 2021; 26:molecules26113076. [PMID: 34063939 PMCID: PMC8196580 DOI: 10.3390/molecules26113076] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022] Open
Abstract
The current treatments against Leishmania parasites present high toxicity and multiple side effects, which makes the control and elimination of leishmaniasis challenging. Natural products constitute an interesting and diverse chemical space for the identification of new antileishmanial drugs. To identify new drug options, an in-house database of 360 kauranes (tetracyclic diterpenes) was generated, and a combined ligand- and structure-based virtual screening (VS) approach was performed to select potential inhibitors of Leishmania major (Lm) pteridine reductase I (PTR1). The best-ranked kauranes were employed to verify the validity of the VS approach through LmPTR1 enzyme inhibition assay. The half-maximal inhibitory concentration (IC50) values of selected bioactive compounds were examined using the random forest (RF) model (i.e., 2β-hydroxy-menth-6-en-5β-yl ent-kaurenoate (135) and 3α-cinnamoyloxy-ent-kaur-16-en-19-oic acid (302)) were below 10 μM. A compound similar to 302, 3α-p-coumaroyloxy-ent-kaur-16-en-19-oic acid (302a), was also synthesized and showed the highest activity against LmPTR1. Finally, molecular docking calculations and molecular dynamics simulations were performed for the VS-selected, most-active kauranes within the active sites of PTR1 hybrid models, generated from three Leishmania species that are known to cause cutaneous leishmaniasis in the new world (i.e., L. braziliensis, L. panamensis, and L. amazonensis) to explore the targeting potential of these kauranes to other species-dependent variants of this enzyme.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (C.H.-A.); (L.S.)
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Areli Flores-Gaspar
- Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
- Correspondence: (A.F.-G.); (M.T.S.); Tel.: +57-1-650-00-00 (ext. 1526) (A.F.-G.); +55-83-99869-0415 (M.T.S.)
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (C.H.-A.); (L.S.)
| | | | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil; (C.H.-A.); (L.S.)
- Correspondence: (A.F.-G.); (M.T.S.); Tel.: +57-1-650-00-00 (ext. 1526) (A.F.-G.); +55-83-99869-0415 (M.T.S.)
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
- Departamento de Química, Facultad de Ciencias Básicas y Aplicadas, Universidad Militar Nueva Granada, Cajicá 250247, Colombia
| |
Collapse
|
11
|
Sesquiterpene Lactones and Diterpenes: Promising Therapeutic Candidates for Infectious Diseases, Neoplasms and Other Chronic Disorders. Molecules 2021; 26:molecules26051251. [PMID: 33652593 PMCID: PMC7956199 DOI: 10.3390/molecules26051251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 01/03/2023] Open
|
12
|
Herrera-Acevedo C, Perdomo-Madrigal C, Muratov EN, Scotti L, Scotti MT. Discovery of Alternative Chemotherapy Options for Leishmaniasis through Computational Studies of Asteraceae. ChemMedChem 2021; 16:1234-1245. [PMID: 33336460 DOI: 10.1002/cmdc.202000862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a complex disease caused by over 20 Leishmania species that primarily affects populations with poor socioeconomic conditions. Currently available drugs for treating leishmaniasis include amphotericin B, paromomycin, and pentavalent antimonials, which have been associated with several limitations, such as low efficacy, the development of drug resistance, and high toxicity. Natural products are an interesting source of new drug candidates. The Asteraceae family includes more than 23 000 species worldwide. Secondary metabolites that can be found in species from this family have been widely explored as potential new treatments for leishmaniasis. Recently, computational tools have become more popular in medicinal chemistry to establish experimental designs, identify new drugs, and compare the molecular structures and activities of novel compounds. Herein, we review various studies that have used computational tools to examine various compounds identified in the Asteraceae family in the search for potential drug candidates against Leishmania.
