1
|
Zhang Q, Si G, Chen L, Hu L, Cui G, Wang M, Zhao D. Current Status and Prospects of Pine Wilt Disease Management with Phytochemicals-A Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2129. [PMID: 39124247 PMCID: PMC11314518 DOI: 10.3390/plants13152129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
PWD (pine wilt disease) is a devastating forest disease caused by the Bursaphelenchus xylophilus, which is the major invasive species in Asian and European countries. To control this disease, fumigation, pesticide injection, and clear cutting of epidemic trees have been widely used. But these management strategies have many limitations in terms of the effectiveness and environmental impacts, especially for the overuse of chemical pesticides. Thus, PCs (phytochemicals), the various compounds extracted from plants, have drawn extensive attention owing to their special characteristics, including abundant sources, low toxicity, high efficacy, and easy degradation. This review provides an overview of the current status of using PCs as alternative approaches to manage PWD. It discusses the efficacy of various PCs, the factors influencing their nematicidal activity, and their mechanism of action against B. xylophilus. These results will reveal the application of PCs in combating these devastating diseases and the necessity for further research.
Collapse
Affiliation(s)
- Quanhong Zhang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Q.Z.); (G.S.)
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| | - Guiling Si
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Q.Z.); (G.S.)
| | - Liusheng Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| | - Lili Hu
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| | - Gaofeng Cui
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| | - Min Wang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (Q.Z.); (G.S.)
| | - Danyang Zhao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou 510520, China; (L.C.); (L.H.)
| |
Collapse
|
2
|
Zhao LT, Wang BN, Zhang YQ, Zhang C, Liu M, Chen AL, Yuan J, Chen J, Zhou S. Design, Synthesis, Nematicidal, and Fungicidal Activities of Novel Azo and Azoxy Compounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2473-2481. [PMID: 38284538 DOI: 10.1021/acs.jafc.3c04847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Bursaphelenchus xylophilus (B. xylophilus) and Meloidogyne are parasitic nematodes that have caused severe ecological and economic damage in pinewood and crops, respectively. Jietacins (jietacin A and B) were found to have excellent biological activity against B. xylophilus. Based on our tremendous demand for chemicals against B. xylophilus, a novel scaffold based on the azo and azoxy groups was designed, and a series of compounds were synthesized. In the bioassay, Ia, IIa, IIc, IId, and IVa exhibited higher activity against B. xylophilus in vitro than avermectin (LC50 = 2.43 μg·mL-1) with LC50 values of 1.37, 1.12, 0.889, 1.56, and 1.10 μg·mL-1, respectively. Meanwhile, Ib, Ic, IIc, and IVa showed good inhibition effects against Meloidogyne in vivo at the concentrations of 80 and 40 μg·mL-1 with inhibition rates of 89.0% and 81.6%, 95.6% and 75.7%, 96.3% and 41.2%, and 86.8% and 78.7%, respectively. In fungicidal activity in vitro, IIb and IVa exhibited excellent effect against Botryosphaeria dothidea with the inhibition of 82.59% and 85.32% at the concentration of 10 μg·mL-1, while the inhibition of Ia was 83.16% against Rhizoctonia solani at the concentration of 12.5 μg·mL-1. Referring to the biological activity against B. xylophilus, a 3D-QASR model was built in which the electron-donating group and small group at the 4-phenylhydrazine were favorable for the activity. In general, the novel azoxy compounds, especially IIc possess great potential for application in the prevention of B. xylophilus.
Collapse
Affiliation(s)
- Lyu-Ting Zhao
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Bo-Ning Wang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Yu-Qi Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Chuang Zhang
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Ming Liu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - An-Liang Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jing Yuan
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Jie Chen
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| | - Sha Zhou
- Collaborative Innovation Center of Green Pesticide, National Joint Engineering Laboratory of Biopesticide Preparation, Zhejiang A&F University State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
3
|
Nematicidal Activity of 3-Acyltetramic Acid Analogues Against Pine Wood Nematode, Bursaphelenchus xylophilus. Molecules 2017; 22:molecules22091568. [PMID: 28927023 PMCID: PMC6151501 DOI: 10.3390/molecules22091568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 11/16/2022] Open
Abstract
Among 98 3-acyltetramic acid analogues, compounds 1c, 2c, 2f and 2g, showed >90% nematicidal activity against the pine wood nematode Bursaphelenchus xylophilus at a 10 μg/mL concentration. The nematicidal activities of compounds 1d, 1h, and 2k were a little lower at 88.0%, 85.8%, and 57.2% at a 10 μg/mL concentration, respectively. The nematicidal activity of emamection benzoate, widely used in Korea for the prevention of pine wilt disease, was 32.3% at a 10 μg/mL concentration. Other 3-acyltetramic acid analogues showed less than 30% nematicidal activity. A structure-activity relationship study indicated that the chain length of the C-acyl substituent was very important for high nematicidal activity. All active compounds had C13H27 or C11H23 acyl substituents, in two closely related groups with the common physicochemical properties of a polar surface area 57.6A2, PSA (polar surface area) 7.8–8.6% and ClogP (calculated partition coefficient) 5.1–5.9 and a polar surface area 75–84A2, PSA 11.1–11.6% and ClogP 4.7–5.1, respectively. Our study indicates that active 3-acyltetramic acid analogues could have potential as lead compounds for developing novel pine wood nematode control agents.
Collapse
|