1
|
Ibrahim AG, Hamodin AG, Fouda A, Eid AM, Elgammal WE. Fabrication and characterization of a new eco-friendly sulfonamide-chitosan derivative with enhanced antimicrobial and selective cytotoxicity properties. Sci Rep 2024; 14:10228. [PMID: 38702418 PMCID: PMC11068750 DOI: 10.1038/s41598-024-60456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Chitosan (CH) exhibits low antimicrobial activity. This study addresses this issue by modifying the chitosan with a sulfonamide derivative, 3-(4-(N,N-dimethylsulfonyl)phenyl)acrylic acid. The structure of the sulfonamide-chitosan derivative (DMS-CH) was confirmed using Fourier transform infrared spectroscopy and Nuclear magnetic resonance. The results of scanning electron microscopy, thermal gravimetric analysis, and X-ray diffraction indicated that the morphology changed to a porous nature, the thermal stability decreased, and the crystallinity increased in the DMS-CH derivative compared to chitosan, respectively. The degree of substitution was calculated from the elemental analysis data and was found to be moderate (42%). The modified chitosan exhibited enhanced antimicrobial properties at low concentrations, with a minimum inhibitory concentration (MIC) of 50 µg/mL observed for B. subtilis and P. aeruginosa, and a value of 25 µg/mL for S. aureus, E. coli, and C. albicans. In the case of native chitosan, the MIC values doubled or more, with 50 µg/mL recorded for E. coli and C. albicans and 100 μg/mL recorded for B. subtilis, S. aureus, and P. aeruginosa. Furthermore, toxicological examinations conducted on MCF-7 (breast adenocarcinoma) cell lines demonstrated that DMS-CH exhibited greater toxicity (IC50 = 225.47 μg/mL) than pure CH, while still maintaining significant safety limits against normal lung fibroblasts (WI-38). Collectively, these results suggest the potential use of the newly modified chitosan in biomedical applications.
Collapse
Affiliation(s)
- Ahmed G Ibrahim
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, El-Nasr Road, Cairo, 11884, Egypt.
| | - Ahmed G Hamodin
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, El-Nasr Road, Cairo, 11884, Egypt
| | - Amr Fouda
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Eid
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Walid E Elgammal
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, El-Nasr Road, Cairo, 11884, Egypt
| |
Collapse
|
2
|
Iqbal Y, Ahmed I, Irfan MF, Chatha SAS, Zubair M, Ullah A. Recent advances in chitosan-based materials; The synthesis, modifications and biomedical applications. Carbohydr Polym 2023; 321:121318. [PMID: 37739510 DOI: 10.1016/j.carbpol.2023.121318] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/24/2023]
Abstract
The attention to polymer-based biomaterials, for instance, chitosan and its derivatives, as well as the techniques for using them in numerous scientific domains, is continuously rising. Chitosan is a decomposable naturally occurring polymeric material that is mostly obtained from seafood waste. Because of its special ecofriendly, biocompatible, non- toxic nature as well as antimicrobial properties, chitosan-based materials have received a lot of interest in the field of biomedical applications. The reactivity of chitosan is mainly because of the amino and hydroxyl groups in its composition, which makes it further fascinating for various uses, including biosensing, textile finishing, antimicrobial wound dressing, tissue engineering, bioimaging, gene, DNA and drug delivery and as a coating material for medical implants. This study is an overview of the different types of chitosan-based materials which now a days have been fabricated by applying different techniques and modifications that include etherification, esterification, crosslinking, graft copolymerization and o-acetylation etc. for hydroxyl groups' processes and acetylation, quaternization, Schiff's base reaction, and grafting for amino groups' reactions. Furthermore, this overview summarizes the literature from recent years related to the important applications of chitosan-based materials (i.e., thin films, nanocomposites or nanoparticles, sponges and hydrogels) in different biomedical applications.
Collapse
Affiliation(s)
- Yasir Iqbal
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, 38000, Pakistan
| | - Muhammad Faisal Irfan
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | | | - Muhammad Zubair
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Aman Ullah
- Lipid Utilization, Polymers/Materials Chemistry Group, Department of Agriculture Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada.
| |
Collapse
|
3
|
Shrestha R, Thenissery A, Khupse R, Rajashekara G. Strategies for the Preparation of Chitosan Derivatives for Antimicrobial, Drug Delivery, and Agricultural Applications: A Review. Molecules 2023; 28:7659. [PMID: 38005381 PMCID: PMC10674490 DOI: 10.3390/molecules28227659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Chitosan has received much attention for its role in designing and developing novel derivatives as well as its applications across a broad spectrum of biological and physiological activities, owing to its desirable characteristics such as being biodegradable, being a biopolymer, and its overall eco-friendliness. The main objective of this review is to explore the recent chemical modifications of chitosan that have been achieved through various synthetic methods. These chitosan derivatives are categorized based on their synthetic pathways or the presence of common functional groups, which include alkylated, acylated, Schiff base, quaternary ammonia, guanidine, and heterocyclic rings. We have also described the recent applications of chitosan and its derivatives, along with nanomaterials, their mechanisms, and prospective challenges, especially in areas such as antimicrobial activities, targeted drug delivery for various diseases, and plant agricultural domains. The accumulation of these recent findings has the potential to offer insight not only into innovative approaches for the preparation of chitosan derivatives but also into their diverse applications. These insights may spark novel ideas for drug development or drug carriers, particularly in the antimicrobial, medicinal, and plant agricultural fields.
