1
|
Kundu K, Van Landuyt J, Mattelin V, Martin B, Neyts M, Parmentier K, Boon N. Enhanced removal of warfare agent tri-nitro-toluene by a Methylophaga-dominated microbiome. MARINE POLLUTION BULLETIN 2023; 190:114866. [PMID: 37001405 DOI: 10.1016/j.marpolbul.2023.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Historical exposure of the marine environment to 2,4,6-trinitrotoluene (TNT) happened due to the dumping of left-over munitions. Despite significant research on TNT decontamination, the potential of marine microbiome for TNT degradation remains only little explored. In this study, TNT degradation experiments were conducted with sediment located near the World War I munition dumpsite - Paardenmarkt in the Belgian part of North Sea. A slow removal was observed using TNT as sole source of C and N, which could be enhanced by adding methanol. Degradation was reflected in nitro-reduced metabolites and microbial growth. 16S Illumina sequencing analysis revealed several enriched genera that used TNT as a sole source of C and N - Colwellia, Thalossospira, and Methylophaga. Addition of methanol resulted in increased abundance of Methylophaga, which corresponded to the rapid removal of TNT. Methanol enhanced the degradation by providing additional energy and establishing syntrophic association between methanol-utilizing and TNT-utilizing bacteria.
Collapse
Affiliation(s)
- Kankana Kundu
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium.
| | - Josefien Van Landuyt
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Valérie Mattelin
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Bram Martin
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium
| | - Marijke Neyts
- Royal Belgian Institute of Natural Science (RBIN), 3de en 23ste Linieregimentsplein, 8400 Oostende, Belgium
| | - Koen Parmentier
- Royal Belgian Institute of Natural Science (RBIN), 3de en 23ste Linieregimentsplein, 8400 Oostende, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, 9000 Ghent, Belgium; Centre for Advanced Process Technology for Urban Resource recovery (CAPTURE), Ghent, Belgium.
| |
Collapse
|
2
|
Gupta S, Goel SS, Siebner H, Ronen Z, Ramanathan G. Transformation of 2, 4, 6-trinitrotoluene by Stenotrophomonas strain SG1 under aerobic and anaerobic conditions. CHEMOSPHERE 2023; 311:137085. [PMID: 36328316 DOI: 10.1016/j.chemosphere.2022.137085] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
TNT, or 2,4,6-trinitrotoluene, is a common explosive that can contaminate soil and groundwater in production sites, military training areas, and disposal locations. The compound is highly toxic; therefore, there is an urgent need to rehabilitate the impacted environments. Harnessing the microbial ability to biodegrade TNT into environmentally harmless compound(s) is one approach to remediating contaminated sites. In our study, we report on the genomic and metabolic ability of Stenotrophomonas strain SG1 to degrade TNT under aerobic and anaerobic conditions. The bacterial strain SG1 was first isolated as a contaminant from a culture of Diaphorobacter sp. strain DS2 over minimal media supplemented with TNT. The draft genome assembly of strain SG1 is ∼4.7 Mb and is distributed among 358 contigs. The homology search against the custom database of enzymes responsible for TNT biodegradation revealed the presence of three N-ethylmaleimide reductases (NemA) with a defined KEGG ortholog and KEGG pathway of TNT degradation. The presence of respiratory nitrate reductases has also been mapped, which supports denitrification under anaerobic conditions. Experimentally, the TNT transformation rate accelerated when carbon sources, such as sodium acetate, sodium citrate, sodium succinate, sucrose, and glucose (final concentration of 5 mM), were added. Citrate promoted the highest growth and TNT transformation ratio (88.35%) in 120 h. With the addition of 5 mM ammonium chloride, TNT completely disappeared in the citrate and sucrose-containing treatments in 120 h. However, higher biomass was obtained in the sucrose and glucose-containing treatments in 120 h. During incubation, the formation of amino dinitrotoluene isomers, dinitrotoluene isomers, trinitrobenzene, azoxy isomers, diaryl hydroxylamines, and corresponding secondary amines was confirmed by GC/MS and UPLC/MS. 2-Amino-4-nitrotoluene, 4-amino-2-nitrotoluene, and 2-amino-6-nitrotoluene were also identified in the culture supernatant by GC/MS. Under anaerobic conditions, TNT completely disappeared in the citrate and citrate plus nitrate treatments. Since the strain shows the ability to remove TNT, this research should be useful in basic research and practical applications for removing TNT from wastewater.
Collapse
Affiliation(s)
- Swati Gupta
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel; Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Shikhar S Goel
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Hagar Siebner
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sde Boker Campus, 8490000, Israel.
