1
|
Hou X, Kong X, Yao Y, Liu S, Ren Y, Hu M, Wang Z, Zhu H, Yang Z. Next Generation of Solid Target Radionuclide Antibody Conjugates for Tumor Immuno-Therapy. J Labelled Comp Radiopharm 2024. [PMID: 39480113 DOI: 10.1002/jlcr.4124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/07/2024] [Accepted: 10/07/2024] [Indexed: 11/02/2024]
Abstract
Immune checkpoint therapy has emerged as an effective treatment option for various types of cancers. Key immune checkpoint molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), and lymphocyte activation gene 3 (LAG-3), have become pivotal targets in cancer immunotherapy. Antibodies designed to inhibit these molecules have demonstrated significant clinical efficacy. Nevertheless, the ability to monitor changes in the immune status of tumors and predict treatment response remains limited. Conventional methods, such as assessing lymphocytes in peripheral blood or conducting tumor biopsies, are inadequate for providing real-time, spatial information about T-cell distributions within heterogeneous tumors. Positron emission tomography (PET) using T-cell specific probes represents a promising and noninvasive approach to monitor both systemic and intratumoral immune changes during treatment. This technique holds substantial clinical significance and potential utility. In this paper, we review the applications of PET probes that target immune cells in molecular imaging.
Collapse
Affiliation(s)
- Xingguo Hou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Xiangxing Kong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yuan Yao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Song Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Ya'nan Ren
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Guizhou University School of Medicine, Guiyang, Guizhou, China
| | - Muye Hu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zilei Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Department of Nuclear Medicine, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University Cancer Hospital & Institute, Beijing, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Serban RM, Niculae D, Manda G, Neagoe I, Dobre M, Niculae DA, Temelie M, Mustăciosu C, Leonte RA, Chilug LE, Cornoiu MR, Cocioabă D, Stan M, Dinischiotu A. Modifications in cellular viability, DNA damage and stress responses inflicted in cancer cells by copper-64 ions. Front Med (Lausanne) 2023; 10:1197846. [PMID: 37415761 PMCID: PMC10320858 DOI: 10.3389/fmed.2023.1197846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/31/2023] [Indexed: 07/08/2023] Open
Abstract
Due to combined therapeutical emissions, a high linear energy transfer Auger-electrons with the longer ranged β- particles, 64Cu-based radiopharmaceuticals raise particular theragnostic interest in cancer, by joined therapeutic and real-time PET imaging properties. The in vitro study aimed to investigate the biological and molecular background of 64CuCl2 therapy by analyzing the damages and stress responses inflicted in various human normal and tumor cell lines. Colon (HT29 and HCT116) and prostate carcinoma (DU145) cell lines, as well as human normal BJ fibroblasts, were treated up to 72 h with 2-40 MBq/mL 64CuCl2. Radioisotope uptake and retention were assessed, and cell viability/death, DNA damage, oxidative stress, and the expression of 84 stress genes were investigated at various time points after [64Cu]CuCl2 addition. All the investigated cells incorporated 64Cu ions similarly, independent of their tumoral or normal status, but their fate after exposure to [64Cu]CuCl2 was cell-dependent. The most striking cytotoxic effects of the radioisotope were registered in colon carcinoma HCT116 cells, for which a substantial decrease in the number of metabolically active cells, and an increased DNA damage and oxidative stress were registered. The stress gene expression study highlighted the activation of both death and repair mechanisms in these cells, related to extrinsic apoptosis, necrosis/necroptosis or autophagy, and cell cycle arrest, nucleotide excision repair, antioxidant, and hypoxic responses, respectively. The in vitro study indicated that 40 MBq/mL [64Cu]CuCl2 delivers a therapeutic effect in human colon carcinoma, but its use is limited by harmful, yet lower effects on normal fibroblasts. The exposure of tumor cells to 20 MBq/mL [64Cu]CuCl2, might be used for a softer approach aiming for a lower radiotoxicity in normal fibroblasts as compared to tumor cells. This radioactive concentration was able to induce a persistent decrease in the number of metabolically active cells, accompanied by DNA damage and oxidative stress, associated with significant changes in stress gene expression in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Radu M. Serban
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Dana Niculae
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Gina Manda
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Ionela Neagoe
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Maria Dobre
- Radiobiology Laboratory, National Institute of Pathology "Victor Babeș", Bucharest, Romania
| | - Dragoș A. Niculae
- Faculty of Pharmacy, University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Mihaela Temelie
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Cosmin Mustăciosu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Radu A. Leonte
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Livia E. Chilug
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
| | - Maria R. Cornoiu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Applied Chemistry and Materials Science, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Bucharest, Romania
| | - Diana Cocioabă
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Măgurele, Ilfov, Romania
- Doctoral School of Physics, Faculty of Physics, University of Bucharest, Măgurele, Ilfov, Romania
| | - Miruna Stan
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | |
Collapse
|
3
|
