1
|
Pan X, Zong Q, Liu C, Wu H, Fu B, Wang Y, Sun W, Zhai Y. Konjac glucomannan exerts regulatory effects on macrophages and its applications in biomedical engineering. Carbohydr Polym 2024; 345:122571. [PMID: 39227106 DOI: 10.1016/j.carbpol.2024.122571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/05/2024]
Abstract
Konjac glucomannan (KGM) molecular chains contain a small amount of acetyl groups and a large number of hydroxyl groups, thereby exhibiting exceptional water retention and gel-forming properties. To meet diverse requirements, KGM undergoes modification processes such as oxidation, acetylation, grafting, and cationization, which reduce its viscosity, enhance its mechanical strength, and improve its water solubility. Researchers have found that KGM and its derivatives can regulate the polarization of macrophages, inducing their transformation into classically activated M1-type macrophages or alternatively activated M2-type macrophages, and even facilitating the interconversion between M1 and M2 phenotypes. Concurrently, the modulation of macrophage polarization states holds significant importance for chronic wound healing, inflammatory bowel disease (IBD), antitumor therapy, tissue engineering scaffolds, oral vaccines, pulmonary delivery, and probiotics. Therefore, KGM has the advantages of both immunomodulatory effects (biological activity) and gel-forming properties (physicochemical properties), giving it significant advantages in a variety of biomedical engineering applications.
Collapse
Affiliation(s)
- Xi Pan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qida Zong
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Liu
- Hainan Institute for Drug Control, Haikou 570311, China
| | - Huiying Wu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Bo Fu
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ye Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wei Sun
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| | - Yinglei Zhai
- Department of Biomedical Engineering, School of Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Khanzadeh Tehrani M, Yazdi MH, Pourmand MR. Glucomannan enhanced the macrophage activity in exposure to methicillin-resistant Staphylococcus aureus (MRSA): in-vitro study. IRANIAN JOURNAL OF MICROBIOLOGY 2023; 15:557-564. [PMID: 38045713 PMCID: PMC10692966 DOI: 10.18502/ijm.v15i4.13510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Background and Objectives The increasing number of methicillin-resistant Staphylococcus aureus persuade the need for preventive measures. Glucomannan is a polysaccharide choice for developing immunological strategies. This study aimed to investigate changes in gene expression and phagocytic activity of macrophage cells in the presence of glucomannan. Materials and Methods The effect of different concentrations of glucomannan (25, 50, and 100 μg/mL) on the phagocytic activity of macrophage cells was measured using the colony count method. The expression of Tumor Necrosis Factor-alpha (TNF-α) and Inducible Nitric Oxide Synthase (iNOS) genes was evaluated by Real-Time PCR. Results The concentrations of glucomannan significantly reduced the bacterial Colony-Forming Unit (CFU) and increased the phagocytic activity of macrophage cells. The maximum effect of glucomannan on iNOS and TNF-A genes expression was 100 μg/mL. Conclusion Glucomannan should be considered an adjuvant that stimulates the immune system. It may increase the expression of TNF-α and iNOS genes and the phagocytic activity of macrophage cells against methicillin-resistant Staphylococcus aureus.
Collapse
Affiliation(s)
- Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Yazdi
- Recombinant Vaccine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Pourmand
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Wang S, Hu Q, Chang Z, Liu Y, Gao Y, Luo X, Zhou L, Chen Y, Cui Y, Wang Z, Wang B, Huang Y, Liu Y, Liu R, Zhang L. Moringa oleifera leaf polysaccharides exert anti-lung cancer effects upon targeting TLR4 to reverse the tumor-associated macrophage phenotype and promote T-cell infiltration. Food Funct 2023; 14:4607-4620. [PMID: 37158366 DOI: 10.1039/d2fo03685a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Tumor-associated macrophages (TAMs) participate in tumorigenesis, growth, invasion as well as metastasis by facilitating an immunosuppressive tumor microenvironment. Reversing the pro-tumoral M2 phenotype of TAMs has become a hot spot in advancing cancer immunotherapy. In the current study, the content of Moringa oleifera leaf polysaccharides (MOLP) was determined and characterized, along with the anti-cancer mechanism of MOLP studied in a Lewis lung cancer (LLC) tumor-bearing mouse model and bone marrow-derived macrophages. The monosaccharide composition and gel permeation chromatography analyses show that MOLP are mainly composed of galactose, glucose, and arabinose, with approximately 17.35 kDa average molecular weight (Mw). In vivo studies demonstrate that MOLP convert TAMs from the immunosuppressive M2 phenotype to the antitumor M1 phenotype, thus inducing CXCL9 and CXCL10 expression and increasing T-cell infiltration in the tumor. Furthermore, macrophage depletion and T cell suppression demonstrated that the tumor suppressive effect of MOLP was reliant on reprogramming macrophage polarization and T cell infiltration. In vitro studies revealed that MOLP could induce the phenotypic switch from M2 macrophages to M1 by targeting TLR4. The current study highlights that MOLP are promising anticancer plant-derived polysaccharides with potential in modulating the immune microenvironment and have a bright application prospect in the immunotherapy of lung cancer.