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| |
Collapse
|
3
|
Castillo-Alfonso F, Quintana-Menéndez A, Vigueras-Ramírez G, Sales-Cruz AM, Rosales-Colunga LM, Olivares-Hernández R. Analysis of the Propionate Metabolism in Bacillus subtilis during 3-Indolacetic Production. Microorganisms 2022; 10:microorganisms10122352. [PMID: 36557605 PMCID: PMC9782769 DOI: 10.3390/microorganisms10122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The genera Bacillus belongs to the group of microorganisms that are known as plant growth-promoting bacteria, their metabolism has evolved to produce molecules that benefit the growth of the plant, and the production of 3-indole acetic acid (IAA) is part of its secondary metabolism. In this work, Bacillus subtilis was cultivated in a bioreactor to produce IAA using propionate and glucose as carbon sources in an M9-modified media; in both cases, tryptophan was added as a co-substrate. The yield of IAA using propionate is 17% higher compared to glucose. After 48 h of cultivation, the final concentration was 310 mg IAA/L using propionate and 230 mg IAA/L using glucose, with a concentration of 500 mg Trp/L. To gain more insight into propionate metabolism and its advantages, the genome-scale metabolic model of B. subtilis (iBSU 1147) and computational analysis were used to calculate flux distribution and evaluate the metabolic capabilities to produce IAA using propionate. The metabolic fluxes demonstrate that propionate uptake favors the production of precursors needed for the synthesis of the hormone, and the sensitivity analysis shows that the control of a specific growth rate has a positive impact on the production of IAA.
Collapse
Affiliation(s)
- Freddy Castillo-Alfonso
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Ciudad de México 05370, Mexico
| | - Alejandro Quintana-Menéndez
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Ciudad de México 05370, Mexico
| | - Gabriel Vigueras-Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
| | - Alfonso Mauricio Sales-Cruz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
| | - Luis Manuel Rosales-Colunga
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr Manuel Nava 8, Zona Universitaria, San Luis Potosí 78290, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
- Correspondence:
| |
Collapse
|
4
|
Bilal M, Bagheri AR, Bhatt P, Chen S. Environmental occurrence, toxicity concerns, and remediation of recalcitrant nitroaromatic compounds. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112685. [PMID: 33930637 DOI: 10.1016/j.jenvman.2021.112685] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 06/12/2023]
Abstract
Nitroaromatic compounds (NACs) are considered important groups of chemicals mainly produced by human and industrial activities. The large-scale application of these xenobiotics creates contamination of the water and soil environment. Despite applicability, NACs have been caused severe hazardous side effects in animals and human systems like different cancers, anemia, skin irritation, liver damage and mutagenic effects. The effective remediation of the NACs from the environment is a significant concern. Researchers have implemented physicochemical and biological methods for the remediation of NACs from the environment. Most of the applied methods are based on adsorption and degradation approaches. Among these methods, degradation is considered a versatile method for the subsequent removal of NACs due to its exceptional properties like simplicity, easy operation, cost-effectiveness, and availability. Most importantly, the degradation process does not generate hazardous side products and wastes compared to other methods. Hence, the importance of NACs, their remediation, and supreme attributes of the degradation method have encouraged us to review the recent progress and development for the removal of these perilous materials using degradation as a versatile method. Therefore, in this review, (i) NACs, physicochemical properties, and their hazardous side effects on humans and animals are discussed; (ii) Physicochemical methods, microbial, anaerobic bioremediation, mycoremediation, and aerobic degradation approaches for the degradation of NACs were thoroughly vetted; (iii) The possible mechanisms for degradation of NACs were investigated and discussed. (iv) The applied kinetic models for evaluation of the rate of degradation were also assessed and discussed. Finally, (vi) current challenges and future prospects of proposed methods for degradation and removal of NACs were also directed.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | | | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Zamule SM, Dupre CE, Mendola ML, Widmer J, Shebert JA, Roote CE, Das P. Bioremediation potential of select bacterial species for the neonicotinoid insecticides, thiamethoxam and imidacloprid. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111814. [PMID: 33360286 DOI: 10.1016/j.ecoenv.2020.111814] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Thiamethoxam (THM) and imidacloprid (IMI), are environmentally persistent neonicotinoid insecticides which have become increasingly favored in the past decade due to their specificity as insect neurotoxicants. However, neonicotinoids have been implicated as a potential contributing factor in Colony Collapse Disorder (CCD) which affects produce production on a global scale. The present study characterizes the bioremediation potential of six bacterial species: Pseudomonas fluorescens, Pseudomonas putida, Pseudomonas aeruginosa, Alcaligenes faecalis, Escherichia coli, and Streptococcus lactis. In Phase I, we evaluated the utilization of IMI or THM as the sole carbon or nitrogen source by P. fluorescens, P. putida, and P. aeruginosa. All three species were better able to utilize THM over IMI as their sole carbon or nitrogen source. Thus, further studies proceeded with THM only. In Phase II, we assessed the kinetics of THM removal from aqueous media by the six species. Significant (p < 0.0001) reductions in 70 mg/L THM concentration were observed for P. fluorescens (67%), P. putida (65%), P. aeruginosa (52%), and A. faecalis (39%) over the 24-day study period, and for E. coli (60%) and S. lactis (12%) over the 14-day study period. The THM removal by all species followed a first-order kinetic reaction. HPLC chromatograms of P. fluorescens, P. putida, and E. coli cultures revealed that as the area of the THM peak decreased over time, the area of an unidentified metabolite peak increased. In Phase III, we examined the effect of temperature on the transformation capacity of the bacterial species which was observed at 2 ℃, 22 ℃, and 30 ℃. Maximal THM removal occurred at 30 °C for all bacterial species assessed. Identification of the metabolite is currently underway. If the metabolite is found to be less hazardous than THM, further testing will follow to evaluate the use of this bioremediation technique in the field.