Hrynchak I, Cocioabă D, Fonseca AI, Leonte R, do Carmo SJC, Cornoiu R, Falcão A, Niculae D, Abrunhosa AJ. Antibody and Nanobody Radiolabeling with Copper-64: Solid vs. Liquid Target Approach. Molecules 2023; 28:4670. [PMID: 37375223 DOI: 10.3390/molecules28124670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Antibody and nanobody-based copper-64 radiopharmaceuticals are increasingly being proposed as theranostic tools in multiple human diseases. While the production of copper-64 using solid targets has been established for many years, its use is limited due to the complexity of solid target systems, which are available in only a few cyclotrons worldwide. In contrast, liquid targets, available in virtually in all cyclotrons, constitute a practical and reliable alternative. In this study, we discuss the production, purification, and radiolabeling of antibodies and nanobodies using copper-64 obtained from both solid and liquid targets. Copper-64 production from solid targets was performed on a TR-19 cyclotron with an energy of 11.7 MeV, while liquid target production was obtained by bombarding a nickel-64 solution using an IBA Cyclone Kiube cyclotron with 16.9 MeV on target. Copper-64 was purified from both solid and liquid targets and used to radiolabel NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab conjugates. Stability studies were conducted on all radioimmunoconjugates in mouse serum, PBS, and DTPA. Irradiation of the solid target yielded 13.5 ± 0.5 GBq with a beam current of 25 ± 1.2 μA and an irradiation time of 6 h. On the other hand, irradiation of the liquid target resulted in 2.8 ± 1.3 GBq at the end of bombardment (EOB) with a beam current of 54.5 ± 7.8 μA and an irradiation time of 4.1 ± 1.3 h. Successful radiolabeling of NODAGA-Nb, NOTA-Nb, and DOTA-Trastuzumab with copper-64 from both solid and liquid targets was achieved. Specific activities (SA) obtained with the solid target were 0.11, 0.19, and 0.33 MBq/μg for NODAGA-Nb, NOTA-Nb, and DOTA-trastuzumab, respectively. For the liquid target, the corresponding SA values were 0.15, 0.12, and 0.30 MBq/μg. Furthermore, all three radiopharmaceuticals demonstrated stability under the testing conditions. While solid targets have the potential to produce significantly higher activity in a single run, the liquid process offers advantages such as speed, ease of automation, and the feasibility of back-to-back production using a medical cyclotron. In this study, successful radiolabeling of antibodies and nanobodies was achieved using both solid and liquid targets approaches. The radiolabeled compounds exhibited high radiochemical purity and specific activity, rendering them suitable for subsequent in vivo pre-clinical imaging studies.
Collapse
Affiliation(s)
- Ivanna Hrynchak
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Diana Cocioabă
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
- Faculty of Physics, Doctoral School of Physics, University of Bucharest, 077125 Bucharest, Romania
| | - Alexandra I Fonseca
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Radu Leonte
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
| | - Sérgio J C do Carmo
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Roxana Cornoiu
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
- Faculty of Chemical Engineering and Biotechnologies, Doctoral School of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Amílcar Falcão
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Dana Niculae
- Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Radiopharmaceutical Research Centre, 077125 Măgurele, Romania
| | - Antero J Abrunhosa
- Institute for Nuclear Sciences Applied to Health (ICNAS Pharma), Polo das Ciências da Saúde, University of Coimbra, 3000-548 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute for Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
4
|
Wongso H, Hendra R, Nugraha AS, Ritawidya R, Saptiama I, Kusumaningrum CE. Microbial metabolites diversity and their potential as molecular template for the discovery of new fluorescent and radiopharmaceutical probes. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
5
|
Production Review of Accelerator-Based Medical Isotopes. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165294. [PMID: 36014532 PMCID: PMC9415084 DOI: 10.3390/molecules27165294] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The production of reactor-based medical isotopes is fragile, which has meant supply shortages from time to time. This paper reviews alternative production methods in the form of cyclotrons, linear accelerators and neutron generators. Finally, the status of the production of medical isotopes in China is described.
Collapse
|
6
|
Optimisation of parameters of complete nickel electrodeposition from acidic aqueous electrolytic baths prepared by dissolution of metal powder. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05194-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Sugo Y, Ohira SI, Manabe H, Maruyama YH, Yamazaki N, Miyachi R, Toda K, Ishioka NS, Mori M. Highly Efficient Separation of Ultratrace Radioactive Copper Using a Flow Electrolysis Cell. ACS OMEGA 2022; 7:15779-15785. [PMID: 35571765 PMCID: PMC9096931 DOI: 10.1021/acsomega.2c00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 04/15/2022] [Indexed: 06/15/2023]
Abstract
Preparing compounds containing the radioisotope 64Cu for use in positron emission tomography cancer diagnostics is an ongoing area of research. In this study, a highly efficient separation method to recover 64Cu generated by irradiating the target 64Ni with a proton beam was developed by employing a flow electrolysis cell (FE). This system consists of (1) applying a reduction potential for the selective adsorption of 64Cu from the target solution when dissolved in HCl and (2) recovering the 64Cu deposited onto the carbon working electrode by desorbing it from the FE during elution with 10 mmol/L HNO3, which applies an oxidation potential. The 64Cu was selectively eluted at approximately 30 min under a flow rate of 0.5 mL/min from the injection to recovery. The newly developed flow electrolysis system can separate the femtomolar level of ultratrace radioisotopes from the larger amount of target metals as an alternative to conventional column chromatography.