Collapse
Affiliation(s)
- Chonny Herrera-Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Camilo Perdomo-Madrigal
- School of Science, Universidad de Ciencias Aplicadas y Ambientales, Calle 222 n° 55-37, Bogotá D.C., Colombia
| | - Eugene N Muratov
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária-Castelo Branco III, Joao Pessoa, PB, Brazil
| |
Collapse
|
13
|
Sánchez-Suárez J, Bernal FA, Coy-Barrera E. Colombian Contributions Fighting Leishmaniasis: A Systematic Review on Antileishmanials Combined with Chemoinformatics Analysis. Molecules 2020; 25:E5704. [PMID: 33287235 PMCID: PMC7730898 DOI: 10.3390/molecules25235704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 01/15/2023] Open
Abstract
Leishmaniasis is a parasitic morbid/fatal disease caused by Leishmania protozoa. Twelve million people worldwide are appraised to be currently infected, including ca. two million infections each year, and 350 million people in 88 countries are at risk of becoming infected. In Colombia, cutaneous leishmaniasis (CL) is a public health problem in some tropical areas. Therapeutics is based on traditional antileishmanial drugs, but this practice has several drawbacks for patients. Thus, the search for new antileishmanial agents is a serious need, but the lack of adequately funded research programs on drug discovery has hampered its progress. Some Colombian researchers have conducted different research projects focused on the assessment of the antileishmanial activity of naturally occurring and synthetic compounds against promastigotes and/or amastigotes. Results of such studies have separately demonstrated important hits and reasonable potential, but a holistic view of them is lacking. Hence, we present the outcome from a systematic review of the literature (under PRISMA guidelines) on those Colombian studies investigating antileishmanials during the last thirty-two years. In order to combine the general efforts aiming at finding a lead against Leishmania panamensis (one of the most studied and incident parasites in Colombia causing CL) and to recognize structural features of representative compounds, fingerprint-based analyses using conventional machine learning algorithms and clustering methods are shown. Abstraction from such a meta-description led to describe some function-determining molecular features and simplify the clustering of plausible isofunctional hits. This systematic review indicated that the Colombian efforts for the antileishmanials discovery are increasingly intensified, though improvements in the followed pathways must be definitively pursued. In this context, a brief discussion about scope, strengths and limitations of such advances and relationships is addressed.
Collapse
Affiliation(s)
- Jeysson Sánchez-Suárez
- Bioprospecting Research Group, School of Engineering, Universidad de La Sabana, Chía 250001, Colombia;
| | - Freddy A. Bernal
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| | - Ericsson Coy-Barrera
- Bioorganic Chemistry Laboratory, Universidad Militar Nueva Granada, Cajicá 250247, Colombia;
| |
Collapse
|
14
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
15
|
Halder AK, Dias Soeiro Cordeiro MN. Advanced in Silico Methods for the Development of Anti- Leishmaniasis and Anti-Trypanosomiasis Agents. Curr Med Chem 2020; 27:697-718. [DOI: 10.2174/0929867325666181031093702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 07/24/2018] [Accepted: 09/19/2018] [Indexed: 11/22/2022]
Abstract
Leishmaniasis and trypanosomiasis occur primarily in undeveloped countries and account
for millions of deaths and disability-adjusted life years. Limited therapeutic options, high toxicity of
chemotherapeutic drugs and the emergence of drug resistance associated with these diseases demand
urgent development of novel therapeutic agents for the treatment of these dreadful diseases. In the last
decades, different in silico methods have been successfully implemented for supporting the lengthy and
expensive drug discovery process. In the current review, we discuss recent advances pertaining to in
silico analyses towards lead identification, lead modification and target identification of antileishmaniasis
and anti-trypanosomiasis agents. We describe recent applications of some important in
silico approaches, such as 2D-QSAR, 3D-QSAR, pharmacophore mapping, molecular docking, and so
forth, with the aim of understanding the utility of these techniques for the design of novel therapeutic
anti-parasitic agents. This review focuses on: (a) advanced computational drug design options; (b) diverse
methodologies - e.g.: use of machine learning tools, software solutions, and web-platforms; (c)
recent applications and advances in the last five years; (d) experimental validations of in silico predictions;
(e) virtual screening tools; and (f) rationale or justification for the selection of these in silico
methods.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@ REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, Porto 4169-007, Portugal
| | | |
Collapse
|
16
|
de Ávila MB, Bitencourt-Ferreira G, de Azevedo WF. Structural Basis for Inhibition of Enoyl-[Acyl Carrier Protein] Reductase (InhA) from Mycobacterium tuberculosis. Curr Med Chem 2020; 27:745-759. [DOI: 10.2174/0929867326666181203125229] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/26/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Background::
The enzyme trans-enoyl-[acyl carrier protein] reductase (InhA) is a central
protein for the development of antitubercular drugs. This enzyme is the target for the pro-drug
isoniazid, which is catalyzed by the enzyme catalase-peroxidase (KatG) to become active.
