1
|
Polyphenol Composition and Antioxidant Activity of Tapirira guianensis Aubl. (Anarcadiaceae) Leaves. PLANTS 2022; 11:plants11030326. [PMID: 35161307 PMCID: PMC8837918 DOI: 10.3390/plants11030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/23/2022]
Abstract
Tapirira guianensis (Anacardiaceae) is a natural resource from the Amazonian Forest and is locally known in French Guiana as “loussé” (creole), “tata pilili” (wayãpi), or “ara” (palikur). The tree is used by indigenous populations for medicinal purposes. To increase the potential of this tree for cosmetic, agro-food, or pharmaceutical uses, extracts were obtained through ultrasound-assisted extraction (UAE) from T. guianensis leaves using various extraction solvents such as water, methanol, and methanol–water (85/15; v/v). Chemical (DPPH, TEAC, ORAC) tests were applied to assess the anti-radical potential of these extracts. The polyphenol contents were determined by spectrophotometric (UV/Visible) and by means of chromatographic (UPLC-DAD-ESI-IT-MSn) methods. Tapirira guianensis leaf hydromethanolic extract produced the highest polyphenol content and exhibited antiradical activities in chemical assays (DPPH, TEAC, and ORAC) similar to (or higher than) those of a well-known antiradical plant, green tea. In T. guianensis, two classes of polyphenols were evidenced: (1) galloylquinic acids (identified for the first time in the studied species) and (2) flavonols and flavanols (present in small amounts). Flavonols seemed to play a major role in the antioxidant activity of DPPH. These findings provide a rationale for the use of T. guianensis in traditional medicine and to pave the way for seeking new biological properties involving this Amazonian tree.
Collapse
|
2
|
Kato NN, Stavis VK, Boaretto AG, Castro DTH, Alves FM, de Picoli Souza K, Dos Santos EL, Silva DB, Carollo CA. Application of the metabolomics approach to the discovery of active compounds from Brazilian trees against resistant human melanoma cells. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:992-1002. [PMID: 33634541 DOI: 10.1002/pca.3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/16/2021] [Indexed: 06/12/2023]
Abstract
INTRODUCTION The chemical diversity of plants plays an essential role in the development of new drugs. However, new bioactive compound identification and isolation are challenging due to the complexity and time-consuming nature of the traditional process. Recently, alternative strategies have become popular, such as the statistical approach to correlate compounds with biological activities, overcoming bottlenecks in bioactive natural product research. OBJECTIVE We aimed to determine bioactive compounds against resistant human melanoma cells from leaves of Aspidosperma subincanum, Copaifera langsdorffii, Coussarea hydrangeifolia, Guarea guidonea and Tapirira guianensis, using a metabolomics approach. MATERIAL AND METHODS The extracts and fractions were obtained by accelerated solvent extraction (ASE) and tested against resistant melanoma cells SK-MEL-28 and SK-MEL-103. Chemical analysis was performed by high-performance diode array detector tandem mass spectrometry (HPLC-DAD-MS/MS). Chemical and biological data were analysed through univariate and multivariate analysis. RESULTS The species present high chemical diversity, including indole alkaloids, glycosylated flavonoids, galloylquinic acid derivatives, cinnamic acid derivatives, and terpenes. The ASE fractionation separated the compounds according to the physicochemical properties; only C. langsdorffii and T. guianensis extracts were active. Both results from the chemical profile and the biological assay were treated using a metabolomics approach to identify the contribution of different classes of secondary metabolites in the viability of human melanoma cells. The analyses showed the metabolites from C. langsdorffii and T. guianensis, such as polyphenols and terpenes, were the main compounds correlated with the biological response. CONCLUSION These findings afford alternative pathways that are trustworthy and less time-consuming to identify new bioactive compounds against multidrug-resistant human melanoma cells.