Collapse
Affiliation(s)
- Yumi Sugo
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Shin-Ichi Ohira
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Hinako Manabe
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Yo-hei Maruyama
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| | - Naoaki Yamazaki
- Graduate
School of Engineering, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Ryoma Miyachi
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Kei Toda
- Department
of Chemistry, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Noriko S. Ishioka
- Department
of Radiation-Applied Biology Research, Takasaki Advanced Radiation
Research Institute, National Institutes
for Quantum Science and Technology, 1233 Watanuki, Takasaki, Gunma 370-1292, Japan
| | - Masanobu Mori
- Faculty
of Science and Technology, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520, Japan
| |
Collapse
|
8
|
Meng X, Liu H, Li H, Wang S, Sun H, Wang F, Ding J, He L, Chen X, Jin L, Dong Y, Zhu H, Yang Z. Evaluating the impact of different positron emitters on the performance of a clinical PET/MR system. Med Phys 2022; 49:2642-2651. [PMID: 35106784 DOI: 10.1002/mp.15513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/27/2021] [Accepted: 01/06/2022] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The positron range and prompt gamma emission are distinctive with different positron emitters. The performance assessment of an integrated PET/MR scanner with these positron emitters is required for related applications, as the magnetic field interferes with the positron propagation. Such an assessment is to be performed on the United Imaging uPMR 790 integrated PET/MR system. METHODS The performance measurement methods were modified based on NEMA NU 2-2012, involving 18 F, 64 Cu, 68 Ga, 89 Zr, and 124 I as positron emitters. The NEMA IEC phantom was used for evaluations of image qualities. An agarose cap was wrapped around the point source for tissue-simulating spatial resolution measurement. The count rate performance was assessed with selected positron emitters. Images of a 3D-printed Derenzo phantom and representative patients were also acquired. RESULTS The image quality measurement showed that all five positron emitters were suitable for the PET/MR system studied. However, due to the magnetic field, the image of the point source showed an elongated comet-tail feature, which could be eliminated by a tissue-simulating cap. This effect is more obvious in 124 I and 68 Ga, due to their long positron ranges. The imaging ability with various positron emitters was further validated with the count rate assessment, the Derenzo phantom, and the clinical images. CONCLUSIONS Different positron emitters could be effectively imaged by the PET/MR system tested. The resolution measurement strategy proposed could be applied to measure PET spatial resolution in the magnetic field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiangxi Meng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Hui Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China.,United Imaging Healthcare, Shanghai, China
| | - Hui Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China.,Department of Nuclear Medicine, Peking University Third Hospital, Beijing, China
| | - Shujing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Hongwei Sun
- Central Research Institute, United Imaging Healthcare, Beijing, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Jin Ding
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Liuchun He
- United Imaging Healthcare, Shanghai, China
| | - Xin Chen
- United Imaging Healthcare, Shanghai, China
| | - Lujia Jin
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing, China
| | - Yun Dong
- United Imaging Healthcare, Shanghai, China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Beijing Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
9
|
Wen L, Xia L, Guo X, Huang HF, Wang F, Yang XT, Yang Z, Zhu H. Multimodal Imaging Technology Effectively Monitors HER2 Expression in Tumors Using Trastuzumab-Coupled Organic Nanoparticles in Patient-Derived Xenograft Mice Models. Front Oncol 2021; 11:778728. [PMID: 34869025 PMCID: PMC8637767 DOI: 10.3389/fonc.2021.778728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022] Open
Abstract
Trastuzumab is a monoclonal antibody targeting human epidermal growth factor 2 (HER2), which has been successfully used in the treatment of patients with breast cancer and gastric cancer; however, problems concerning its cardiotoxicity, drug resistance, and unpredictable efficacy still remain. Herein, we constructed novel organic dopamine–melanin nanoparticles (dMNs) as a carrier and then surface-loaded them with trastuzumab to construct a multifunctional nanoprobe named Her-PEG-dMNPs. We used micro-PET/CT and PET/MRI multimodality imaging to evaluate the retention effect of the nanoprobe in HER2 expression in gastric cancer patient-derived xenograft (PDX) mice models after labeling of the radionuclides 64Cu or 124I and MRI contrast agent Mn2+. The nanoprobes can specifically target the HER2-expressing SKOV-3 cells in vitro (3.61 ± 0.74 vs. 1.24 ± 0.43 for 2 h, P = 0.002). In vivo, micro-PET/CT and PET/MRI showed that the 124I-labeled nanoprobe had greater contrast and retention effect in PDX models than unloaded dMNPs as carrier (1.63 ± 0.07 vs. 0.90 ± 0.04 at 24 h, P = 0.002), a similarity found in 64Cu-labeled Her-PEG-dMNPs. Because 124I has a longer half-life and matches the pharmacokinetics of the nanoparticles, we focused on the further evaluation of 124I-Her-PEG-dMNPs. Furthermore, immunohistochemistry staining confirmed the overexpression of HER2 in the animal model. This study developed and validated novel HER2-specific multimodality imaging nanoprobes for quantifying HER2 expression in mice. Through the strong retention effect of the tumor site, it can be used for the promotion of monoclonal antibody treatment effect and process monitoring.