Collapse
Affiliation(s)
- Rajeev Shrestha
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Anusree Thenissery
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| | - Rahul Khupse
- College of Pharmacy, University of Findlay, Findlay, OH 45840, USA;
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, The Ohio State University, Wooster, OH 44691, USA;
| |
Collapse
|
4
|
Sun Y, Cui J, Tian L, Mi Y, Guo Z. Phenolic Acid Functional Quaternized Chitooligosaccharide Derivatives: Preparation, Characterization, Antioxidant, Antibacterial, and Antifungal Activity. Mar Drugs 2023; 21:535. [PMID: 37888470 PMCID: PMC10608605 DOI: 10.3390/md21100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
As a promising biological material, chitooligosaccharide (COS) has attracted increasing attention because of its unique biological activities. In this study, fourteen novel phenolic acid functional COS derivatives were successfully prepared using two facile methods. The structures of derivatives were characterized by FT-IR and 1H NMR spectra. The in vitro antioxidant activity experiment results demonstrated that the derivatives presented stronger 1,1-Diphenyl-2-picryl-hydrazyl (DPPH), superoxide, hydroxyl radical scavenging activity and reducing power, especially the N,N,N-trimethylated chitooligosaccharide gallic acid salt (GLTMC), gallic acid esterified N,N,N-trimethylated chitooligosaccharide (GL-TMC) and caffeic acid N,N,N-trimethylated chitooligosaccharide (CFTMC) derivatives. Furthermore, the antifungal assay was carried out and the results indicated that the salicylic acid esterified N,N,N-trimethylated chitooligosaccharide (SY-TMC) had much better inhibitory activity against Botrytis cinerea and Fusarium graminearum. Additionally, the results of the bacteriostasis experiment showed that the caffeic acid esterified N,N,N-trimethylated chitooligosaccharide (CF-TMC) had the potential ability to inhibit Escherichia coli and Staphylococcus aureus bacteria. Altogether, this study may provide a neoteric method to produce COS derivatives with significantly increased biological activities, which have potential use in food, medicine, and health care products and other related industries.
Collapse
Affiliation(s)
- Yan Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.S.); (J.C.); (Y.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Jingmin Cui
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.S.); (J.C.); (Y.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguang Tian
- Yantai Agricultural Technology Extension Center, Yantai 265499, China;
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.S.); (J.C.); (Y.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Saline-Alkali Land Modern Agriculture Company, Dongying 257300, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; (Y.S.); (J.C.); (Y.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Chen Q, Qi Y, Jiang Y, Quan W, Luo H, Wu K, Li S, Ouyang Q. Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar Drugs 2022; 20:md20080536. [PMID: 36005539 PMCID: PMC9410415 DOI: 10.3390/md20080536] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, which is derived from chitin, is the only known natural alkaline cationic polymer. Chitosan is a biological material that can significantly improve the living standard of the country. It has excellent properties such as good biodegradability, biocompatibility, and cell affinity, and has excellent biological activities such as antibacterial, antioxidant, and hemostasis. In recent years, the demand has increased significantly in many fields and has huge application potential. Due to the poor water solubility of chitosan, its wide application is limited. However, chemical modification of the chitosan matrix structure can improve its solubility and biological activity, thereby expanding its application range. The review covers the period from 1996 to 2022 and was elaborated by searching Google Scholar, PubMed, Elsevier, ACS publications, MDPI, Web of Science, Springer, and other databases. The various chemical modification methods of chitosan and its main activities and application research progress were reviewed. In general, the modification of chitosan and the application of its derivatives have had great progress, such as various reactions, optimization of conditions, new synthetic routes, and synthesis of various novel multifunctional chitosan derivatives. The chemical properties of modified chitosan are usually better than those of unmodified chitosan, so chitosan derivatives have been widely used and have more promising prospects. This paper aims to explore the latest progress in chitosan chemical modification technologies and analyze the application of chitosan and its derivatives in various fields, including pharmaceuticals and textiles, thus providing a basis for further development and utilization of chitosan.
Collapse
Affiliation(s)
- Qizhou Chen
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Qi
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Yuwei Jiang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiyan Quan
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Hui Luo
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| | - Kefeng Wu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Sidong Li
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| |
Collapse
|
6
|
Novel Chitosan Derivatives and Their Multifaceted Biological Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan is a rather attractive material, especially because of its bio-origins as well as generation from exoskeletal waste. As the mantle has been effectively transferred from chitin to chitosan, so has it been extrapolated to in-house synthesized novel chitosan derivatives. This review comprehensively lists the available novel chitosan derivatives (ChDs) and summarizes their biological applications. The fact that chitosan derivatives do comprise multifaceted biological applications is attested by the voluminous reports on their varied contributions. However, this review points out to the fact that there has been selective focus on bio functions such as antifungal, antioxidant, antibacterial, whereas other biomedical applications and antiviral applications remain relatively less explored. With their current functionality record, there is definitely no doubt that the plethora of synthesized ChDs will have a profound impact on the unexplored biological aspects. This review points out this lacuna as room for future exploration.