Collapse
Affiliation(s)
- Shukai Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Qian Hu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Zihao Chang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Yuqi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Ye Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Xiaowei Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Lipeng Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Yinxin Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Yitong Cui
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Zhaohui Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Baojin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Ya Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Yue Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| | - Lanzhen Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, PR China.
| |
Collapse
|
4
|
Qi L, Shi Y, Li C, Liu J, Chong SL, Lim KJ, Si J, Han Z, Chen D. Glucomannan in Dendrobium catenatum: Bioactivities, Biosynthesis and Perspective. Genes (Basel) 2022; 13:1957. [PMID: 36360194 PMCID: PMC9690530 DOI: 10.3390/genes13111957] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/23/2022] [Accepted: 10/24/2022] [Indexed: 07/13/2024] Open
Abstract
Dendrobium catenatum is a classical and precious dual-use plant for both medicine and food in China. It was first recorded in Shen Nong's Herbal Classic, and has the traditional functions of nourishing yin, antipyresis, tonifying the stomach, and promoting fluid production. The stem is its medicinal part and is rich in active polysaccharide glucomannan. As an excellent dietary fiber, glucomannan has been experimentally confirmed to be involved in anti-cancer, enhancing immunity, lowering blood sugar and blood lipids, etc. Here, the status quo of the D. catenatum industry, the structure, bioactivities, biosynthesis pathway and key genes of glucomannan are systematically described to provide a crucial foundation and theoretical basis for understanding the value of D. catenatum and the potential application of glucomannan in crop biofortification.
Collapse
Affiliation(s)
- Luyan Qi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Yan Shi
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Cong Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Jingjing Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Sun-Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Kean-Jin Lim
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Zhigang Han
- National Innovation Alliance of Dendrobium catenatum Industry, Engineering Technology Research Center of Dendrobium catenatum of National Forestry and Grassland Administration, Hangzhou 311300, China
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
5
|
Ma Y, Zhang Y, Qiu C, He C, He T, Shi S, Liu Z. Rivaroxaban Suppresses Atherosclerosis by Inhibiting FXa-Induced Macrophage M1 Polarization-Mediated Phenotypic Conversion of Vascular Smooth Muscle Cells. Front Cardiovasc Med 2021; 8:739212. [PMID: 34869643 PMCID: PMC8634446 DOI: 10.3389/fcvm.2021.739212] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Factor Xa (FXa) is a mediator initiating and accelerating atherosclerosis (AS). Both macrophage and vascular smooth muscle cells (VSMCs) participate in AS progression. This study was aimed to investigate the mechanisms underlying the effects of the FXa inhibitor rivaroxaban on AS. Methods: Rivaroxaban was administered to AS mice. Primary macrophages were exposed to FXa, treated with rivaroxaban, and transfected with siRNA silencing protease-activated receptor 2 (PAR2), hypoxia-inducible factor 1α (HIF1α), delta-like receptor 4 (Dll4), and Akt. Interaction between macrophages and VSMCs was assessed by co-culturing systems. Atherosclerotic lesions were evaluated by oil red O stain. Fluorescent staining was used to determine the cell phenotypes. Secretions of inflammatory cytokines and collagen were assessed by ELISA and Sircol assays. Western blotting was used to evaluate the protein expression and phosphorylation levels. Results: Rivaroxaban reduced lesion area, accumulation of M1 macrophages, and contractile-synthetic phenotypic conversion of VSMCs in atherosclerotic plaques. FXa exposure induced polarization of macrophages toward M1 and Dll4 high expression, which were inhibited by PAR2, Akt1, and HIF1α silencing. Rivaroxaban treatment inhibited PAR2/Akt/HIF1α signaling activation and Dll4 expression in FXa-exposed macrophages. By cell-to-cell contact, M1 macrophages induced Notch signaling activation in VSMCs which committed contractile-synthetic conversion. Rivaroxaban treatment and Dll4 silencing incapacitated macrophage in inducing phenotypic conversion of VSMCs upon cell-to-cell contact. Conclusion: Rivaroxaban suppresses AS by inhibiting FXa-induced PAR2/Akt/HIF1α signaling activation-mediated macrophage M1 polarization and high Dll4 expression. These macrophages facilitated VSMCs to perform contractile-synthetic phenotypic conversion upon macrophage-VSMCs cell-to-cell contact.