Objective::
Our goal here is to review the studies on InhA, starting with general aspects and focusing on
the recent structural studies, with emphasis on the crystallographic structures of complexes involving
InhA and inhibitors.
Method::
We start with a literature review, and then we describe recent studies on InhA crystallographic
structures. We use this structural information to depict protein-ligand interactions. We also analyze the
structural basis for inhibition of InhA. Furthermore, we describe the application of computational
methods to predict binding affinity based on the crystallographic position of the ligands.
Results::
Analysis of the structures in complex with inhibitors revealed the critical residues responsible
for the specificity against InhA. Most of the intermolecular interactions involve the hydrophobic residues
with two exceptions, the residues Ser 94 and Tyr 158. Examination of the interactions has shown
that many of the key residues for inhibitor binding were found in mutations of the InhA gene in the
isoniazid-resistant Mycobacterium tuberculosis. Computational prediction of the binding affinity for
InhA has indicated a moderate uphill relationship with experimental values.
Conclusion::
Analysis of the structures involving InhA inhibitors shows that small modifications on
these molecules could modulate their inhibition, which may be used to design novel antitubercular
drugs specific for multidrug-resistant strains.
Collapse
Affiliation(s)
- Maurício Boff de Ávila
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| | - Gabriela Bitencourt-Ferreira
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| | - Walter Filgueira de Azevedo
- Laboratory of Computational Systems Biology, School of Sciences - Pontifical Catholic University of Rio, Grande do Sul (PUCRS), Av. Ipiranga, 6681, Porto Alegre-RS 90619-900, Brazil
| |
Collapse
|
17
|
de Sousa Luis JA, da Silva Souza HD, Lira BF, da Silva Alves F, de Athayde-Filho PF, de Souza Lima TK, Rocha JC, Mendonça Junior FJB, Scotti L, Scotti MT. Combined structure- and ligand-based virtual screening aiding discovery of selenoglycolicamides as potential multitarget agents against Leishmania species. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.126872] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Need for sustainable approaches in antileishmanial drug discovery. Parasitol Res 2019; 118:2743-2752. [DOI: 10.1007/s00436-019-06443-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
|
19
|
Herrera Acevedo C, Scotti L, Alves MF, de F.F.M. Diniz M, Tullius Scotti M. Hybrid Compounds in the Search for Alternative Chemotherapeutic Agents against Neglected Tropical Diseases. LETT ORG CHEM 2019. [DOI: 10.2174/1570178615666180402123057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neglected tropical diseases (NTDs) affect more than a billion people worldwide, mainly
populations living in poverty conditions. More than 56% of annual NTD deaths are caused by
Leishmaniasis, Sleeping sickness, and Chagas disease. For these three diseases, many problems have
been observed with the chemotherapeutic drugs commonly used, these being mainly resistance, high
toxicity, and low efficacy. In the search for alternative treatments, hybridization is an interesting approach,
which generates new molecules by merging two pharmacophores and then looking for improvements
in biological activity or reduced compound toxicity. Here, we review various studies that
present such hybrid molecules with promising in vitro and in vivo activities against Leishmania and
Trypanosoma parasites.
