1
|
Rehman NU, Rafiq K, Avula SK, Gibbons S, Csuk R, Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. PHYTOCHEMISTRY 2025; 229:114297. [PMID: 39401649 DOI: 10.1016/j.phytochem.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Here we report for the first time the entire 13C-NMR spectral assignments of 119 (out of 127) triterpenoids from the oleo-gum resins of the medicinally important genus Boswellia, which includes the culturally highly valuable Frankincense species. The complete 13C-NMR resonances of these triterpenoids isolated between 1998 and 2024 and their biological activities are presented. 13C-NMR spectroscopy is a highly powerful tool for the characterization of these bioactive natural products. The compounds are arranged according to their skeletons, i.e., ursane, oleanane, lupane, dammarane, and tirucallane triterpenes. This review will be a future reference for the identification of these compounds, which have key medicinal properties in the areas of cytotoxicity and inflammation.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Satya K Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
2
|
BABURAJ R, VEERABHADRAPPA RS, DAS K. Alpha Amyrin Nano-Emulsion Formulation from Stem Bark of Ficus Benghalensis and its Characterization for Neuro-Behavioral Studies. Turk J Pharm Sci 2024; 21:42-51. [PMID: 38528811 PMCID: PMC10982883 DOI: 10.4274/tjps.galenos.2023.11823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/13/2023] [Indexed: 03/27/2024]
Abstract
Objectives Alpha-amyrin (AA) is a pentacyclic triterpene that exhibits erratic gastrointestinal absorption and poor blood-brain barrier permeability. The study aims to isolate AA from the stem bark of Ficus benghalensis L. (Fb) (Moraceae), purify it, and formulate a nanoemulsion (NE) that may improve its bioavailability, characterization, and intranasal (IN) administration to Swiss albino mice to check its neurobehavioral effects in aluminum-induced neurotoxicity. Materials and Methods AA was isolated from the stem bark of Fb by Soxhlet extraction, purified by analytical methods, prepared chitosan-decorated NE of the same, and characterized. It was then administered through IN route to aluminum-treated Swiss albino mice for 28 days to check its effect on neurobehavioral parameters. Results IN delivery of chitosan-decorated AA, NE resulted in significant improvement in neurobehavioral parameters. It reduced the fall-off period in the rotarod test and the escape latency in the Morris water maze test, and animals showed improved learning and spatial memory in the elevated plus maze. The transfer latency of animals improved with treatment compared with the aluminum-induced groups, indicative of the neuroprotective role of the drug. Conclusion IN administration of AA, NE isolated from the stem bark of Fb improved neurobehavioral parameters in aluminum-induced neurotoxicity in Swiss albino mice.
Collapse
Affiliation(s)
- Ratna BABURAJ
- Krupanidhi College of Pharmacy, Department of Pharmacology, Bangalore, India
| | - Rajendra Sandur VEERABHADRAPPA
- Mallige College of Pharmacy, Department of Pharmacology and Department of Pharmacognosy and Natural Product Chemistry, Bangalore, India
| | - Kuntal DAS
- Mallige College of Pharmacy, Department of Pharmacology and Department of Pharmacognosy and Natural Product Chemistry, Bangalore, India
| |
Collapse
|
3
|
Gagné V, Boucher N, Desgagné-Penix I. Cannabis Roots: Therapeutic, Biotechnological and Environmental Aspects. Cannabis Cannabinoid Res 2024; 9:35-48. [PMID: 38252502 DOI: 10.1089/can.2023.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Since the legalization of recreational cannabis in Canada in 2018, the number of licenses for this crop has increased significantly, resulting in an increase in waste generated. Nevertheless, cannabis roots were once used for their therapeutic properties, indicating that they could be valued today rather than dismissed. This review will focus on both traditional therapeutic aspects and potential use of roots in modern medicine while detailing the main studies on active phytomolecules found in cannabis roots. The environmental impact of cannabis cultivation and current knowledge of the root-associated microbiome are also presented as well as their potential applications in biotechnology and phytoremediation. Thus, several high added-value applications of cannabis roots resulting from scientific advances in recent years can be considered to remove them from discarded residues.