Collapse
Affiliation(s)
- Li Wen
- Medical College, Guizhou University, Guiyang, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hai-Feng Huang
- Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Feng Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Xian-Teng Yang
- Medical College, Guizhou University, Guiyang, China.,Department of Orthopaedics, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zhi Yang
- Medical College, Guizhou University, Guiyang, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hua Zhu
- Medical College, Guizhou University, Guiyang, China.,Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
10
|
Electrochemical deposition of nickel from aqueous electrolytic baths prepared by dissolution of metallic powder. J Solid State Electrochem 2021. [DOI: 10.1007/s10008-021-05084-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractA new method of preparation of aqueous electrolyte baths for electrochemical deposition of nickel targets for medical accelerators is presented. It starts with fast dissolution of metallic Ni powder in a HNO3-free solvent. Such obtained raw solution does not require additional treatment aimed to removal nitrates, such as the acid evaporation and Ni salt precipitation-dissolution. It is used directly for preparation of the nickel plating baths after dilution with water, setting up pH value and after possible addition of H3BO3. The pH of the baths ranges from alkaline to acidic. Deposition of 95% of ca. 50 mg of Ni dissolved in the bath takes ca. 3.5 h for the alkaline electrolyte while for the acidic solution it requires ca. 7 h. The Ni deposits obtained from the acidic bath are physically and chemically more stable and possess smoother and crack-free surfaces as compared to the coatings deposited from the alkaline bath. A method of estimation of concentration of H2O2 in the electrolytic bath is also proposed.
Collapse
|
11
|
Liu T, Liu C, Zhang Z, Zhang N, Guo X, Xia L, Jiang J, Xie Q, Yan K, Rowe SP, Zhu H, Yang Z. 64Cu-PSMA-BCH: a new radiotracer for delayed PET imaging of prostate cancer. Eur J Nucl Med Mol Imaging 2021; 48:4508-4516. [PMID: 34170361 DOI: 10.1007/s00259-021-05426-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
PURPOSE Develop a 64Cu labeled radiopharmaceutical targeting prostate specific membrane antigen (PSMA) and investigate its application for prostate cancer imaging. METHODS 64Cu-PSMA-BCH was prepared and investigated for stability, PSMA specificity, and micro-PET imaging. With the approval of Ethics Committee of Beijing Cancer Hospital (No. 2017KT97), PET/CT imaging in 4 patients with suspected prostate cancer was performed and the radiation dosimetry was estimated. Then, PSMA PET-ultrasound image-guided biopsies were performed on 3 patients and the fine needle aspirates were further performed for autoradiography and immunohistochemistry analysis. RESULTS 64Cu-PSMA-BCH was prepared with high radiochemical yield and stability. In vivo study showed higher uptake in PSMA ( +) 22Rv1 cells than PSMA ( -) PC-3 cells (5.59 ± 0.36 and 1.97 ± 0.22 IA%/106 cells at 1 h). It accumulated in 22Rv1 tumor with increasing radioactivity uptake and T/N ratios from 1 to 24 h post-injection. In patients with suspected prostate cancer, SUVmax and T/N ratios increased within 24 h post-injection. Compared with image at 1 h post-injection, more tumor lesions were detected at 6 h and 24 h post-injection. The human organ radiation dosimetry showed gallbladder wall was most critical, liver and kidneys were followed, and the whole-body effective dose was 0.0292 mSv/MBq. Two fine needle aspirates obtained by PET-ultrasound-guided targeted biopsy showed high radioactive signal by autoradiography, with 100% PSMA expression in cytoplasm and 30% expression in nucleus. CONCLUSION 64Cu-PSMA-BCH was PSMA specific and showed high stability in vivo with lower uptake in liver than 64Cu-PSMA-617. Biodistribution in mice and PCa patients showed similar profile compared with other PSMA ligands and it was safe with moderate effective dosimetry. The increased tumor uptake and T/N ratios by delayed imaging may facilitate the detection of small lesions and guiding targeted biopsies.
Collapse
Affiliation(s)
- Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Chen Liu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Zhongyi Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Ning Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Lei Xia
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Jinquan Jiang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Qing Xie
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Kun Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasonography, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China
| | - Steven P Rowe
- The James Buchanan Brady Urology Institute and Department of Urology, and The Russell H. Morgan, Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 601 N. Caroline St., Rm. 3233, Baltimore, MD, 21287, USA.
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China.
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, No. 52 Fu-Cheng Rd, Beijing, 100142, China.
| |
Collapse
|
12
|
Ankrah AO, Sathekge MM, Dierckx RAJO, Glaudemans AWJM. Radionuclide Imaging of Fungal Infections and Correlation with the Host Defense Response. J Fungi (Basel) 2021; 7:jof7060407. [PMID: 34067410 PMCID: PMC8224611 DOI: 10.3390/jof7060407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
The human response to invading fungi includes a series of events that detect, kill, or clear the fungi. If the metabolic host response is unable to eliminate the fungi, an infection ensues. Some of the host response’s metabolic events to fungi can be imaged with molecules labelled with radionuclides. Several important clinical applications have been found with radiolabelled biomolecules of inflammation. 18F-fluorodeoxyglucose is the tracer that has been most widely investigated in the host defence of fungi. This tracer has added value in the early detection of infection, in staging and visualising dissemination of infection, and in monitoring antifungal treatment. Radiolabelled antimicrobial peptides showed promising results, but large prospective studies in fungal infection are lacking. Other tracers have also been used in imaging events of the host response, such as the migration of white blood cells at sites of infection, nutritional immunity in iron metabolism, and radiolabelled monoclonal antibodies. Many tracers are still at the preclinical stage. Some tracers require further studies before translation into clinical use. The application of therapeutic radionuclides offers a very promising clinical application of these tracers in managing drug-resistant fungi.
