1
|
Yadav M, Singh VP. Glutathione Peroxidase-like Antioxidant Activity of 1,3-Benzoselenazoles: Synthesis and In Silico Molecular Docking Studies as Pancreatic Lipase Inhibitors. J Org Chem 2023; 88:16934-16948. [PMID: 38008916 DOI: 10.1021/acs.joc.3c01762] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2023]
Abstract
The synthesis of 1,3-benzoselenazoles was achieved by the reaction of corresponding bis[3-amino-N-(p-tolyl)benzamide-2-yl] diselenide, bis[3-amino-N-(4-methoxyphenyl)benzamide-2-yl] diselenide, and bis[3-amino-N-(4-(dimethylamino)phenyl) benzamide-2-yl] diselenide with aryl aldehydes. The 1,3-benzoselenazoles continued to exist as planar molecules due to the presence of secondary Se···O interactions as revealed by the single-crystal X-ray analysis. The presence of secondary Se···O interactions in 1,3-benzoselenazoles was confirmed using natural bond orbital (NBO) and atoms in molecules (AIM) calculations. Nucleus-independent chemical shift (NICS) values suggested the presence of aromatic character in a five-membered benzoselenazole heterocyclic ring. The glutathione peroxidase (GPx)-like antioxidant activity of all 1,3-benzoselenazoles was assessed using a thiophenol assay, exhibiting greater antioxidant activity than Ph2Se2 used as a reference. The most active catalyst carrying a strong electron-donating group (-NMe2) at the ortho-position to the benzoselenazole ring was further investigated at different concentrations of thiophenol, H2O2, and 1,3-benzoselenazoles as catalyst for determining their catalytic parameters. Moreover, the potential applications of all 1,3-benzoselenazoles against pancreatic lipase (PL) have been identified using in silico interactions between the active sites of the 1LPB protein as evaluated using a molecular docking study.
Collapse
Affiliation(s)
- Manisha Yadav
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| | - Vijay P Singh
- Department of Chemistry & Centre of Advanced Studies in Chemistry, Panjab University, Sector-14, Chandigarh 160 014, India
| |
Collapse
|
2
|
Fiorito S, Epifano F, Palumbo L, Collevecchio C, Genovese S. A revised version of the Iwaoka’s assay: Application of hyphenated techniques. J Pharm Biomed Anal 2022; 212:114652. [DOI: 10.1016/j.jpba.2022.114652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 01/04/2023]
|
3
|
Jagdev K, Tanini D, Lownes JW, Figliola C, Male L, Capperucci A, Grainger RS. Glutathione peroxidase mimics based on conformationally-restricted, peri-like, 4,5-disubstituted fluorene dichalcogenides. Org Biomol Chem 2021; 19:10565-10569. [PMID: 34846405 DOI: 10.1039/d1ob02153b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutathione peroxidase (GPx) regulates cellular peroxide levels through glutathione oxidation. GPx-mimics based on 4,5-disubstituted fluorene diselenides, their oxides, and ditellurides show catalytic activities consistent with conformational restriction about the dichalcogen bond.