Collapse
Affiliation(s)
- Chonny Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Mateus F. Alves
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Margareth de F.F.M. Diniz
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraiba, 58051-900 Joao Pessoa, PB, Brazil
| |
Collapse
|
20
|
Kabra R, Chauhan N, Kumar A, Ingale P, Singh S. Efflux pumps and antimicrobial resistance: Paradoxical components in systems genomics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 141:15-24. [PMID: 30031023 PMCID: PMC7173168 DOI: 10.1016/j.pbiomolbio.2018.07.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 01/01/2023]
Abstract
Efflux pumps play a major role in the increasing antimicrobial resistance rendering a large number of drugs of no use. Large numbers of pathogens are becoming multidrug resistant due to inadequate dosage and use of the existing antimicrobials. This leads to the need for identifying new efflux pump inhibitors. Design of novel targeted therapies using inherent complexity involved in the biological network modeling has gained increasing importance in recent times. The predictive approaches should be used to determine antimicrobial activities with high pathogen specificity and microbicidal potency. Antimicrobial peptides, which are part of our innate immune system, have the ability to respond to infections and have gained much attention in making resistant strain sensitive to existing drugs. In this review paper, we outline evidences linking host-directed therapy with the efflux pump activity to infectious disease.
Collapse
Affiliation(s)
- Ritika Kabra
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Nutan Chauhan
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Anurag Kumar
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Prajakta Ingale
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, SP Pune University Campus, Pune 411007, India.
| |
Collapse
|
21
|
Bombaça ACS, Dossow DV, Barbosa JMC, Paz C, Burgos V, Menna-Barreto RFS. TrypanocidalActivity of Natural Sesquiterpenoids Involves Mitochondrial Dysfunction, ROS Production and Autophagic Phenotype in Trypanosomacruzi. Molecules 2018; 23:molecules23112800. [PMID: 30373326 PMCID: PMC6278339 DOI: 10.3390/molecules23112800] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 02/02/2023] Open
Abstract
Chagas disease is a neglected tropical disease that is caused by the protozoan Trypanosoma cruzi and represents a serious health problem, especially in Latin America. The clinical treatment of Chagas disease is based on two nitroderivatives that present severe side effects and important limitations. In folk medicine, natural products, including sesquiterpenoids, have been employed for the treatment of different parasitic diseases. In this study, the trypanocidal activity of compounds isolated from the Chilean plants Drimys winteri, Podanthus mitiqui and Maytenus boaria on three T. cruzi evolutive forms (epimastigote, trypomastigote and amastigote) was evaluated. Total extracts and seven isolated sesquiterpenoids were assayed on trypomastigotes and epimastigotes. Polygodial (Pgd) from D. winteri, total extract from P. mitiqui (PmTE) and the germacrane erioflorin (Efr) from P. mitiqui were the most bioactive substances. Pgd, Efr and PmTE also presented strong effects on intracellular amastigotes and low host toxicity. Many ultrastructural effects of these substances, including reservosome disruption, cytosolic vacuolization, autophagic phenotype and mitochondrial swelling (in the case of Pgd), were observed. Flow cytometric analysis demonstrated a reduction in mitochondrial membrane potential in treated epimastigotes and an increase in ROS production and high plasma membrane permeability after treatment with Pgd. The promising trypanocidal activity of these natural sesquiterpenoids may be a good starting point for the development of alternative treatmentsforChagas disease.