Collapse
Affiliation(s)
- Natália Naomi Kato
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Vanessa Katherinne Stavis
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Amanda Galdi Boaretto
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - David Tsuyoshi Hiramatsu Castro
- Grupo de Estudos Biotecnologia e Bioprospecção Aplicados ao Metabolismo (GEBBAM), Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Flávio Macedo Alves
- Laboratório de Botânica, Instituto de Biociências (INBIO), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Kely de Picoli Souza
- Grupo de Estudos Biotecnologia e Bioprospecção Aplicados ao Metabolismo (GEBBAM), Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Edson Lucas Dos Santos
- Grupo de Estudos Biotecnologia e Bioprospecção Aplicados ao Metabolismo (GEBBAM), Universidade Federal da Grande Dourados (UFGD), Dourados, MS, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas (LaPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS, Brazil
| |
Collapse
|
3
|
Secondary Metabolites of Plants as Modulators of Endothelium Functions. Int J Mol Sci 2021; 22:ijms22052533. [PMID: 33802468 PMCID: PMC7959468 DOI: 10.3390/ijms22052533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
According to the World Health Organization, cardiovascular diseases are the main cause of death worldwide. They may be caused by various factors or combinations of factors. Frequently, endothelial dysfunction is involved in either development of the disorder or results from it. On the other hand, the endothelium may be disordered for other reasons, e.g., due to infection, such as COVID-19. The understanding of the role and significance of the endothelium in the body has changed significantly over time—from a simple physical barrier to a complex system encompassing local and systemic regulation of numerous processes in the body. Endothelium disorders may arise from impairment of one or more signaling pathways affecting dilator or constrictor activity, including nitric oxide–cyclic guanosine monophosphate activation, prostacyclin–cyclic adenosine monophosphate activation, phosphodiesterase inhibition, and potassium channel activation or intracellular calcium level inhibition. In this review, plants are summarized as sources of biologically active substances affecting the endothelium. This paper compares individual substances and mechanisms that are known to affect the endothelium, and which subsequently may cause the development of cardiovascular disorders.
Collapse
|
4
|
Calassara LL, Pinto SC, Condack CPM, Leite BF, Nery LCDES, Tinoco LW, Aguiar FA, Leal ICR, Martins SM, Silva LLD, Raimundo JM, Muzitano MF. Isolation and characterization of flavonoids from Tapirira guianensis leaves with vasodilatory and myeloperoxidase-inhibitory activities. Nat Prod Res 2020; 35:5480-5483. [PMID: 32586127 DOI: 10.1080/14786419.2020.1784170] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The aim of this study was to perform the isolation and characterization of vasodilatory flavonoids from Tapirira guianensis Aubl. (Annacardiaceae) leaves. In this context, ethyl acetate fraction (EA fraction) was obtained and subjected to fractionation batches by HSCCC affording: myricetin 3-O-α-L-rhamnopyranoside (myricitrin, 1); quercetin 3-O-(6"-O-galloyl)-β-D-galactopyranoside (2); quercetin 3-O-α-L-arabinofuranoside (avicularin, 3); and quercetin 3-O-α-L-rhamnopyranoside (quercitrin, 4). Myricitrin (1) induced a relaxation of 56.07 ± 13.04% at 300 μM (P < 0.05; n = 5), indicating that this flavonoid contributes to the vasodilatory activity of EA fraction. In addition, all EA fraction flavonoids were evaluated for their capacity of inhibiting myeloperoxidase activity and flavonoid (2) (IC50 1.0 ± 0.3 µM) was the strongest peroxidase inhibitor. In conclusion, it was possible to verify that myricitrin together with quercetin are mainly responsible for vasodilatory potential, besides flavonoid 2 for myeloperoxidase inhibition. Together these flavonoids seem to be responsible for Tapirira guianensis cardiovascular effects.
Collapse
Affiliation(s)
- Laura L Calassara
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | - Shaft C Pinto
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | - Cecília P M Condack
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | - Beatriz F Leite
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | - Ludmilla C do E S Nery
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | - Luzineide W Tinoco
- Instituto de Pesquisa de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, RJ, Brazil
| | - Fernando A Aguiar
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil.,Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Núcleo de Pesquisa em Produtos Naturais e Sintéticos, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ivana C R Leal
- Laboratório de Produtos Naturais e Ensaios Biológicos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Centro de Ciências da Saúde, Rio de Janeiro, RJ, Brazil
| | - Samantha M Martins
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | - Leandro L da Silva
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | - Juliana M Raimundo
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| | - Michelle F Muzitano
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Campus Macaé, Macaé, RJ, Brazil
| |
Collapse
|