Collapse
|
7
|
Jiang Y, Zhang Y, Zhang H, Zhu R, Hu Y. Synthesis of n‐alkylated quaternary ammonium chitosan and its long‐term antibacterial finish for rabbit hair fabric. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingxue Jiang
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Yi Zhang
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Hao Zhang
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Ruoying Zhu
- School of Textile Science and Engineering Tiangong University Tianjin China
| | - Yanli Hu
- School of Textile Science and Engineering Tiangong University Tianjin China
| |
Collapse
|
8
|
Pathak K, Misra SK, Sehgal A, Singh S, Bungau S, Najda A, Gruszecki R, Behl T. Biomedical Applications of Quaternized Chitosan. Polymers (Basel) 2021; 13:polym13152514. [PMID: 34372116 PMCID: PMC8347635 DOI: 10.3390/polym13152514] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
The natural polymer chitosan is the second most abundant biopolymer on earth after chitin and has been extensively explored for preparation of versatile drug delivery systems. The presence of two distinct reactive functional groups (an amino group at C2, and a primary and secondary hydroxyl group at C3 and C6) of chitosan are involved in the transformation of expedient derivatives such as acylated, alkylated, carboxylated, quaternized and esterified chitosan. Amongst these, quaternized chitosan is preferred in pharmaceutical industries owing to its prominent features including superior water solubility, augmented antimicrobial actions, modified wound healing, pH-sensitive targeting, biocompatibility, and biodegradability. It has been explored in a large realm of pharmaceuticals, cosmeceuticals, and the biomedical arena. Immense classy drug delivery systems containing quaternized chitosan have been intended for tissue engineering, wound healing, gene, and vaccine delivery. This review article outlines synthetic techniques, basic characteristics, inherent properties, biomedical applications, and ubiquitous challenges associated to quaternized chitosan.
Collapse
Affiliation(s)
- Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206130, India;
| | - Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Sahuji Maharaj University, Kanpur 208026, India;
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence: (A.N.); (T.B.)
| | - Robert Gruszecki
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
- Correspondence: (A.N.); (T.B.)
| |
Collapse
|
9
|
Yue L, Zheng M, Khan IM, Wang Z. Chlorin e6 conjugated chitosan as an efficient photoantimicrobial agent. Int J Biol Macromol 2021; 183:1309-1316. [PMID: 34000311 DOI: 10.1016/j.ijbiomac.2021.05.085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/25/2021] [Accepted: 05/12/2021] [Indexed: 12/17/2022]
Abstract
The development of antibacterial agents with high bacteria-binding capability and antibacterial efficiency is highly desirable. Herein, cationic polysaccharide chitosan (CS) was combined with photosensitizer Chlorin e6 (Ce6) to construct a novel photodynamic antibacterial agent (CS-Ce6 conjugates) for combating gram-positive bacteria Staphylococcus aureus (S. aureus) and gram-negative bacteria Escherichia coli (E. coli). CS-Ce6 conjugates with different degrees of substitution (DS) were synthesized and characterized by a spectroscopic method and organic elemental analysis to understand the relationship between structure and antibacterial effect. CS-Ce6 conjugates revealed good reactive oxygen species (ROS) generation ability and photodynamic antibacterial effect. Meanwhile, they both were positively correlated with DS in the range of 4.81% ~ 11.56% resulting in stronger photodynamic antibacterial ability. These findings highlight that CS-Ce6 conjugates have the potential as an effective photodynamic bactericidal agent in the antibacterial field.
Collapse
Affiliation(s)
- Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| | - Meihong Zheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Lihu Road 1800, Wuxi 214122, PR China.
| |
Collapse
|
10
|
de Almeida WS, da Silva DA. Does polysaccharide quaternization improve biological activity? Int J Biol Macromol 2021; 182:1419-1436. [PMID: 33965482 DOI: 10.1016/j.ijbiomac.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The natural polysaccharides, due to their structural diversity, commonly present very distinct solubility and physical chemical properties and additionally have intrinsic biological activities that, gene-rally, reveal themselves in a light way. The chemical modification of the molecular structure can improve these parameters. In this review, original articles that approached the quaternization of polysaccharides for purposes of biological application were selected, without limitation of year of publication, in the databases Scopus, Web of Science and PubMed. The results obtained from the bibliographic survey indicate that the increase in positive charges caused by quaternization improves the interaction between modified polysaccharides and structures that have negative charges on their surface, such as the cell wall of microorganisms and some cells in the human body, such as the DNA. This greater interaction is reflected as an increase in the biological activity of all polysaccharides broached in this study. Another important data obtained was the fact that the chemical changes did not affect or irrelevantly affect the toxicity of almost all of the polysaccharides that were quaternized. Therefore, polysaccharide quaternization is a safe and effective way to obtain improvements in the biological behavior of these macromolecules.
Collapse
Affiliation(s)
- Wanessa Sales de Almeida
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil.
| | - Durcilene Alves da Silva
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil; Núcleo de Pesquisa em Biotecnologia e Biodiversidade, Universidade Federal do Delta do Parnaíba, Brazil.