Collapse
Affiliation(s)
- Yanpeng Ma
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yong Zhang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Chuan Qiu
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Chunhui He
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ting He
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shuang Shi
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
6
|
Liu Z, Ma Y, Cui Q, Xu J, Tang Z, Wang Y, He C, Wang X. Toll-like receptor 4 plays a key role in advanced glycation end products-induced M1 macrophage polarization. Biochem Biophys Res Commun 2020; 531:602-608. [PMID: 32814631 DOI: 10.1016/j.bbrc.2020.08.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE This study was aimed to investigate the role of Toll-like receptor 4 (TLR4) in advanced glycation end products (AGEs)- induced macrophage polarization toward M1. METHODS Isolated primary macrophages were exposed to prepared AGEs at concentrations of 0, 2.5, 5 and 10 μmol/L. Macrophages were also exposed to hydrogen peroxide (H2O2) which provided exogenous reactive oxygen species (ROS). Receptor for AGEs (RAGE) was over-expressed by a vector. Specific siRNA silencing TLR4 and inhibitor TAK-242 were used to pre-treat the macrophages. Intracellular ROS was determined by DCFH-DA. Immunofluorescence staining was used to evaluate the expression of inducible nitric oxide synthase (iNOS) which is the marker of M1 macrophage phenotype. Real-time PCR was used to assess the mRNA expression level of TLR4 and RAGE. Protein expression levels of cytoplasmic RAGE, TLR4, nuclear signal transducers and activators of transcription 1 (STAT1) and phosphorylation levels of cytoplasmic STAT1 were evaluated by Western blotting. ELISA was used to measure concentrations of interleukin 6 (IL6), IL12 and tumor necrosis factor (TNF)α in supernatant of cell culture medium of macrophages. RESULTS AGEs significantly elevated intracellular ROS generation, expression levels of iNOS, cytoplasmic RAGE, TLR4, nuclear STAT1, phosphorylation levels of cytoplasmic STAT1, as well as IL6, IL12 and TNFα contents in a concentration-dependent manner. TLR4 silencing and inhibitor pre-treatment reduced expression levels of cytoplasmic RAGE, TLR4, phosphorylation of STAT1 and nuclear STAT1 in AGEs-exposed macrophages without affecting RAGE expression and intracellular ROS production levels. RAGE over-expression elevated both ROS and TLR4 expression levels in macrophages. TLR4 expression elevation was also found in H2O2-treat macrophages. CONCLUSION AGEs induced macrophage polarization toward M1 via activating RAGE/ROS/TLR4/STAT1 signaling pathway.
Collapse
Affiliation(s)
- Zhongwei Liu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yanpeng Ma
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qianwei Cui
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jing Xu
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhiguo Tang
- Department of Cardiology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yuan Wang
- Department of Medical Prevention, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Chunhui He
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Xi Wang
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
7
|
Bai RB, Zhang YJ, Fan JM, Jia XS, Li D, Wang YP, Zhou J, Yan Q, Hu FD. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct 2020; 11:3306-3315. [DOI: 10.1039/c9fo02969a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Oligosaccharides are the main components of C. pilosula and show excellent immunomodulatory activities.
Collapse
Affiliation(s)
- Rui-Bin Bai
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Ya-Jie Zhang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Jing-Min Fan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Xu-Seng Jia
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Dai Li
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Yan-Ping Wang
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Jing Zhou
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Qiao Yan
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| | - Fang-Di Hu
- School of Pharmacy
- Lanzhou University
- Lanzhou 730000
- China
| |
Collapse
|
8
|
Li JY, Sun F, Zhou HF, Yang J, Huang C, Fan H. A Systematic Review Exploring the Anticancer Activity and Mechanisms of Glucomannan. Front Pharmacol 2019; 10:930. [PMID: 31507423 PMCID: PMC6715771 DOI: 10.3389/fphar.2019.00930] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022] Open
Abstract
Glucomannan, long recognized as the active ingredient of the traditional Chinese medicinal herb Konjac glucomannan, is a naturally occurring polysaccharide existing in certain plant species and fungi. Due to its special property to also serve as a dietary supplement, glucomannan has been widely applied in clinic to lower body weight and circulation cholesterol level and to treat constipation, diabetes, and arterial sclerosis. Besides the regulatory role engaged with gastroenterological and metabolic syndrome, recently, its therapeutic effect and the underlying mechanisms in treating cancerous diseases have been appreciated by mounting researches. The present review aims to emphasize the multifaceted aspects of how glucomannan exerts its anti-tumor function.
Collapse
Affiliation(s)
- Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Sun
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Feng Zhou
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Zhu F. Modifications of konjac glucomannan for diverse applications. Food Chem 2018; 256:419-426. [DOI: 10.1016/j.foodchem.2018.02.151] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/21/2017] [Accepted: 02/27/2018] [Indexed: 10/17/2022]
|