Collapse
Affiliation(s)
- Valérie Gagné
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
| | - Nathalie Boucher
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, University of Québec at Trois-Rivières, Trois- Rivières, Québec, Canada
- Plant Biology Research Group, Trois-Rivières, Québec, Canada
| |
Collapse
|
4
|
de Britto Rosa MC, Ribeiro PR, de Oliveira Silva V, Selvati-Rezende DADC, da Silva TP, Souza FR, Cardoso MDG, Seixas JN, Andrade EF, Pardi V, Murata RM, Pereira LJ. Fatty acids composition and in vivo biochemical effects of Aleurites moluccana seed (Candlenut) in obese wistar rats. Diabetol Metab Syndr 2022; 14:80. [PMID: 35676689 PMCID: PMC9178887 DOI: 10.1186/s13098-022-00847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Candlenut (CN) has been used indiscriminately for weight loss. In vivo effects of CN in different doses are scarce. OBJECTIVE To evaluate the effects of CN ingestion in obese rats. DESIGN Thirty animals (obese and non-obese) received one of three different types of treatments: placebo, CN ingestion in a popular therapeutic regimen (8 days with oral administration of 0.2 mg/kg followed by 20 days with doses of 0.4 mg/kg), and ingestion of a doubled popular dose-called 2CN. Treatment was maintained for 28 days. RESULTS The fatty acid profile of CN indicated mainly linolelaidic and palmitoleic acids. Rats receiving CN and 2CN showed reduced plasmatic levels of glucose and lipoproteins (p < 0.05). A dose-dependent carcass fat reduction was observed (p < 0.05). Blood levels of aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) reduced with CN and increased with 2CN doses (p < 0.05). Alanine aminotransferase (ALT) and the atherogenic index remained similar among all treatments (p > 0.05). Hepatic vacuolation decreased with CN, but the 2CN dose produced mononuclear leucocyte infiltrate. CONCLUSIONS Although CN presented beneficial effects on the metabolism of rats, it also caused increased risk of liver damage.
Collapse
Affiliation(s)
| | - Paula Reis Ribeiro
- Veterinary Medicine Department, Universidade Federal de Lavras, Mail Box 3037, Lavras, Minas Gerais, Brazil
| | - Viviam de Oliveira Silva
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Mailbox 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | | | - Tácio Peres da Silva
- Agriculture Department, Universidade Federal de Lavras, Mail Box 3037, Lavras, Minas Gerais, Brazil
| | - Fernanda Rezende Souza
- Veterinary Medicine Department, Universidade Federal de Lavras, Mail Box 3037, Lavras, Minas Gerais, Brazil
| | - Maria das Graças Cardoso
- Chemistry Department, Universidade Federal de Lavras, Mail Box 3037, Lavras, Minas Gerais, Brazil
| | - Josilene Nascimento Seixas
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Mailbox 3037, Lavras, Minas Gerais, 37200-900, Brazil
| | - Eric Francelino Andrade
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Mailbox 3037, Lavras, Minas Gerais, 37200-900, Brazil
- Agrarian Sciences Institute, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Minas Gerais, 38610-000, Brazil
| | - Vanessa Pardi
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University (ECU), Greenville, NC, 27834, USA
| | - Ramiro Mendonça Murata
- Department of Foundational Sciences, School of Dental Medicine, East Carolina University (ECU), Greenville, NC, 27834, USA
| | - Luciano José Pereira
- Veterinary Medicine Department, Universidade Federal de Lavras, Mail Box 3037, Lavras, Minas Gerais, Brazil.
- Department of Health Sciences, Universidade Federal de Lavras (UFLA), Mailbox 3037, Lavras, Minas Gerais, 37200-900, Brazil.
| |
Collapse
|
5
|
Apoptotic, Anti-Inflammatory Activities and Interference with the Glucocorticoid Receptor Signaling of Fractions from Pistacia lentiscus L. var. chia Leaves. PLANTS 2022; 11:plants11070934. [PMID: 35406916 PMCID: PMC9002849 DOI: 10.3390/plants11070934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 01/09/2023]
Abstract
In this study acetonic extracts of leaves of Pistacia lentiscus L. var. chia (mastiha tree) grown in the south as well as in the north Chios Greek island were isolated and further fractionated to give three different polarity fractions: apolar, medium-polar, and polar. The isolated fractions were assessed as regards their main composition, cytotoxic, anti-inflammatory activities, and interference with the glucocorticoid receptor (GR) signaling, applying cytotoxic assay, luciferase assays, and Western blot analysis of apoptosis-, energy-, and inflammation-associated molecules. Differences in cell viability have been detected among different polarity leaf fractions as well as among fractions of different plant origin with polar fractions showing the highest cytotoxicity. Fractions-induced anti-inflammatory activities and suppressive effects on the dexamethasone (DEX)-induced GR transcriptional activation were unveiled. The partition protocol of leaves fractions applied uncovers the enhanced glucocorticoid-associated biological activities of the medium-polar fractions, which may be associated with their enrichment in the triterpenoids that showed structural similarity with the glucocorticoids. A reduction in GR protein levels is observed by the fraction which is shown to be associated with the medium polar-induced proteolytic degradation of the receptor. In addition, the enhanced cytotoxic, anti-inflammatory, and potential anti-glycemic activities of the fractions from the Southern P. lentiscus L. that exclusively produce the mastiha resin, is revealed, indicating that leaves fractions from mastiha tree, similarly to mastiha tree resin, may have the potential to be further analyzed for their potent applications in the pharmaceutical cosmetic and nutraceutical fields.