| |
Collapse
|
11
|
Zhao Y, Wang Q, Yan S, Zhou J, Huang L, Zhu H, Ye F, Zhang Y, Chen L, Chen L, Zheng T. Bletilla striata Polysaccharide Promotes Diabetic Wound Healing Through Inhibition of the NLRP3 Inflammasome. Front Pharmacol 2021; 12:659215. [PMID: 33981238 PMCID: PMC8110216 DOI: 10.3389/fphar.2021.659215] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to evaluate the therapeutic effects of Bletilla striata polysaccharide (BSP) on wound healing in diabetes mellitus (DM) and to explore the underlying mechanisms. DM mouse models were induced by high fat-diet feeding combined with low-dose streptozocin injection. To establish diabetic foot ulcer (DFU) models, DM mice were wounded on the dorsal surface. Subsequently, mice were treated with vehicle or BSP for 12 days and wound healing was monitored. The effects of BSP on the production of interleukin-1β (IL-1β), tumor necrosis factor-α, macrophages infiltration, angiogenesis, the activation of nucleotide-binding and oligomerization (NACHT) domain, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome, and insulin sensitivity in wound tissues were subsequently evaluated. Separated- and cultured- bone marrow-derived macrophages (BMDMs) and cardiac microvascular endothelial cells (CMECs) were isolated from mice and used to investigate the effects of BSP on cell viability, reactive oxygen species (ROS) generation, NLRP3 inflammasome activation and insulin sensitivity in vitro following exposure to high glucose (HG). BSP administration accelerated diabetic wound healing, suppressed macrophage infiltration, promoted angiogenesis, suppressed NLRP3 inflammasome activation, decreased IL-1β secretion, and improved insulin sensitivity in wound tissues in DM mice. In vitro, co-treatment with BSP protected against HG-induced ROS generation, NLRP3 inflammasome activation, and IL-1β secretion in BMDMs, and improved cell viability and decreased ROS levels in CMECs. Moreover, in HG exposed BMDMs-CMECs cultures, BSP treatment suppressed NLRP3 inflammasome activation and IL-1β secretion in BMDMs, and improved cell viability and insulin sensitivity in CMECs. Furthermore, treatment with IL-1β almost completely suppressed the beneficial effects of BSP on the NLRP3 inflammasome, IL-1β secretion, and insulin sensitivity in HG-treated BMDMs-CMECs. BSP promotes DFU healing through inhibition of the HG-activated NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yan Zhao
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Qibin Wang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Shan Yan
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Jun Zhou
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Liangyong Huang
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Haitao Zhu
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Fang Ye
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yonghong Zhang
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Lin Chen
- Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Chen
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Tao Zheng
- Institute of Wudang Traditional Chinese Medicine, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,Department of Pharmacy, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
12
|
An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers (Basel) 2020; 12:polym12122878. [PMID: 33266285 PMCID: PMC7759937 DOI: 10.3390/polym12122878] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Chitosan, a chitin-derivative polysaccharide, known for its non-toxicity, biocompatibility and biodegradability, presents limited applications due to its low solubility in neutral or basic pH medium. Quaternization stands out as an alternative to modify this natural polymer, aiming to improve its solubility over a wide pH range and, consequently, expand its range of applications. Quaternization occurs by introducing a quaternary ammonium moiety onto or outside the chitosan backbone, via chemical reactions with primary amino and hydroxyl groups, under vast experimental conditions. The oldest and most common forms of quaternized chitosan involve N,N,N-trimethyl chitosan (TMC) and N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) and, more recently, quaternized chitosan by insertion of pyridinium or phosphonium salts. By modifying chitosan through the insertion of a quaternary moiety, permanent cationic charges on the polysaccharide backbone are achieved and properties such as water solubility, antimicrobial activity, mucoadhesiveness and permeability are significantly improved, enabling the application mainly in the biomedical and pharmaceutical areas. In this review, the main quaternized chitosan compounds are addressed in terms of their structure, properties, synthesis routes and applications. In addition, other less explored compounds are also presented, involving the main findings and future prospects regarding the field of quaternized chitosans.
Collapse
|
13
|
Mao S, Liu X, Xia W. Chitosan oligosaccharide-g-linalool polymer as inhibitor of hyaluronidase and collagenase activity. Int J Biol Macromol 2020; 166:1570-1577. [PMID: 33189750 DOI: 10.1016/j.ijbiomac.2020.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/23/2020] [Accepted: 11/06/2020] [Indexed: 01/31/2023]
Abstract
In this study, chitosan oligosaccharide (COS) was modified by grafting Linalool (Lin) on its backbone to improve its anti-inflammatory activity. By changing the molar ratios of COS to Lin, three different degrees of substitution COS-g-Lin1-3 were prepared. The degrees of substitution of derivatives were 0.65, 0.80 and 1.14 respectively. The structure of COS-g-Lin1-3 were characterized by UV-vis, FT-IR, 1H NMR and elemental analysis in order to show the COS-g-Lin1-3 successfully synthesized. Besides, the thermal stability, solubility, pH stability as well as crystallinity were also investigated. The results revealed that the derivatives exhibited higher thermal stability and more remarkable anti-inflammatory property against hyaluronidase and collagenase than that of COS. The good biocompatibility made this novel material a promising and effective compound for anti-inflammatory applications.
Collapse
Affiliation(s)
- Shuifang Mao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, 214122, Jiangsu, PR China
| | - Xiaoli Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, 214122, Jiangsu, PR China.
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Lihu Road 1800, Wuxi, 214122, Jiangsu, PR China.
| |
Collapse
|
14
|
Malekshah RE, Shakeri F, Aallaei M, Hemati M, Khaleghian A. Biological evaluation, proposed molecular mechanism through docking and molecular dynamic simulation of derivatives of chitosan. Int J Biol Macromol 2020; 166:948-966. [PMID: 33152362 DOI: 10.1016/j.ijbiomac.2020.10.252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
We synthesized Schiff base and its complexes derivatives of chitosan (CS) in order to develop antibiotic compounds based on functionalized-chitosan against gram-positive and gram-negative bacteria. IR, UV-Vis, AFM, SEM, Melting point, X-ray diffraction (XRD), elemental analysis, and 1H NMR techniques were employed to characterize the chemical structures and properties of these compounds. XRD, UV-Vis, and 1H NMR techniques confirmed the formation of Schiff base and its functionalized-chitosan to metals. Subsequently, our antibacterial studies revealed that antibacterial activities of [Zn(Schiff base)(CS)] against S. aureus bacteria increased compared to those of their compounds. In addition, hemolysis test of CS-Schiff base-Cu(II) demonstrated better hemolytic activity than vitamin C, CS-Schiff base, CS-Schiff base-Zn(II), and CS-Schiff base-Ni(II). In a computational strategy, we carried out the optimization of compounds with molecular mechanics (MM+), Semi-emprical (AM1), Abinitio (STO-3G), AMBER, BIO+(CHARMM), and OPLS. Frontier orbital density distributions (HOMO and LUMO), and the optimized computational UV of the compounds were assessed. The optimized computational UV-Vis was similar to the experimental UV-Vis. We applied the docking methods to predict the DNA binding affinity, Staphylococcus aureus enoyl-acyl carrier protein reductase (ENRs), and Staphylococcus aureus enoyl-acyl carrier protein reductase (saFabI). Ultimately, the obtained data herein suggested that Schiff base is more selective toward ENRs and saFabI compared to chitosan, its complexes, and metronidazole.