Collapse
Affiliation(s)
- Alfred O. Ankrah
- National Centre for Radiotherapy Oncology and Nuclear Medicine, Korle Bu Teaching Hospital, Accra GA-222 7974, Ghana;
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria, Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Rudi A. J. O. Dierckx
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
| | - Andor W. J. M. Glaudemans
- Medical Imaging Center, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands;
- Correspondence:
| |
Collapse
|
13
|
Driver CHS, Ebenhan T, Szucs Z, Parker MI, Zeevaart JR, Hunter R. Towards the development of a targeted albumin-binding radioligand: Synthesis, radiolabelling and preliminary in vivo studies. Nucl Med Biol 2021; 94-95:53-66. [PMID: 33550011 DOI: 10.1016/j.nucmedbio.2021.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/14/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The compound named 4-[10-(4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)butanamido)decyl]-11-[10-(β,d-glucopyranos-1-yl)-1-oxodecyl]-1,4,8,11-tetraazacyclotetradecane-1,8-diacetic acid is a newly synthesised molecule capable of binding in vivo to albumin to form a bioconjugate. This compound was given the name, GluCAB(glucose-chelator-albumin-binder)-maleimide-1. Radiolabelled GluCAB-maleimide-1 and subsequent bioconjugate is proposed for prospective oncological applications and works on the theoretical dual-targeting principle of tumour localization through the "enhanced permeability and retention (EPR) effect" and glucose metabolism. METHODS The precursor, GluCAB-amine-2, and subsequent GluCAB-maleimide-1 was synthesised via sequential regioselective, distal N-functionalisation of a cyclam template with a tether containing a synthetically-derived β-glucoside followed by a second linker to incorporate a maleimide moiety for albumin-binding. GluCAB-amine-2 was radiolabelled with [64Cu]CuCl2 in 0.1 M NH4OAc (pH 3.5, 90 °C, 30 min), purified and converted post-labeling in 0.01 M PBS to [64Cu]Cu-GluCAB-maleimide-1. Serum stability and protein binding studies were completed according to described methods. Healthy BALB/c ice (three groups of n = 5) were injected intravenously with [64Cu]Cu-TETA, [64Cu]Cu-GluCAB-amine-2 or [64Cu]Cu-GluCAB-maleimide-1 and imaged using microPET/CT at 1, 2, 4, 8 and 24 h post-injection. Biodistribution of the compounds were determined ex vivo after 24 h using gamma counting. RESULTS GluCAB-maleimide-1 was synthesised in five consecutive steps with an overall yield of 11%. [64Cu]Cu-GluCAB-amine-2 (97% labelling efficiency) was converted to [64Cu]Cu-GluCAB-maleimide-1 (93% conversion; 90% radiochemical purity). Biodistribution analysis indicated that the control compounds were rapidly and almost completely excreted as compared to [64Cu]Cu-GluCAB-maleimide-1 that exhibited a prolonged biological half-life (6-8 h). Both, [64Cu]Cu-GluCAB-maleimide-1 and -amine-2 were excreted through the hepatobiliary system but a higher hepatic presence of the albumin-bound compound was noted. CONCLUSIONS, ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE: This initial evaluation paves the way for further investigation into the tumour targeting potential of [64Cu]Cu-GluCAB-maleimide-1. An efficient targeted radioligand will allow for further development of a prospective theranostic agent for more personalized patient treatment which potentially improves overall patient prognosis, outcome and health care.
Collapse
Affiliation(s)
- Cathryn Helena Stanford Driver
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa
| | - Thomas Ebenhan
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa
| | | | - Mohammed Iqbal Parker
- Department of Medical Biochemistry and Institute for Infectious Disease and Molecular Medicine, University of Cape Town Medical School, University of Cape Town, Cape Town, South Africa
| | - Jan Rijn Zeevaart
- South African Nuclear Energy Corporation, Radiochemistry and NuMeRI PreClinical Imaging Facility, Elias Motsoaledi Street, R104 Pelindaba, North West 0240, South Africa; Preclinical Drug Development Platform, North West University, Potchefstroom, South Africa.
| | - Roger Hunter
- Department of Chemistry, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Dewulf J, Adhikari K, Vangestel C, Wyngaert TVD, Elvas F. Development of Antibody Immuno-PET/SPECT Radiopharmaceuticals for Imaging of Oncological Disorders-An Update. Cancers (Basel) 2020; 12:E1868. [PMID: 32664521 PMCID: PMC7408676 DOI: 10.3390/cancers12071868] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/12/2023] Open
Abstract
Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) are molecular imaging strategies that typically use radioactively labeled ligands to selectively visualize molecular targets. The nanomolar sensitivity of PET and SPECT combined with the high specificity and affinity of monoclonal antibodies have shown great potential in oncology imaging. Over the past decades a wide range of radio-isotopes have been developed into immuno-SPECT/PET imaging agents, made possible by novel conjugation strategies (e.g., site-specific labeling, click chemistry) and optimization and development of novel radiochemistry procedures. In addition, new strategies such as pretargeting and the use of antibody fragments have entered the field of immuno-PET/SPECT expanding the range of imaging applications. Non-invasive imaging techniques revealing tumor antigen biodistribution, expression and heterogeneity have the potential to contribute to disease diagnosis, therapy selection, patient stratification and therapy response prediction achieving personalized treatments for each patient and therefore assisting in clinical decision making.