Collapse
Affiliation(s)
- Kesar Jagdev
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Damiano Tanini
- University of Florence, Department of Chemistry "Ugo Shiff", Via della Lastruccia 13, 1-50019 Sesto Fiorentino, Italy
| | - Jack W Lownes
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Carlotta Figliola
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Antonella Capperucci
- University of Florence, Department of Chemistry "Ugo Shiff", Via della Lastruccia 13, 1-50019 Sesto Fiorentino, Italy
| | - Richard S Grainger
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Upadhyay A, Kumar Jha R, Batabyal M, Dutta T, Koner AL, Kumar S. Janus -faced oxidant and antioxidant profiles of organo diselenides. Dalton Trans 2021; 50:14576-14594. [PMID: 34590653 DOI: 10.1039/d1dt01565f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To date, organoseleniums are pre-eminent for peroxide decomposition and radical quenching antioxidant activities. On the contrary, here, a series of Janus-faced aminophenolic diselenides have been prepared from substituted 2-iodoaniline and selenium powder using copper-catalyzed methodology. Subsequently, condensation with substituted salicylaldehyde afforded the Schiff base, which on reduction, yielded the desired substituted aminophenolic diselenides in 72%-88% yields. The generation of reactive oxygen species (ROS) from oxygen gas by the synthesized aminophenolic diselenides was studied by analyzing the oxidation of dichlorofluorescein diacetate (DCFDA) dye and para-nitro-thiophenol by fluorescence and UV-Visible spectroscopic methods. Furthermore, density functional theory calculations and crystal structure analysis revealed the role of functional amine and hydroxyl sites present in the Janus-faced organoselenium catalyst for the activation of molecular oxygen, where NH and phenolic groups bring the oxygen molecule close to the catalyst by N-H⋯O and O-H⋯O intermolecular interactions. Additionally, these functionalities stabilize the selenium-centered radical in the formed transition states. Antioxidant activities of the synthesized diselenides have been explored as the catalyst for the decomposition of hydrogen peroxide using benzenethiol sacrificial co-reductant by a well-established thiol assay. Radical quenching antioxidant activity was studied by the quenching of DPPH radicals at 516 nm by UV-Visible spectroscopy. The structure activity correlation suggests that the electron-rich phenol and electron-rich and sterically hindered selenium center enhance the oxidizing property of the aminophenolic diselenides. Janus-faced diselenides were also evaluated for their cytotoxic effect on HeLa cancer cells via MTT assay, which suggests that the compounds are effective at 15-18 μM concentration against cancer cells. Moreover, the combination with therapeutic anticancer drugs Erlotinib and Doxorubicin showed promising cytotoxicity at the nanomolar concentration (8-28 nM), which is sufficient to suppress the growth of the cancer cells.
Collapse
Affiliation(s)
- Aditya Upadhyay
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Raushan Kumar Jha
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Monojit Batabyal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Tanoy Dutta
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Apurba Lal Koner
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| | - Sangit Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal Bhauri By-pass Road, Bhopal 462066, Madhya Pradesh, India.
| |
Collapse
|
5
|
Barcellos AM, Sacramento M, da Costa GP, Perin G, João Lenardão E, Alves D. Organoboron compounds as versatile reagents in the transition metal-catalyzed C–S, C–Se and C–Te bond formation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Chuai H, Zhang SQ, Bai H, Li J, Wang Y, Sun J, Wen E, Zhang J, Xin M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur J Med Chem 2021; 223:113621. [PMID: 34217061 DOI: 10.1016/j.ejmech.2021.113621] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential micronutrient of organism and has important function. It participates in the functions of selenoprotein in several manners. In recent years, Se has attracted much attention because of its therapeutic potential against several diseases. Many natural and synthetic organic Se-containing compounds were studied and explored for the treatment of cancer and other diseases. Studies have showed that incorporation of Se atom into small molecules significantly enhanced their bioactivities. In this paper, according to different applications and structural characteristics, the research progress and therapeutic application of Se-containing compounds are reviewed, and more than 110 Se-containing compounds were selected as representatives which showed potent activities such as anticancer, antioxidant, antifibrolytic, antiparasitic, antibacterial, antiviral, antifungal and central nervous system related effects. This review is expected to provide a basis for further study of new promising Se-containing compounds.