Collapse
Affiliation(s)
- Rahime Eshaghi Malekshah
- Medical Biomaterial Research Centre (MBRC), Tehran University of Medical Sciences, Tehran, Iran.
| | - Farideh Shakeri
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mohammadreza Aallaei
- Department of Chemistry, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Maral Hemati
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Khaleghian
- Biochemistry Department, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
15
|
Zhao J, Li J, Jiang Z, Tong R, Duan X, Bai L, Shi J. Chitosan, N,N,N-trimethyl chitosan (TMC) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC): The potential immune adjuvants and nano carriers. Int J Biol Macromol 2020; 154:339-348. [DOI: 10.1016/j.ijbiomac.2020.03.065] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
|
16
|
Sun X, Zhang J, Mi Y, Chen Y, Tan W, Li Q, Dong F, Guo Z. Synthesis, characterization, and the antioxidant activity of the acetylated chitosan derivatives containing sulfonium salts. Int J Biol Macromol 2020; 152:349-358. [PMID: 32084479 DOI: 10.1016/j.ijbiomac.2020.02.177] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/13/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
In this study, a new class of chitosan derivatives possessing sulfonium salts was synthesized, and characterized by FT-IR, 1H NMR, 13C NMR, and elemental analyses. IR spectra, 1H NMR and 13C NMR of the structural units of these polymers validated the designed chitosan derivatives were successfully synthesized. In addition, the antioxidant potential of chitosan and chitosan derivatives was assessed in vitro, screened by 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, hydroxyl radical scavenging, and superoxide radical scavenging, respectively. Results revealed that designed chitosan derivatives could effectively scavenge DPPH radical, hydroxyl radical, and superoxide radical with inhibition rate of more than 90% at 1.6 mg/mL, higher than chitosan. Moreover, in the cytotoxicity assay, no cytotoxicity was observed for the L929 cells with chitosan and its derivatives at all the testing concentrations. These results indicated that the acetylated chitosan derivatives containing sulfonium salts may be a promising natural antioxidant for the pharmaceutics, food, cosmetics and agriculture management.
Collapse
Affiliation(s)
- Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Synthesis, Characterization, and Antioxidant Evaluation of Novel Pyridylurea-Functionalized Chitosan Derivatives. Polymers (Basel) 2019; 11:polym11060951. [PMID: 31159399 PMCID: PMC6630310 DOI: 10.3390/polym11060951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 02/02/2023] Open
Abstract
In order to improve the bioactivity of chitosan, we synthesized a novel series of chitosan derivatives: firstly, chitosan was reacted with methylclhlorofonmate obtaining N-methoxyformylated chitosan (1), which was then converted into N-pyridylurea chitosan derivatives (2a-2c) by amine-ester exchange reaction. In addition, N-pyridylurea chitosan derivatives were conducted by reacting with iodomethane to obtain quaternized N-pyridylurea chitosan derivatives (3a-3c). The structural characteristics of as-prepared chitosan derivatives were confirmed by fourier transform infrared (FT-IR), 1H nuclear magnetic resonance (1H NMR), elemental analysis, and scanning electron microscope (SEM). Meanwhile, the antioxidant activity of the chitosan derivatives was assessed in vitro. As shown in this paper, the antioxidant activity decreased in the order: c > b > a. Moreover, after the quaternization with iodomethane, quaternized N-pyridylurea chitosan derivatives immediately exhibited enhanced antioxidant capacity compared with N-pyridylurea chitosan derivatives. For example, in 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay, the scavenging activities of 3a-3c were 91.75%, 93.63%, and 97.63% while 2a-2c were 42.32%, 42.97%, and 43.07% at 0.4 mg/mL. L929 cells were also adopted for cytotoxicity test of chitosan and synthesized derivatives by CCK-8 assay and all samples showed decreased cytotoxicity. These results suggested that the novel pyridylurea-functionalized chitosan derivatives could be an ideal biomaterial.