Collapse
Affiliation(s)
- Ana Cristina Souza Bombaça
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-360, Brazil.
| | - Daniela Von Dossow
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco,4811230, Chile.
| | | | - Cristian Paz
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco,4811230, Chile.
| | - Viviana Burgos
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco,4811230, Chile.
| | | |
Collapse
|
22
|
An Abies procera-derived tetracyclic triterpene containing a steroid-like nucleus core and a lactone side chain attenuates in vitro survival of both Fasciola hepatica and Schistosoma mansoni. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:465-474. [PMID: 30399512 PMCID: PMC6216039 DOI: 10.1016/j.ijpddr.2018.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/22/2018] [Accepted: 10/25/2018] [Indexed: 11/24/2022]
Abstract
Two economically and biomedically important platyhelminth species, Fasciola hepatica (liver fluke) and Schistosoma mansoni (blood fluke), are responsible for the neglected tropical diseases (NTDs) fasciolosis and schistosomiasis. Due to the absence of prophylactic vaccines, these NTDs are principally managed by the single class chemotherapies triclabendazole (F. hepatica) and praziquantel (S. mansoni). Unfortunately, liver fluke resistance to triclabendazole has been widely reported and blood fluke insensitivity/resistance to praziquantel has been observed in both laboratory settings as well as in endemic communities. Therefore, the identification of new anthelmintics is necessary for the sustainable control of these NTDs in both animal and human populations. Here, continuing our work with phytochemicals, we isolated ten triterpenoids from the mature bark of Abies species and assessed their anthelmintic activities against F. hepatica and S. mansoni larval and adult lifecycle stages. Full 1H and 13C NMR-mediated structural elucidation of the two most active triterpenoids revealed that a tetracyclic steroid-like nucleus core and a lactone side chain are associated with the observed anthelmintic effects. When compared to representative mammalian cell lines (MDBK and HepG2), the most potent triterpenoid (700015; anthelmintic EC50s range from 0.7 μM–15.6 μM) displayed anthelmintic selectivity (selectivity indices for F. hepatica: 13 for newly excysted juveniles, 46 for immature flukes, 2 for mature flukes; selectivity indices for S. mansoni: 14 for schistosomula, 9 for immature flukes, 4 for adult males and 3 for adult females) and induced severe disruption of surface membranes in both liver and blood flukes. S. mansoni egg production, a process responsible for pathology in schistosomiasis, was also severely inhibited by 700015. Together, our results describe the structural elucidation of a novel broad acting anthelmintic triterpenoid and support further investigations developing this compound into more potent analogues for the control of both fasciolosis and schistosomiasis. Abies species contain anthelmintic phytochemical triterpenoids. The triterpenoid 700015 affects larval, juvenile and adult fluke viabilities. 700015 is moderately selective against both fluke species.
Collapse
|
23
|
Identification of (4-(9H-fluoren-9-yl) piperazin-1-yl) methanone derivatives as falcipain 2 inhibitors active against Plasmodium falciparum cultures. Biochim Biophys Acta Gen Subj 2018; 1862:2911-2923. [PMID: 30253205 DOI: 10.1016/j.bbagen.2018.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/19/2018] [Accepted: 09/19/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Falcipain 2 (FP-2) is the hemoglobin-degrading cysteine protease of Plasmodium falciparum most extensively targeted to develop novel antimalarials. However, no commercial antimalarial drugs based on FP-2 inhibition are available yet due to the low selectivity of most FP-2 inhibitors against the human cysteine proteases. METHODS A structure-based virtual screening (SVBS) using Maybridge HitFinder™ compound database was conducted to identify potential FP-2 inhibitors. In vitro enzymatic and cell-growth inhibition assays were performed for the top-scoring compounds. Docking, molecular dynamics (MD) simulations and free energy calculations were employed to study the interaction of the best hits with FP-2 and other related enzymes. RESULTS AND CONCLUSIONS Two hits based on 4-(9H-fluoren-9-yl) piperazin-1-yl) methanone scaffold, HTS07940 and HTS08262, were identified as inhibitors of FP-2 (half-maximal inhibitory concentration (IC50) = 64 μM and 14.7 μM, respectively) without a detectable inhibition against the human off-target cathepsin K (hCatK). HTS07940 and HTS08262 inhibited the growth of the multidrug-resistant P. falciparum strain FCR3 in culture (half-maximal inhibitory concentrations (IC50) = 2.91 μM and 34 μM, respectively) and exhibited only moderate cytotoxicity against HeLa cells (Half-maximal cytotoxic concentration (CC50) = 133 μM and 350 μM, respectively). Free energy calculations reproduced the experimental affinities of the hits for FP-2 and explained the selectivity with respect to hCatK. GENERAL SIGNIFICANCE To the best of our knowledge, HTS07940 stands among the most selective FP-2 inhibitors identified by SBVS reported so far, displaying moderate antiplasmodial activity and low cytotoxicity against human cells. Hence, this compound constitutes a promising lead for the design of more potent and selective FP-2 inhibitors.