Collapse
Affiliation(s)
- Jonatan Dewulf
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Karuna Adhikari
- Faculty of Pharmaceutical Biomedical and Veterinary Sciences, Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium;
| | - Christel Vangestel
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Tim Van Den Wyngaert
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Filipe Elvas
- Molecular Imaging Center Antwerp, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium; (J.D.); (C.V.); (T.V.D.W.)
- Department of Nuclear Medicine, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| |
Collapse
|
15
|
Liu F, Guo X, Liu T, Xu X, Li N, Xiong C, Li C, Zhu H, Yang Z. Evaluation of Pan-SSTRs Targeted Radioligand [ 64Cu]NOTA-PA1 Using Micro-PET Imaging in Xenografted Mice. ACS Med Chem Lett 2020; 11:445-450. [PMID: 32292548 DOI: 10.1021/acsmedchemlett.9b00544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
64Cu-labeled new pan-somatostatin receptors (pan-SSTRs) probe PA1 was synthesized, characterized, and evaluated by in vitro and in vivo experiments. [64Cu]NOTA-PA1 was obtained with high specific activity, high radiochemical purity, and good stability. Cell uptake of [64Cu]NOTA-PA1 was higher than that of [64Cu]DOTA-TATE in MCF-7, A549, BGC823, and HT-29 cell lines. [64Cu]NOTA-PA1 showed high binding affinity for SSTRs expressed in A549 cells. The in vivo biodistribution and micropositron emission tomography (micro-PET) imaging studies of [64Cu]NOTA-PA1 revealed good detection ability in MCF-7 and A549 xenografted nude mice. The radiosynthesis, quality control, and preliminary biological evaluation of [64Cu]NOTA-PA1 have broaden the application of radiolabeled octreotide for SSTRs imaging, which could act as a potential multisubtypes targeted radiotracer for imaging SSTRs-positive tumors.
Collapse
Affiliation(s)
- Fei Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Chiyi Xiong
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Chun Li
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| |
Collapse
|
16
|
Guo X, Zhu H, Zhou N, Chen Z, Liu T, Liu F, Xu X, Jin H, Shen L, Gao J, Yang Z. Noninvasive Detection of HER2 Expression in Gastric Cancer by 64Cu-NOTA-Trastuzumab in PDX Mouse Model and in Patients. Mol Pharm 2018; 15:5174-5182. [PMID: 30251865 DOI: 10.1021/acs.molpharmaceut.8b00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The purpose of this study was to establish the quality control and quantify the novel 64Cu-NOTA-Trastuzumab in gastric cancer patient-derived xenografts (PDX) mice models and patients by applying the molecular imaging technique. Trastuzumab was labeled with 64Cu using NCS-Bz-NOTA as bifunctional chelator, and hIgG1 was labeled with the same procedures as a negative control agent. HER2-positive (case 176, n = 12) and HER2-negative (case 168, n = 3) PDX models were established and validated by Western blot, DNA amplification, and immunohistochemistry (IHC). Both models were conducted for micro-PET imaging by tail injection of 18.5 MBq of 64Cu-NOTA-Trastuzumab or 64Cu-NOTA-hIgG1. Radioprobe uptake in tumor and main organs was quantified by region of interested (ROI) analysis of the micro-PET images and autoradiography. Finally, gastric cancer patients were enrolled in preliminary 64Cu-NOTA-Trastuzumab PET/CT scans. NOTA-Trastuzumab was efficiently radiolabeled with 64Cu over a 99% radiochemical purity and 17.5 GBq/μmol specific activity. The immune activity was preserved as the nonmodified antibody, and the radiopharmaceutical proved to be stable for up to 5 half-decay lives of 64Cu both in vitro and in vivo. Two serials of PDX gastric cancer models were successfully established: case 176 for HER2 positive and case 168 for HER2 negative. In micro-PET imaging studies, 64Cu-NOTA-Trastuzumab exhibits a significant higher tumor uptake (11.45 ± 0.42 ID%/g) compared with 64Cu-NOTA-IgG1 (3.25 ± 0.28 ID%/g, n = 5, p = 0.0004) at 36 h after intravenous injection. Lower level uptake of 64Cu-NOTA-Trastuzumab (6.35 ± 0.48 ID%/g) in HER2-negative PDX tumor models further confirmed specific binding of the radioprobe. Interestingly, the coinjection of 2.0 mg of Trastuzumab (15.52 ± 1.97 ID%/g) or 2.0 mg of hIgG1 (15.64 ± 3.54 ID%/g) increased the 64Cu-NOTA-Trastuzumab tumor uptake in PDX tumor (HER2+) models compared with 64Cu-NOTA-Trastuzumab alone ( p < 0.05) at 36 h postinjection. There were good correlations between micro-PET images and IHC ( n = 4) and autoradiography in PDX (HER2+) tumor tissues. Therefore, 64Cu-NOTA-Trastuzumab successfully translated to clinical PET imaging, and 64Cu-NOTA-Trastuzumab PET/CT scan in gastric cancer patients showed good detection ability. In conclusion, we reported quality control and application of novel 64Cu-NOTA-Trastuzumab for HER2 expression in PDX gastric cancer mice models and gastric cancer patients. Moreover, 64Cu-NOTA-Trastuzumab holds great potential for noninvasive PET detection, staging, and follow-up of HER2 expression in gastric cancer.