Collapse
|
18
|
Modification of chitosan and chitosan nanoparticle by long chain pyridinium compounds: Synthesis, characterization, antibacterial, and antioxidant activities. Carbohydr Polym 2019; 208:477-485. [DOI: 10.1016/j.carbpol.2018.12.097] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 12/21/2018] [Accepted: 12/30/2018] [Indexed: 11/18/2022]
|
19
|
Li Q, Wei L, Zhang J, Gu G, Guo Z. Significantly enhanced antioxidant activity of chitosan through chemical modification with coumarins. Polym Chem 2019. [DOI: 10.1039/c8py01790e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new class of chitosan derivatives possessing coumarins was synthesized to improve the antioxidant activity of chitosan.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | | | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
20
|
Wei L, Li Q, Chen Y, Zhang J, Mi Y, Dong F, Lei C, Guo Z. Enhanced antioxidant and antifungal activity of chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts. Carbohydr Polym 2018; 206:493-503. [PMID: 30553350 DOI: 10.1016/j.carbpol.2018.11.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 10/11/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Abstract
In this paper, a series of 6-O-imidazole-based quaternary ammonium chitosan derivatives via 6-O-chloroacetyl chitosan (CAClC) were successfully designed and synthesized. Detailed structural characterization was carried out by means of FT-IR and 1H NMR spectroscopy, and elemental analysis. Furthermore, the antioxidant property against hydroxyl radicals, superoxide radicals, and DPPH radicals was evaluated in vitro. 2-(N,N,N-trimethyl)-6-O-(2-aminobenzimidazole)acetyl chitosan chloride (2NPhMC) and 2-(N,N,N-trimethyl)-6-O-(1-butylimidazole)acetyl chitosan chloride (NBMC) showed more than 90% scavenging indices at 1.6 mg/mL. Besides, the antifungal activity against Botrytis cinerea and Gibberella zeae was estimated using in vitro MIC and hypha measurements. Most of the quaternized chitosan derivatives especially with the long length alkyl chain and primary amino group showed an inhibitory index of > 85% at 1.0 mg/mL against Botrytis cinerea. Besides, the cytotoxicity of chitosan and all the quaternized chitosan derivatives was evaluated in vitro on HaCaT cells and all the quaternized chitosan derivatives bearing 6-O-imidazole exhibited low cytotoxicity. These results suggested that chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts may be used as good biomaterials.
Collapse
Affiliation(s)
- Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Chunqing Lei
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Wei L, Chen Y, Tan W, Li Q, Gu G, Dong F, Guo Z. Synthesis, Characterization, and Antifungal Activity of Pyridine-Based Triple Quaternized Chitosan Derivatives. Molecules 2018; 23:molecules23102604. [PMID: 30314307 PMCID: PMC6222670 DOI: 10.3390/molecules23102604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/01/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
In this study, a series of triple quaternized chitosan derivatives, including 6-O-[(2-hydroxy-3-trimethylammonium)propyl]-2-N-(1-pyridylmethyl-2-ylmethyl)-N,N-dimethyl chitosan chloride (7), 6-O-[(2-hydroxy-3-trimethylammonium)propyl]-2-N-(1-pyridylmethyl-3-yl- methyl)-N,N-dimethyl chitosan chloride (8), and 6-O-[(2-hydroxy-3-trimethylammonium)propyl]- 2-N-(1-pyridylmethyl-4-ylmethyl)-N,N-dimethyl chitosan chloride (9) were successfully designed and synthesized via reacting epoxypropyl trimethylammonium chloride with the N-pyridinium double quaternized chitosan derivatives. Detailed structural characterization was carried out using FT-IR and 1H-NMR spectroscopy, and elemental analysis. Besides, the activity of the triple quaternized chitosan derivatives against three common plant pathogenic fungi, Watermelon fusarium, Fusarium oxysporum, and Phomopsis asparagi, was investigated in vitro. The results indicated that the triple quaternized chitosan derivatives had enhanced antifungal activity when compared to double quaternized chitosan derivatives and chitosan, especially at 1.0 mg/mL, which confirmed the theory that the higher density of positive charge contributed to the antifungal activity. Moreover, 8 with an almost 99% inhibitory index showed the better antifungal activity against Watermelon fusarium. Moreover, the cytotoxicity of the products was also evaluated in vitro on 3T3-L1 cells and all the triple quaternized chitosan derivatives exhibited low cytotoxicity. These results suggested that triple quaternized chitosan derivatives may be used as good antifungal biomaterials.
Collapse
Affiliation(s)
- Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard, Malvern, PA 19355, USA.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
22
|
Song H, Wu H, Li S, Tian H, Li Y, Wang J. Homogeneous Synthesis of Cationic Chitosan via New Avenue. Molecules 2018; 23:E1921. [PMID: 30071648 PMCID: PMC6222707 DOI: 10.3390/molecules23081921] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 01/22/2023] Open
Abstract
Using a solvent formed of alkali and urea, chitosan was successfully dissolved in a new solvent via the freezing⁻thawing process. Subsequently, quaternized chitosan (QC) was synthesized using 3-chloro-2-hydroxypropyl trimethyl ammonium chloride (CHPTAC) as the cationic reagent under different incubation times and temperatures in a homogeneous system. QCs cannot be synthesized at temperatures above 60 °C, as gel formation will occur. The structure and properties of the prepared QC were characterized and quaternary groups were comfirmed to be successfully incorporated onto chitosan backbones. The degree of substitution (DS) ranged from 16.5% to 46.8% and the yields ranged from 32.6% to 89.7%, which can be adjusted by changing the molar ratio of the chitosan unit to CHPTAC and the reaction time. QCs inhibits the growth of Alicyclobacillus acidoterrestris effectively. Thus, this work offers a simple and green method of functionalizing chitosan and producing quaternized chitosan with an antibacterial effect for potential applications in the food industry.