Collapse
|
24
|
Wang MY, Liang JW, Olounfeh KM, Sun Q, Zhao N, Meng FH. A Comprehensive In Silico Method to Study the QSTR of the Aconitine Alkaloids for Designing Novel Drugs. Molecules 2018; 23:E2385. [PMID: 30231506 PMCID: PMC6225272 DOI: 10.3390/molecules23092385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 12/22/2022] Open
Abstract
A combined in silico method was developed to predict potential protein targets that are involved in cardiotoxicity induced by aconitine alkaloids and to study the quantitative structure⁻toxicity relationship (QSTR) of these compounds. For the prediction research, a Protein-Protein Interaction (PPI) network was built from the extraction of useful information about protein interactions connected with aconitine cardiotoxicity, based on nearly a decade of literature and the STRING database. The software Cytoscape and the PharmMapper server were utilized to screen for essential proteins in the constructed network. The Calcium-Calmodulin-Dependent Protein Kinase II alpha (CAMK2A) and gamma (CAMK2G) were identified as potential targets. To obtain a deeper insight on the relationship between the toxicity and the structure of aconitine alkaloids, the present study utilized QSAR models built in Sybyl software that possess internal robustness and external high predictions. The molecular dynamics simulation carried out here have demonstrated that aconitine alkaloids possess binding stability for the receptor CAMK2G. In conclusion, this comprehensive method will serve as a tool for following a structural modification of the aconitine alkaloids and lead to a better insight into the cardiotoxicity induced by the compounds that have similar structures to its derivatives.
Collapse
Affiliation(s)
- Ming-Yang Wang
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Jing-Wei Liang
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | | | - Qi Sun
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Nan Zhao
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
25
|
A new antitrypanosomal alkaloid from the Red Sea marine sponge Hyrtios sp. J Antibiot (Tokyo) 2018; 71:1036-1039. [PMID: 30181571 DOI: 10.1038/s41429-018-0092-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/04/2018] [Indexed: 11/09/2022]
Abstract
The antitrypanosomally active crude extract of the sponge Hyrtios sp. was subjected to metabolomic analysis using liquid chromatography coupled with high resolution electrospray ionization mass spectrometry (LC-HR-ESIMS) for dereplication purposes. As a result, a new alkaloid, hyrtiodoline A (1), along with other four known compounds (2-5) were reported. The structures of compounds 1-5 were determined by spectroscopic analyses, including 1D and 2D nuclear magnetic resonance (NMR) and high-resolution electrospray ionization mass spectrometry (HRESI-MS) experiments, as well as comparison to the literature. We further investigated the antitrypanosomal activity of the five compounds, where compound 1 exhibited the most potent antitrypanosomal activity, with a half-maximal inhibitory concentration (IC50) value of 7.48 µM after 72 h.