Collapse
Affiliation(s)
- Xiaoyi Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Hua Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Nina Zhou
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Zuhua Chen
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Teli Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Fei Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Xiaoxia Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Hongjun Jin
- Research Center of Molecular Imaging and Engineering , Sun Yat-sen University, the Fifth Affiliation Hospital , Zhuhai , Guangdong Province 519000 , China
| | - Lin Shen
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Jing Gao
- Department of Gastrointestinal Oncology , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine , Peking University Cancer Hospital & Institute , Beijing 100142 , China
| |
Collapse
|
17
|
Aguilar-Ortíz E, Jalilian AR, Ávila-Rodríguez MA. Porphyrins as ligands for 64copper: background and trends. MEDCHEMCOMM 2018; 9:1577-1588. [PMID: 30429966 PMCID: PMC6194497 DOI: 10.1039/c8md00263k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/17/2018] [Indexed: 12/13/2022]
Abstract
Porphyrins and 64Cu have emerged as a novel synergic option for applications in PET molecular imaging. Both the characteristics and photophysical properties of macrocyclic porphyrins and the relatively long half-life of the copper isotope, in addition to the increased tumor-specific uptake of porphyrins compared to normal cells, make this complex an attractive option not only for diagnosis but also for therapeutic applications. Herein, we present an overview of the latest results on the development of PET agents based on porphyrins and 64Cu, including methods used to improve the selectivity of these macrocycles when conjugated with biological units such as monoclonal antibodies, peptides or proteins.
Collapse
Affiliation(s)
- Edgar Aguilar-Ortíz
- Unidad Radiofarmacia-Ciclotrón , División de Investigación , Facultad de Medicina , Universidad Nacional Autónoma de México , 04510 Cd. Mx. , Mexico . ;
| | - Amir R Jalilian
- Department of Nuclear Sciences and Applications , International Atomic Energy Agency (IAEA) , Vienna , Austria
| | - Miguel A Ávila-Rodríguez
- Unidad Radiofarmacia-Ciclotrón , División de Investigación , Facultad de Medicina , Universidad Nacional Autónoma de México , 04510 Cd. Mx. , Mexico . ;
| |
Collapse
|
18
|
The emerging role of copper-64 radiopharmaceuticals as cancer theranostics. Drug Discov Today 2018; 23:1489-1501. [DOI: 10.1016/j.drudis.2018.04.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
|
19
|
Aluicio-Sarduy E, Ellison PA, Barnhart TE, Cai W, Nickles RJ, Engle JW. PET radiometals for antibody labeling. J Labelled Comp Radiopharm 2018; 61:636-651. [PMID: 29341227 PMCID: PMC6050152 DOI: 10.1002/jlcr.3607] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/29/2017] [Accepted: 01/05/2018] [Indexed: 02/06/2023]
Abstract
Recent advances in molecular characterization of tumors have made possible the emergence of new types of cancer therapies where traditional cytotoxic drugs and nonspecific chemotherapy can be complemented with targeted molecular therapies. One of the main revolutionary treatments is the use of monoclonal antibodies (mAbs) that selectively target the disseminated tumor cells while sparing normal tissues. mAbs and related therapeutics can be efficiently radiolabeled with a wide range of radionuclides to facilitate preclinical and clinical studies. Non-invasive molecular imaging techniques, such as Positron Emission Tomography (PET), using radiolabeled mAbs provide useful information on the whole-body distribution of the biomolecules, which may enable patient stratification, diagnosis, selection of targeted therapies, evaluation of treatment response, and prediction of dose limiting tissue and adverse effects. In addition, when mAbs are labeled with therapeutic radionuclides, the combination of immunological and radiobiological cytotoxicity may result in enhanced treatment efficacy. The pharmacokinetic profile of antibodies demands the use of long half-life isotopes for longitudinal scrutiny of mAb biodistribution and precludes the use of well-stablished short half-life isotopes. Herein, we review the most promising PET radiometals with chemical and physical characteristics that make the appealing for mAb labeling, highlighting those with theranostic radioisotopes.