Collapse
Affiliation(s)
- Huanlu Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Hao Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - ShuJing Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Beijing 100048, China.
| | - Huafeng Tian
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - YanRu Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - JianGuo Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
23
|
Zhou D, Yang R, Yang T, Xing M, Luo G. Preparation of chitin-amphipathic anion/quaternary ammonium salt ecofriendly dressing and its effect on wound healing in mice. Int J Nanomedicine 2018; 13:4157-4169. [PMID: 30046240 PMCID: PMC6054278 DOI: 10.2147/ijn.s165005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objective This study aimed to prepare an eco-friendly dressing using a chitin-derived membrane with amphipathic anion/quaternary ammonium salt designed for antibacterial purposes. Methods Four dressings were prepared and group A was chitin, group B was chitin + amphiphilic ion, group C was chitin + quaternary ammonium salt, group D was chitin + amphiphilic ion + quaternary ammonium salt. Results In the group D material, precipitation of adherent composite ions was observed. The contact angle test showed that the material was hydrophilic. The drug loading rate in groups B, C, and D was 40-50 (ug:mg), the entrapment efficiency was 70%-75% (P>0.05), and the cumulative release percentages were 87.3%, 88.7%, and 90.2% after 72h for group B, C, and D, respectively. The anti-bacterial activity in vitro was in the order D>C>B>A> control (P>0.05). The anti-pollution activity in vitro was in the order D>B>C>A (P<0.05). The cell proliferation inhibition test showed slight proliferation inhibition (P<0.05) only on the seventh day for group D. Seven days after injury, the wound healing rate was in the order D>C> commercial chitin dressing >B>A> control (P<0.05), and the length of the neonatal epithelium also showed the same trend. Additionally, PCNA and CD31 expression indicated that cell proliferation and angiogenesis were enhanced when skin defects were covered with the D group material (P<0.05). Conclusion chitin-amphiphilic ion/quaternary ammonium salt dressing was successfully prepared. The antibacterial and antipollution effects of the prepared material (group D) were both very good, acting to promote wound healing.
Collapse
Affiliation(s)
- Daijun Zhou
- Institute of Burn Research, ; .,State Key Laboratory of Trauma, Burn and Combined Injury, ; .,Key Laboratory of Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China, ;
| | - Ruijia Yang
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada,
| | - Tao Yang
- Institute of Burn Research, ; .,State Key Laboratory of Trauma, Burn and Combined Injury, ; .,Key Laboratory of Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China, ;
| | - Malcolm Xing
- Institute of Burn Research, ; .,State Key Laboratory of Trauma, Burn and Combined Injury, ; .,Key Laboratory of Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China, ; .,Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB, Canada,
| | - Gaoxing Luo
- Institute of Burn Research, ; .,State Key Laboratory of Trauma, Burn and Combined Injury, ; .,Key Laboratory of Proteomics of Chongqing, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, China, ;
| |
Collapse
|
24
|
Luan F, Wei L, Zhang J, Mi Y, Dong F, Li Q, Guo Z. Antioxidant Activity and Antifungal Activity of Chitosan Derivatives with Propane Sulfonate Groups. Polymers (Basel) 2018; 10:E395. [PMID: 30966430 PMCID: PMC6415242 DOI: 10.3390/polym10040395] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/20/2018] [Accepted: 03/28/2018] [Indexed: 12/16/2022] Open
Abstract
We successfully synthesized the water-soluble chitosan derivatives propane sulfonated chitosan (PSCS) and dipropane sulfonated chitosan (DPSCS) in this paper. These derivatives were characterized by FTIR, ¹H NMR, and 13C NMR. Moreover, the antioxidant activity of the chitosan derivatives was evaluated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical, and superoxide-radical) and ferric reducing power. Meanwhile, inhibitory effects against two fungi were also tested. Our results suggested antioxidant abilities and antifungal properties were in order of DPSCS > PSCS > CS, which were consistent with the number of propane sulfonated groups. The scavenging activity of DPSCS against superoxide-radical and DPPH-radical were 94.1% and 100% at 1.6 mg/mL, respectively. The inhibitory indices of DPSCS against P. asparagi and F. oxysporum were up to 82.2% and 94% at 1.0 mg/mL, respectively. Obviously, the number of propane sulfonated groups of chitosan derivatives not only contributes to antioxidant activity, but also to antifungal activity. Therefore, DPSCS with more propane sulfonated groups endowed with antioxidant and antifungal activity that can be used as a candidate material in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Fang Luan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yingqi Mi
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
25
|
Li Q, Sun X, Gu G, Guo Z. Novel Water Soluble Chitosan Derivatives with 1,2,3-Triazolium and Their Free Radical-Scavenging Activity. Mar Drugs 2018; 16:md16040107. [PMID: 29597269 PMCID: PMC5923394 DOI: 10.3390/md16040107] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 12/12/2022] Open
Abstract
Chitosan is an abundant and renewable polysaccharide, which exhibits attractive bioactivities and natural properties. Improvement such as chemical modification of chitosan is often performed for its potential of providing high bioactivity and good water solubility. A new class of chitosan derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. Their free radical-scavenging activity against three free radicals was tested. The inhibitory property and water solubility of the synthesized chitosan derivatives exhibited a remarkable improvement over chitosan. It is hypothesized that triazole or triazolium groups enable the synthesized chitosan to possess obviously better radical-scavenging activity. Moreover, the scavenging activity against superoxide radical of chitosan derivatives with triazolium (IC50 < 0.01 mg mL−1) was more efficient than that of derivatives with triazole and Vitamin C. In the 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical-scavenging assay, the same pattern were observed, which should be related to the triazolium grafted at the periphery of molecular chains.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| | - Xueqi Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- Graduate School of Chinese Academy of Sciences, Beijing 100039, China.