Collapse
|
26
|
Acevedo CH, Scotti L, Scotti MT. In Silico Studies Designed to Select Sesquiterpene Lactones with Potential Antichagasic Activity from an In-House Asteraceae Database. ChemMedChem 2018; 13:634-645. [PMID: 29323468 DOI: 10.1002/cmdc.201700743] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/29/2017] [Indexed: 01/04/2023]
Abstract
Chagas disease is an endemic disease caused by Trypanosoma cruzi, which affects more than eight million people, mostly in the Americas. A search for new treatments is necessary to control and eliminate this disease. Sesquiterpene lactones (SLs) are an interesting group of secondary metabolites characteristic of the Asteraceae family that have presented a wide range of biological activities. From the ChEMBL database, we selected a diverse set of 4452, 1635, and 1322 structures with tested activity against the three T. cruzi parasitic forms: amastigote, trypomastigote, and epimastigote, respectively, to create random forest (RF) models with an accuracy of greater than 74 % for cross-validation and test sets. Afterward, a ligand-based virtual screen of the entire SLs of the Asteraceae database stored in SistematX (1306 structures) was performed. In addition, a structure-based virtual screen was also performed for the same set of SLs using molecular docking. Finally, using an approach combining ligand-based and structure-based virtual screening along with the equations proposed in this study to normalize the probability scores, we verified potentially active compounds and established a possible mechanism of action.
Collapse
Affiliation(s)
- Chonny Herrera Acevedo
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária - Castelo Branco III, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária - Castelo Branco III, João Pessoa, PB, Brazil
| | - Marcus Tullius Scotti
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Cidade Universitária - Castelo Branco III, João Pessoa, PB, Brazil
| |
Collapse
|
27
|
Mocan A, Zengin G, Mollica A, Uysal A, Gunes E, Crişan G, Aktumsek A. Biological effects and chemical characterization of Iris schachtii Markgr. extracts: A new source of bioactive constituents. Food Chem Toxicol 2018; 112:448-457. [DOI: 10.1016/j.fct.2017.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/31/2017] [Accepted: 08/04/2017] [Indexed: 12/25/2022]
|
28
|
Paladi CS, da Silva DAM, Motta PD, Garcia DM, Teixeira D, Longo-Maugéri IM, Katz S, Barbiéri CL. Treatment of Leishmania (Leishmania) Amazonensis-Infected Mice with a Combination of a Palladacycle Complex and Heat-Killed Propionibacterium acnes Triggers Protective Cellular Immune Responses. Front Microbiol 2017; 8:333. [PMID: 28321209 PMCID: PMC5337482 DOI: 10.3389/fmicb.2017.00333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
Palladacycle complex DPPE 1.2 was previously reported to inhibit the in vitro and in vivo infection by Leishmania (Leishmania) amazonensis. The aim of the present study was to compare the effect of DPPE 1.2, in association with heat-killed Propionibacterium acnes, on L. (L.) amazonensis infection in two mouse strains, BALB/c and C57BL/6, and to evaluate the immune responses of the treated animals. Foot lesions of L. (L.) amazonensis-infected mice were injected with DPPE 1.2 alone, or associated with P. acnes as an adjuvant. Analysis of T-cell populations in the treated mice and in untreated controls was performed by FACS. Detection of IFN-γ-secreting lymphocytes was carried out by an ELISPOT assay and active TGF-β was measured by means of a double-sandwich ELISA test. The treatment with DPPE 1.2 resulted in a significant reduction of foot lesion sizes and parasite burdens in both mouse strains, and the lowest parasite burden was found in mice treated with DPPE 1.2 plus P. acnes. Mice treated with DPPE 1.2 alone displayed a significant increase of TCD4+ and TCD8+ lymphocytes and IFN-γ secretion which were significantly higher in animals treated with DPPE 1.2 plus P. acnes. A significant reduction of active TGF-β was observed in mice treated with DPPE 1.2 alone or associated with P. acnes. Moreover, DPPE 1.2 associated to P. acnes was non-toxic to treated animals. The destruction of L. (L.) amazonensis by DPPE 1.2 was followed by host inflammatory responses which were exacerbated when the palladacycle complex was associated with P. acnes.
Collapse
Affiliation(s)
- Carolina S Paladi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Danielle A M da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Priscila D Motta
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Daniel M Garcia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Ieda M Longo-Maugéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Simone Katz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| | - Clara L Barbiéri
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo São Paulo, Brazil
| |
Collapse
|