Collapse
Affiliation(s)
| | - Paul A. Ellison
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Todd E. Barnhart
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Weibo Cai
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
- University of Wisconsin-Madison, Department of Radiology, Madison, Wisconsin, USA
- University of Wisconsin-Madison Carbone Cancer Center, Carbon Cancer Center, Madison, Wisconsin, USA
| | - Robert Jerry Nickles
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
| | - Jonathan W. Engle
- University of Wisconsin-Madison, Department of Medical Physics, Madison, Wisconsin, USA
- University of Wisconsin-Madison, Department of Radiology, Madison, Wisconsin, USA
| |
Collapse
|
20
|
Fiedler L, Kellner M, Oos R, Böning G, Ziegler S, Bartenstein P, Zeidler R, Gildehaus FJ, Lindner S. Fully Automated Production and Characterization of 64 Cu and Proof-of-Principle Small-Animal PET Imaging Using 64 Cu-Labelled CA XII Targeting 6A10 Fab. ChemMedChem 2018; 13:1230-1237. [PMID: 29667369 DOI: 10.1002/cmdc.201800130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/09/2018] [Indexed: 01/26/2023]
Abstract
64 Cu is a cyclotron-produced radionuclide which offers, thanks to its characteristic decay scheme, the possibility of combining positron emission tomography (PET) investigations with radiotherapy. We evaluated the Alceo system from Comecer SpA to automatically produce 64 Cu for radiolabelling purposes. We established a 64 Cu production routine with high yields and radionuclide purity in combination with excellent operator radiation protection. The carbonic anhydrase XII targeting 6A10 antibody Fab fragment was successfully radiolabelled with the produced 64 Cu, and proof-of-principle small-animal PET experiments on mice bearing glioma xenografts were performed. We obtained a high tumor-to-contralateral muscle ratio, which encourages further in vivo investigations of the radioconjugate regarding a possible application in diagnostic tumor imaging.
Collapse
Affiliation(s)
- Luise Fiedler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Markus Kellner
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Reinhard Zeidler
- Helmholtz-Zentrum München, German Research Center for Environmental Health, Research Group Gene Vectors, Marchioninistrasse 25, 81377, Munich, Germany.,Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistrasse 15, 81377, Munich, Germany
| |
Collapse
|
21
|
Lai J, Lu D, Zhang C, Zhu H, Gao L, Wang Y, Bao R, Zhao Y, Jia B, Wang F, Yang Z, Liu Z. Noninvasive small-animal imaging of galectin-1 upregulation for predicting tumor resistance to radiotherapy. Biomaterials 2018; 158:1-9. [DOI: 10.1016/j.biomaterials.2017.12.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 12/19/2022]
|
22
|
Pellico J, Llop J, Fernández-Barahona I, Bhavesh R, Ruiz-Cabello J, Herranz F. Iron Oxide Nanoradiomaterials: Combining Nanoscale Properties with Radioisotopes for Enhanced Molecular Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:1549580. [PMID: 29358900 PMCID: PMC5735613 DOI: 10.1155/2017/1549580] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/01/2017] [Indexed: 12/12/2022]
Abstract
The combination of the size-dependent properties of nanomaterials with radioisotopes is emerging as a novel tool for molecular imaging. There are numerous examples already showing how the controlled synthesis of nanoparticles and the incorporation of a radioisotope in the nanostructure offer new features beyond the simple addition of different components. Among the different nanomaterials, iron oxide-based nanoparticles are the most used in imaging because of their versatility. In this review, we will study the different radioisotopes for biomedical imaging, how to incorporate them within the nanoparticles, and what applications they can be used for. Our focus is directed towards what is new in this field, what the nanoparticles can offer to the field of nuclear imaging, and the radioisotopes hybridized with nanomaterials for use in molecular imaging.
Collapse
Affiliation(s)
- Juan Pellico
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jordi Llop
- Radiochemistry and Nuclear Imaging Group, CIC biomaGUNE, Paseo Miramon 182, 20009 Donostia, Spain
| | - Irene Fernández-Barahona
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Riju Bhavesh
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Jesús Ruiz-Cabello
- Departamento Química Física II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| | - Fernando Herranz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC) and Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
| |
Collapse
|
23
|
64Cu-PSMA-617: A novel PSMA-targeted radio-tracer for PET imaging in gastric adenocarcinoma xenografted mice model. Oncotarget 2017; 8:74159-74169. [PMID: 29088775 PMCID: PMC5650330 DOI: 10.18632/oncotarget.18276] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/14/2017] [Indexed: 01/01/2023] Open
Abstract
Here, we report that it's feasible for imaging gastric adenocarcinoma mice model with prostate-specific membrane antigen (PSMA) targeting imaging agents, which could potentially provide an alternate and readily translational tool for managing gastric adenocarcinoma. DKFZ-PSMA-617, a PSMA targeting ligand reported recently, was chosen to be radio-labeled with nuclide 64Cu. 64Cu-PSMA-617 was radio-synthesized in high radio-chemical yield and specific activity up to 19.3 GBq/µmol. It showed good stability in vitro. The specificity of 64Cu-PSMA-617 was confirmed by cell uptake experiments in PSMA (+) LNCaP cell and PSMA (-) PC-3 and gastric adenocarcinoma BGC-823 cells. Micro-PET imaging in BGC-823 and PC-3 xenografts nude mice was evaluated (n = 4). And the tumors were visualized and better tumor-to-background achieved till 24 h. Co-administration of N- [[[(1S)-1-Carboxy-3-methylbutyl]amino]-carbonyl]-L-glutamic acid (ZJ-43) can substantially block the uptake in those tumors. Dissected tumor tissues were analyzed by auto-radiography and immunohistochemistry, and these results confirmed the PSMA expression in neo-vasculature which explained the target molecular imaging of 64Cu-PSMA-617. All those results suggested 64Cu-PSMA-617 may serve as a novel radio-tracer for tumor imaging more than prostate cancer.
Collapse
|