Collapse
Affiliation(s)
- Hongyan Chuai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - San-Qi Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Huanrong Bai
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiyu Li
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Yang Wang
- Henan Xibaikang Health Industry Co., Ltd, Jiyuan, Henan, 459006, PR China
| | - Jiajia Sun
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Ergang Wen
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiye Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China
| | - Minhang Xin
- Department of Medicinal Chemistry, School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 West Yanta Road, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
7
|
Sacramento M, Costa GP, Barcellos AM, Perin G, Lenardão EJ, Alves D. Transition-metal-free C-S, C-Se, and C-Te Bond Formation from Organoboron Compounds. CHEM REC 2021; 21:2855-2879. [PMID: 33735500 DOI: 10.1002/tcr.202100021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/23/2022]
Abstract
The present review describes the successful application of organoboron compounds in transition-metal-free C-S, C-Se, and C-Te bond formations. We presented studies regarding these C-Chalcogen bond formations using organoboron reagents, such as boronic acids, boronic esters, borate anions, and several sources of chalcogen atoms/moieties. Moreover, a broad range of transition-metal-free approaches to synthesize sulfides, selenides, and tellurides were described using conventional heating methods, which are sometimes green since they use green solvents, safe reagents, among others. Furthermore, protocols using alternative energy sources, including ultrasound, microwave irradiation, photocatalysis, and electrolytic processes, were also shown to be suitable. These protocols were applied to prepare a broad scope of functionalized chalcogenides with high molecular diversity. These studies and their proposed mechanisms were also reported herein in addition to the reuse of reaction promoters.
Collapse
Affiliation(s)
- Manoela Sacramento
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gabriel P Costa
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Angelita M Barcellos
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Eder J Lenardão
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa - LASOL, CCQFA, Universidade Federal de Pelotas - UFPel, P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| |
Collapse
|
8
|
Glutathione peroxidase-like functions of 1,2-diselenane-4,5-diol and its amphiphilic derivatives: Switchable catalytic cycles depending on peroxide substrates. Bioorg Med Chem 2021; 29:115866. [DOI: 10.1016/j.bmc.2020.115866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
|
9
|
Reddy KM, Mugesh G. Modelling the Inhibition of Selenoproteins by Small Molecules Using Cysteine and Selenocysteine Derivatives. Chemistry 2019; 25:8875-8883. [DOI: 10.1002/chem.201901363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Kishorkumar M. Reddy
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| | - Govindasamy Mugesh
- Department of Inorganic and Physical ChemistryIndian Institute of Science Bangalore 560012 India
| |
Collapse
|
10
|
Goulart HA, Neto JSS, Barcellos AM, Barcellos T, Silva MS, Alves D, Jacob RG, Lenardão EJ, Perin G. Synthesis of 5
H
‐Selenopheno[3,2‐
c
]isochromen‐5‐ones Promoted by Dialkyl Diselenides and Oxone®. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900288] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Helen A. Goulart
- LASOL-CCQFA-Universidade Federal de Pelotas-UFPel P.O. Box 354-96010-900 Pelotas, RS Brazil
| | - José S. S. Neto
- LASOL-CCQFA-Universidade Federal de Pelotas-UFPel P.O. Box 354-96010-900 Pelotas, RS Brazil
| | - Angelita M. Barcellos
- LASOL-CCQFA-Universidade Federal de Pelotas-UFPel P.O. Box 354-96010-900 Pelotas, RS Brazil
| | - Thiago Barcellos
- Laboratory of Biotechnology of Natural and Synthetic ProductsUniversidade de Caxias do Sul, Caxias do Sul, RS Brazil
| | - Márcio S. Silva
- LASOL-CCQFA-Universidade Federal de Pelotas-UFPel P.O. Box 354-96010-900 Pelotas, RS Brazil
| | - Diego Alves
- LASOL-CCQFA-Universidade Federal de Pelotas-UFPel P.O. Box 354-96010-900 Pelotas, RS Brazil
| | - Raquel G. Jacob
- LASOL-CCQFA-Universidade Federal de Pelotas-UFPel P.O. Box 354-96010-900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- LASOL-CCQFA-Universidade Federal de Pelotas-UFPel P.O. Box 354-96010-900 Pelotas, RS Brazil
| | - Gelson Perin
- LASOL-CCQFA-Universidade Federal de Pelotas-UFPel P.O. Box 354-96010-900 Pelotas, RS Brazil
| |
Collapse
|
11
|
Arai K, Osaka Y, Haneda M, Sato Y. Cyclic telluride reagents with remarkable glutathione peroxidase-like activity for purification-free synthesis of highly pure organodisulfides. Catal Sci Technol 2019. [DOI: 10.1039/c9cy00562e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyclic tellurides enable rapid and quantitative oxidation of various organothiols through a GPx-like catalytic cycle in a biphasic microflow system.