Collapse
|
6
|
de Oliveira LC, de Menezes DLB, da Silva VC, Lourenço EMG, Miranda PHS, da Silva MDJA, Lima ES, Júnior VFDV, Marreto RN, Converti A, Barbosa EG, de Lima ÁAN. In Silico Study, Physicochemical, and In Vitro Lipase Inhibitory Activity of α, β-Amyrenone Inclusion Complexes with Cyclodextrins. Int J Mol Sci 2021; 22:9882. [PMID: 34576044 PMCID: PMC8468659 DOI: 10.3390/ijms22189882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
α,β-amyrenone (ABAME) is a triterpene derivative with many biological activities; however, its potential pharmacological use is hindered by its low solubility in water. In this context, the present work aimed to develop inclusion complexes (ICs) of ABAME with γ- and β-cyclodextrins (CD), which were systematically characterized through molecular modeling studies as well as FTIR, XRD, DSC, TGA, and SEM analyses. In vitro analyses of lipase activity were performed to evaluate possible anti-obesity properties. Molecular modeling studies indicated that the CD:ABAME ICs prepared at a 2:1 molar ratio would be more stable to the complexation process than those prepared at a 1:1 molar ratio. The physicochemical characterization showed strong evidence that corroborates with the in silico results, and the formation of ICs with CD was capable of inducing changes in ABAME physicochemical properties. ICs was shown to be a stronger inhibitor of lipase activity than Orlistat and to potentiate the inhibitory effects of ABAME on porcine pancreatic enzymes. In conclusion, a new pharmaceutical preparation with potentially improved physicochemical characteristics and inhibitory activity toward lipases was developed in this study, which could prove to be a promising ingredient for future formulations.
Collapse
Affiliation(s)
- Luana Carvalho de Oliveira
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Danielle Lima Bezerra de Menezes
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Valéria Costa da Silva
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Estela Mariana Guimarães Lourenço
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Paulo Henrique Santana Miranda
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Márcia de Jesus Amazonas da Silva
- Biological Activity Laboratory, Pharmacy Department, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; (M.d.J.A.d.S.); (E.S.L.)
| | - Emerson Silva Lima
- Biological Activity Laboratory, Pharmacy Department, Federal University of Amazonas, Manaus 69077-000, AM, Brazil; (M.d.J.A.d.S.); (E.S.L.)
| | | | | | - Attilio Converti
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, I-16145 Genoa, Italy;
| | - Euzébio Guimaraes Barbosa
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| | - Ádley Antonini Neves de Lima
- Pharmacy Department, Federal University of Rio Grande do Norte, Natal 59012-570, RN, Brazil; (L.C.d.O.); (D.L.B.d.M.); (V.C.d.S.); (E.M.G.L.); (P.H.S.M.); (E.G.B.)
| |
Collapse
|
7
|
Neto SF, Prada AL, Achod LDR, Torquato HFV, Lima CS, Paredes-Gamero EJ, Silva de Moraes MO, Lima ES, Sosa EH, de Souza TP, Amado JRR. α-amyrin-loaded nanocapsules produce selective cytotoxic activity in leukemic cells. Biomed Pharmacother 2021; 139:111656. [PMID: 34243603 DOI: 10.1016/j.biopha.2021.111656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Amyrins are triterpenes that have attractive pharmacological potential; however, their low water solubility and erratic stomach absorption hinders their use as a drug. The aim of this paper was to develop a novel α-amyrin-loaded nanocapsule for intestinal delivery and evaluate, preliminarily, its cytotoxic ability against leukemic cells. MATERIAL AND METHODS Five nanocapsule formulations were designed by the solvent displacement-evaporation method. Poly-ε-caprolactone, Eudragit® E100, and Kollicoat® Mae 100 P were used as film-former materials. Particle size, polydispersity index (PdI), zeta potential, and the pH of all formulations were measured. The cytotoxic potential of the nanocapsules was evaluated in vitro using different leukemic lineages RESULTS: Nanocapsules coated with Kollicoat® Mae 100 P presented the smallest particle size (130 nm), the lowest zeta-potential (-38 mV), and the narrowest size distribution (PdI = 0.100). The entrapment efficiency was 65.47%, while the loading capacity was 2.40%. Nanocapsules release 100% of α-amyrin in 40 min (pH 7.4), by using a possible mechanism of swelling-diffusion. The formulation showed excellent on-shelf physicochemical stability during one year. Additionally, nanocapsules produced a selective cytotoxic effect on a human leukemia lineage Kasumi-1, an acute myeloid leukemia cell line, and produced cell death by apoptosis CONCLUSION: α-amyrin-loaded nanocapsules appear to be a promising nanoformulation that could be used against leukemia.