| | - Guodong Gu
- Alliance Pharma, Inc., 17 Lee Boulevard Malvern, PA 19355, USA.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| |
Collapse
|
26
|
Luan F, Wei L, Zhang J, Tan W, Chen Y, Dong F, Li Q, Guo Z. Preparation and Characterization of Quaternized Chitosan Derivatives and Assessment of Their Antioxidant Activity. Molecules 2018; 23:E516. [PMID: 29495379 PMCID: PMC6017865 DOI: 10.3390/molecules23030516] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 12/03/2022] Open
Abstract
Chitosan (CS) is an abundant and renewable polysaccharide that is reported to exhibit a great variety of beneficial properties. However, the poor solubility of chitosan in water limits its applications. In this paper, we successfully synthesized single N-quaternized (QCS) and double N-diquaternized (DQCS) chitosan derivatives, and the resulting quaternized materials were water-soluble. The degree of quaternization (DQ) of QCS and DQCS was 0.8 and 1.3, respectively. These derivatives were characterized by FTIR, ¹H NMR, 13C NMR, TGA, and SEM. Moreover, the antioxidant activity of the chitosan was evaluated by free radical scavenging ability (against DPPH-radical, hydroxyl-radical, and superoxide-radical) and ferric reducing power. Our results suggested that the antioxidant abilities were in the order of DQCS > QCS > CS, which was consistent with the number of quaternized groups. These data demonstrate that the number of quaternized groups of chitosan derivatives contributes to their antioxidant activity. Therefore, DQCS, with a higher number of quaternized groups and higher positive charge density, is endowed with high antioxidant activity, and can be used as a candidate material in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Fang Luan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingjing Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuan Chen
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shangdong, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
27
|
Piątkowski M, Janus Ł, Radwan-Pragłowska J, Bogdał D, Matysek D. Biodegradable, pH-sensitive chitosan beads obtained under microwave radiation for advanced cell culture. Colloids Surf B Biointerfaces 2018; 164:324-331. [PMID: 29413612 DOI: 10.1016/j.colsurfb.2018.01.061] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/22/2018] [Accepted: 01/30/2018] [Indexed: 01/14/2023]
Abstract
A new type of promising chitosan beads with advanced properties were obtained under microwave radiation according to Green Chemistry principles. Biomaterials were prepared using chitosan as raw material and glutamic acid/1,5-pentanodiol mixture as crosslinking agents. Additionally beads were modified with Tilia platyphyllos extract to enhance their antioxidant properties. Beads were investigated over their chemical structure by FT-IR analysis. Also their morphology has been investigated by SEM method. Additionally swelling capacity of the obtained hydrogels was determined. Lack of cytotoxicity has been confirmed by MTT assay. Proliferation studies were carried out on L929 mouse fibroblasts. Advanced properties of the obtained beads were investigated by studying pH sensitivity and antioxidant properties by DPPH method. Also susceptibility to degradation and biodegradation by Sturm Test method was evaluated. Results shows that proposed chitosan beads and their eco-friendly synthesis method can be applied in cell therapy and tissue engineering.
Collapse
Affiliation(s)
- Marek Piątkowski
- Department of Biotechnology and Physical Chemistry, Cracow University of Technology, Cracow, Poland.
| | - Łukasz Janus
- Department of Biotechnology and Physical Chemistry, Cracow University of Technology, Cracow, Poland
| | - Julia Radwan-Pragłowska
- Department of Biotechnology and Physical Chemistry, Cracow University of Technology, Cracow, Poland
| | - Dariusz Bogdał
- Department of Biotechnology and Physical Chemistry, Cracow University of Technology, Cracow, Poland
| | - Dalibor Matysek
- Institute of Clean Technologies for Mining and Utilization of Raw Materials for Energy Use, Technical University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
28
|
Da LC, Huang YZ, Xie HQ. Progress in development of bioderived materials for dermal wound healing. Regen Biomater 2017; 4:325-334. [PMID: 29026647 PMCID: PMC5633688 DOI: 10.1093/rb/rbx025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/22/2017] [Accepted: 08/24/2017] [Indexed: 02/05/2023] Open
Abstract
Treatment of acute and chronic wounds is one of the primary challenges faced by doctors. Bioderived materials have significant potential clinical value in tissue injury treatment and defect reconstruction. Various strategies, including drug loading, addition of metallic element(s), cross-linking and combining two or more distinct types of materials with complementary features, have been used to synthesize more suitable materials for wound healing. In this review, we describe the recent developments made in the processing of bioderived materials employed for cutaneous wound healing, including newly developed materials such as keratin and soy protein. The focus was on the key properties of the bioderived materials that have shown great promise in improving wound healing, restoration and reconstruction. With their good biocompatibility, nontoxic catabolites, microinflammation characteristics, as well as their ability to induce tissue regeneration and reparation, the bioderived materials have great potential for skin tissue repair.
Collapse
Affiliation(s)
- Lin-Cui Da
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People’s Republic of China
| |
Collapse
|
29
|
Li Q, Qiu L, Tan W, Gu G, Guo Z. Novel 1,2,3-triazolium-functionalized inulin derivatives: synthesis, free radical-scavenging activity, and antifungal activity. RSC Adv 2017. [DOI: 10.1039/c7ra08244d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new class of inulin derivatives possessing 1,2,3-triazolium charged units by associating “click reaction” with efficient 1,2,3-triazole quaternization were designed and synthesized. The synthesized inulin derivatives possess excellent free radical-scavenging ability.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
- China
| | - Lishushi Qiu
- School of Chemistry and Chemical Engineering
- Yantai University
- Yantai 264005
- China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
- China
| | | | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai
- China
| |
Collapse
|