Collapse
Affiliation(s)
- Kenta Arai
- Department of Chemistry
- School of Science
- Tokai University
- Hiratsuka-shi
- Japan
| | - Yuui Osaka
- Department of Chemistry
- School of Science
- Tokai University
- Hiratsuka-shi
- Japan
| | - Masahiro Haneda
- Department of Chemistry
- School of Science
- Tokai University
- Hiratsuka-shi
- Japan
| | - Yuumi Sato
- Department of Chemistry
- School of Science
- Tokai University
- Hiratsuka-shi
- Japan
| |
Collapse
|
12
|
Tanini D, Tiberi C, Gellini C, Salvi PR, Capperucci A. A Straightforward Access to Stable β-Functionalized Alkyl Selenols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800602] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Damiano Tanini
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Caterina Tiberi
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Cristina Gellini
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Pier Remigio Salvi
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Antonella Capperucci
- Dipartimento di Chimica “Ugo Schiff”; Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| |
Collapse
|
13
|
Kheirabadi R, Izadyar M. Antioxidant activity of selenenamide-based mimic as a function of the aromatic thiols nucleophilicity, a DFT-SAPE model. Comput Biol Chem 2018; 75:213-221. [PMID: 29803966 DOI: 10.1016/j.compbiolchem.2018.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 10/16/2022]
Abstract
The mechanism of action of the selenenamide 1 as a mimic of the glutathione peroxidase (GPx) was investigated by the density functional theory. The solvent-assisted proton exchange procedure was applied to model the catalytic behavior and antioxidant activity of this mimic. To have an insight into the charge transfer effect, different aromatic thiols, including electron donating substituents on the phenyl ring were considered. The catalytic behavior of the selenenamide was modeled in a four-step mechanism, described by the oxidation of the mimic, the reduction of the obtained product, selenoxide, the reduction of the selenenylsulfide and dehydration of selenenic acid. On the basis of the activation parameters, the final step of the proposed mechanism is the rate determining states of the catalytic cycle. Turnover frequency (TOF) analysis showed that the electron donating groups at the para-position of the phenyl ring of the PhSH do not affect the catalytic activity of the selenenamide in contrast to p-methyl thiophenol which indicates the highest nucleophilicity. The evaluation of the electronic contribution of the various donating groups on the phenyl ring of the aromatic thiols shows that the antioxidant activity of the selenenamide sufficiently increases in the presence of the electron-donating substitutions. Finally, the charge transfer process at the rate-determining state was investigated based on the natural bond orbital analysis.
Collapse
Affiliation(s)
- Ramesh Kheirabadi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, International Campus, Mashhad, Iran
| | - Mohammad Izadyar
- Computational Chemistry Research Lab., Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| |
Collapse
|
14
|
Celebrating Two Centuries of Research in Selenium Chemistry: State of the Art and New Prospective. Molecules 2017; 22:molecules22122124. [PMID: 29207462 PMCID: PMC6149956 DOI: 10.3390/molecules22122124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023] Open
Abstract
In 2017, the 200th anniversary of the discovery of selenium was celebrated. In 1817, the Swedish chemists, Berzelius and Gahn, on roasting 200 kg of sulfur from a pyrite from the Falun mine, obtained about 3 g of a precipitate that they first wrongly identified as tellurium. Berzelius doubted this result and repeated the analysis some months later realizing that a new element was in his hands and he named this element Selenium (Greek: Selene, moon) in consideration of its resemblance to Tellurium (Latin: Tellus, earth). Several events were organized in the year for this special celebration and this Special Issue would like to be an additional contribution to the success of a research that, especially during the last decades, rapidly grew in different fields: synthesis, medicinal chemistry, biology, material, and environment. These studies are strongly characterized by multi- and interdisciplinary connections, and, for this reason, we collected here contributions coming from different areas and disciplines, not exclusively synthetic organic chemistry.
Collapse
|