Collapse
Affiliation(s)
- Serafim Florentino Neto
- Laboratory of Innovation and Development in Pharmaceutical Technology (LIDETEF), Faculty of Pharmaceutical Sciences, Universidade Federal do Amazonas, Av. Rodrigo Octavio Ramos, 6200, Coroado, Manaus, AM CEP 69077-000, Brazil
| | - Ariadna Lafourcade Prada
- Laboratory of Innovation and Development in Pharmaceutical Technology (LIDETEF), Faculty of Pharmaceutical Sciences, Universidade Federal do Amazonas, Av. Rodrigo Octavio Ramos, 6200, Coroado, Manaus, AM CEP 69077-000, Brazil
| | - Leonardo Domingo Rosales Achod
- Laboratory of Innovation and Development in Pharmaceutical Technology (LIDETEF), Faculty of Pharmaceutical Sciences, Universidade Federal do Amazonas, Av. Rodrigo Octavio Ramos, 6200, Coroado, Manaus, AM CEP 69077-000, Brazil
| | | | - Cauê Santos Lima
- Biochemistry Department, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, CEP 04044-020, Brazil
| | - Edgar Julian Paredes-Gamero
- Biochemistry Department, Universidade Federal de São Paulo, Rua Três de Maio 100, São Paulo, SP, CEP 04044-020, Brazil; Pharmaceutical Sciences Post-Graduation Program, Faculty of Pharmacy, Food and Nutrition, Universidade Federal do Mato Grosso do Sul, Av. Costa e Silva, Pioneiros, Campo Grande, MS CEP 79070-900, Brazil
| | - Maria Oneide Silva de Moraes
- Thematic Microscopy and Nanotechnology Laboratory (LTMN), Instituto Nacional de Pesquisas da Amazônia (INPA), Av. Bem Te ví, 8-406. Petrópolis, Manaus, AM 69067-001, Brazil
| | - Emerson Silva Lima
- Laboratory of Innovation and Development in Pharmaceutical Technology (LIDETEF), Faculty of Pharmaceutical Sciences, Universidade Federal do Amazonas, Av. Rodrigo Octavio Ramos, 6200, Coroado, Manaus, AM CEP 69077-000, Brazil
| | - Edgar Hernandez Sosa
- Department of Biochemistry & Molecular Biology, Dalhousie University, Sir Charles Tupper Medical Building, 5850 College Street, Halifax, Nova Scotia B3H 4R2, Canada
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology (LIDETEF), Faculty of Pharmaceutical Sciences, Universidade Federal do Amazonas, Av. Rodrigo Octavio Ramos, 6200, Coroado, Manaus, AM CEP 69077-000, Brazil
| | - Jesus Rafael Rodriguez Amado
- Laboratory of Pharmaceutical Technology (LTF), Faculty of Pharmacy, Food and Nutrition, Universidade Federal do Mato Grosso do Sul, Av. Costa e Silva, Pioneiros, Campo Grande, MS CEP 79070-900, Brazil.
| |
Collapse
|
8
|
Shim H, Sah H. Assessment of Residual Solvent and Drug in PLGA Microspheres by Derivative Thermogravimetry. Pharmaceutics 2020; 12:pharmaceutics12070626. [PMID: 32635484 PMCID: PMC7407183 DOI: 10.3390/pharmaceutics12070626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Thermogravimetry does not give specific information on residual organic solvents in polymeric matrices unless it is hyphenated with the so-called evolved gas analysis. The purpose of this study was to apply, for the first time, derivative thermogravimetry (DTG) to characterize a residual solvent and a drug in poly-d,l-lactide-co-glycolide (PLGA) microspheres. Ethyl formate, an ICH class 3 solvent, was used to encapsulate progesterone into microspheres. DTG provided a distinct peak, displaying the onset and end temperatures at which ethyl formate started to evolve from to where it completely escaped out of the microspheres. DTG also gave the area and height of the solvent peak, as well as the temperature of the highest mass change rate of the microspheres. These derivative parameters allowed for the measurement of the amount of residual ethyl formate in the microspheres. Interestingly, progesterone affected not only the residual solvent amount but also these derivative parameters. Another intriguing finding was that there was a linear relationship between progesterone content and the peak height of ethyl formate. The residual solvent data calculated by DTG were quite comparable to those measured by gas chromatography. In summary, DTG could be an efficient and practical quality control tool to evaluate residual solvents and drugs in various polymeric matrices.
Collapse
|
9
|
Yam-Puc A, Santana-Hernández AA, Yah-Nahuat PN, Ramón-Sierra JM, Cáceres-Farfán MR, Borges-Argáez RL, Ortiz-Vázquez E. Pentacyclic triterpenes and other constituents in propolis extract from Melipona beecheii collected in Yucatan, México. REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2019. [DOI: 10.1016/j.bjp.2019.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|