Collapse
Affiliation(s)
- Stephanie M Zamule
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Cassandra E Dupre
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Meghan L Mendola
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Julia Widmer
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Jane A Shebert
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Carol E Roote
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA
| | - Padmini Das
- Nazareth College Department of Biology, 4245 East Avenue, Rochester, NY 14618, USA.
| |
Collapse
|
6
|
Sharma B, Shukla P. Designing synthetic microbial communities for effectual bioremediation: A review. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1813727] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Haryana, India
| |
Collapse
|
7
|
Thijs S, Sillen W, Truyens S, Beckers B, van Hamme J, van Dillewijn P, Samyn P, Carleer R, Weyens N, Vangronsveld J. The Sycamore Maple Bacterial Culture Collection From a TNT Polluted Site Shows Novel Plant-Growth Promoting and Explosives Degrading Bacteria. FRONTIERS IN PLANT SCIENCE 2018; 9:1134. [PMID: 30123233 PMCID: PMC6085565 DOI: 10.3389/fpls.2018.01134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 07/13/2018] [Indexed: 05/23/2023]
Abstract
Military activities have worldwide introduced toxic explosives into the environment with considerable effects on soil and plant-associated microbiota. Fortunately, these microorganisms, and their collective metabolic activities, can be harnessed for site restoration via in situ phytoremediation. We characterized the bacterial communities inhabiting the bulk soil and rhizosphere of sycamore maple (Acer pseudoplatanus) in two chronically 2,4,6-trinitrotoluene (TNT) polluted soils. Three hundred strains were isolated, purified and characterized, a majority of which showed multiple plant growth promoting (PGP) traits. Several isolates showed high nitroreductase enzyme activity and concurrent TNT-transformation. A 12-member bacterial consortium, comprising selected TNT-detoxifying and rhizobacterial strains, significantly enhanced TNT removal from soil compared to non-inoculated plants, increased root and shoot weight, and the plants were less stressed than the un-inoculated plants as estimated by the responses of antioxidative enzymes. The sycamore maple tree (SYCAM) culture collection is a significant resource of plant-associated strains with multiple PGP and catalytic properties, available for further genetic and phenotypic discovery and use in field applications.
Collapse
Affiliation(s)
- Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Wouter Sillen
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Sascha Truyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Bram Beckers
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jonathan van Hamme
- Department of Biological Sciences, Thompson Rivers University, Kamloops, BC, Canada
| | - Pieter van Dillewijn
- Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Pieter Samyn
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Robert Carleer
- Applied and Analytical Chemistry, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nele Weyens
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
8
|
Khilyas IV, Lochnit G, Ilinskaya ON. Proteomic Analysis of 2,4,6-Trinitrotoluene Degrading Yeast Yarrowia lipolytica. Front Microbiol 2017; 8:2600. [PMID: 29312267 PMCID: PMC5744042 DOI: 10.3389/fmicb.2017.02600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/13/2017] [Indexed: 11/28/2022] Open
Abstract
2,4,6-trinitrotoluene (TNT) is a common component of many explosives. The overproduction and extensive usage of TNT significantly contaminates the environment. TNT accumulates in soils and aquatic ecosystems and can primarily be destroyed by microorganisms. Current work is devoted to investigation of Yarrowia lipolytica proteins responsible for TNT transformation through the pathway leading to protonated Meisenheimer complexes and nitrite release. Here, we identified a unique set of upregulated membrane and cytosolic proteins of Y. lipolytica, which biosynthesis increased during TNT transformation through TNT-monohydride-Meisenheimer complexes in the first step of TNT degradation, through TNT-dihydride-Meisenheimer complexes in the second step, and the aromatic ring denitration and degradation in the last step. We established that the production of oxidoreductases, namely, NADH flavin oxidoreductases and NAD(P)+-dependent aldehyde dehydrogenases, as well as transferases was enhanced at all stages of the TNT transformation by Y. lipolytica. The up-regulation of several stress response proteins (superoxide dismutase, catalase, glutathione peroxidase, and glutathione S-transferase) was also detected. The involvement of intracellular nitric oxide dioxygenase in NO formation during nitrite oxidation was shown. Our results present at the first time the full proteome analysis of Y. lipolytica yeast, destructor of TNT.
Collapse
Affiliation(s)
- Irina V Khilyas
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| | - Guenter Lochnit
- Protein Analytics, Institute of Biochemistry, Faculty of Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - Olga N Ilinskaya
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|