1
|
de Moura Junior CF, Ochi D, Calais GB, Rocha Neto JBM, d'Ávila MA, Beppu MM. Electrospun nonwoven fabric of poly(ε-caprolactone)/n-phosphonium chitosan for antiviral applications: Fabrication, characterization, and potential efficacy. Int J Biol Macromol 2024; 278:134861. [PMID: 39163960 DOI: 10.1016/j.ijbiomac.2024.134861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/22/2024]
Abstract
This work reports the virucidal properties of nonwoven fibers developed via electrospinning with polycaprolactone (PCL) and chitosan quaternized with phosphonium salt (NPCS), emphasizing the influence of NPCS concentration on the structure of fibers and their performance against the MHV-3 coronavirus. The addition of NPCS enhances solutions conductivity and viscosity, leading to fibers containing a finer porous structure with a more hydrophilic and smoother surface, thereby making them a potent barrier against respiratory particles, which is a key factor for protective face masks. In terms of degradation, NPCS paced-up the process, suggesting potential environmental benefits. PCL/NPCS (90/10) fibers exhibit a 99 % coronavirus inhibition within a five-minute exposure without cellular toxicity, while also meeting breathability standards for medical masks. These findings suggest the use of NPCS as a promising strategy to design materials with remarkable virucidal performance and physical characteristics that reinforce their use in the field of biomaterials engineering.
Collapse
Affiliation(s)
- Celso Fidelis de Moura Junior
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil
| | - Deise Ochi
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil
| | - Guilherme Bedeschi Calais
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil
| | - João B M Rocha Neto
- Federal University of Alagoas, Center of Technology, Maceió 57072-900, Brazil
| | - Marcos Akira d'Ávila
- School of Mechanical Engineering, Department of Manufacturing and Materials Engineering, University of Campinas, Campinas 13083-860, Brazil
| | - Marisa Masumi Beppu
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil.
| |
Collapse
|
2
|
Schaefer S, Corrigan N, Brunke S, Lenardon MD, Boyer C. Combatting Fungal Infections: Advances in Antifungal Polymeric Nanomaterials. Biomacromolecules 2024; 25:5670-5701. [PMID: 39177507 DOI: 10.1021/acs.biomac.4c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fungal pathogens cause over 6.5 million life-threatening systemic infections annually, with mortality rates ranging from 20 to 95%, even with medical intervention. The World Health Organization has recently emphasized the urgent need for new antifungal drugs. However, the range of effective antifungal agents remains limited and resistance is increasing. This Review explores the current landscape of fungal infections and antifungal drugs, focusing on synthetic polymeric nanomaterials like nanoparticles that enhance the physicochemical properties of existing drugs. Additionally, we examine intrinsically antifungal polymers that mimic naturally occurring peptides. Advances in polymer characterization and synthesis now allow precise design and screening for antifungal activity, biocompatibility, and drug interactions. These antifungal polymers represent a promising new class of drugs for combating fungal infections.
Collapse
Affiliation(s)
- Sebastian Schaefer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Nathaniel Corrigan
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, 07745 Jena, Germany
| | - Megan D Lenardon
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, New South Wales 2052, Australia
| | - Cyrille Boyer
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- Australian Centre for NanoMedicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
3
|
Zhang M, Han F, Duan X, Zheng D, Cui Q, Liao W. Advances of biological macromolecules hemostatic materials: A review. Int J Biol Macromol 2024; 269:131772. [PMID: 38670176 DOI: 10.1016/j.ijbiomac.2024.131772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/02/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Achieving hemostasis is a necessary intervention to rapidly and effectively control bleeding. Conventional hemostatic materials currently used in clinical practice may aggravate the damage at the bleeding site due to factors such as poor adhesion and poor adaptation. Compared to most traditional hemostatic materials, polymer-based hemostatic materials have better biocompatibility and offer several advantages. They provide a more effective method of stopping bleeding and avoiding additional damage to the body in case of excessive blood loss. Various hemostatic materials with greater functionality have been developed in recent years for different organs using diverse design strategies. This article reviews the latest advances in the development of polymeric hemostatic materials. We introduce the coagulation cascade reaction after bleeding and then discuss the hemostatic mechanisms and advantages and disadvantages of various polymer materials, including natural, synthetic, and composite polymer hemostatic materials. We further focus on the design strategies, properties, and characterization of hemostatic materials, along with their applications in different organs. Finally, challenges and prospects for the application of hemostatic polymeric materials are summarized and discussed. We believe that this review can provide a reference for related research on hemostatic materials, contributing to the further development of polymer hemostatic materials.
Collapse
Affiliation(s)
- Mengyang Zhang
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Feng Han
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Xunxin Duan
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China
| | - Dongxi Zheng
- School of Mechanical and Intelligent Manufacturing, Jiujiang University, Jiujiang, Jiangxi, China
| | - Qiuyan Cui
- The Second Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College/Affiliated Hospital of Jiujiang University, Jiujiang, Jiangxi, China; Jiujiang Clinical Precision Medicine Research Center, Jiujiang, Jiangxi, China.
| |
Collapse
|
4
|
de Moura Junior CF, Ochi D, Freitas ED, Kerwald J, d'Ávila MA, Beppu MM. Synthesis and characterization of n-phosphonium chitosan and its virucidal activity evaluation against coronavirus. Int J Biol Macromol 2023; 246:125665. [PMID: 37406900 DOI: 10.1016/j.ijbiomac.2023.125665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Despite the worldwide vaccination effort against COVID-19, the demand for biocidal materials has increased. One promising solution is the chemical modification of polysaccharides, such as chitosan, which can provide antiviral activity through the insertion of cationic terminals. In this study, chitosan was modified with (4-carboxybutyl) triphenylphosphonium bromide to create N-phosphonium chitosan (NPCS), a quaternized derivative. The resulting NPCS samples with three degrees of substitution (15.6 %, 19.8 % and 24.2 %) were characterized and found to have improved solubility in water and alkaline solutions but reduced thermal stability. The particles zeta potential exhibits positive charges and is directly correlated with the degree of substitution of the derivative. In virucidal assays, all NPCS samples were able to inhibit 99.999 % of the MHV-3 coronavirus within 5 min at low concentrations of 0.1 mg/mL, while maintaining low cytotoxicity to L929 cells. In addition to its potential application against current coronavirus strains, NPCS could also be valuable in combating future pandemics caused by other viral pathogens. The antiviral properties of NPCS make it a promising material for use in coating surface and personal protective equipment to limit the spread of disease-causing viruses.
Collapse
Affiliation(s)
- Celso Fidelis de Moura Junior
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil
| | - Deise Ochi
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil
| | - Emanuelle Dantas Freitas
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil
| | - Jonas Kerwald
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil
| | - Marcos Akira d'Ávila
- School of Mechanical Engineering, Department of Manufacturing and Materials Engineering, University of Campinas, Campinas 13083-860, Brazil
| | - Marisa Masumi Beppu
- School of Chemical Engineering, Department of Materials and Bioprocess Engineering, University of Campinas, Av. Albert Einstein, Campinas 13083-852, Brazil.
| |
Collapse
|
5
|
Wang L, Xin M, Li M, Liu W, Mao Y. Effect of the structure of chitosan quaternary phosphonium salt and chitosan quaternary ammonium salt on the antibacterial and antibiofilm activity. Int J Biol Macromol 2023; 242:124877. [PMID: 37182629 DOI: 10.1016/j.ijbiomac.2023.124877] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
N-(4-N', N', N'-trimethylphosphonium chloride) benzoyl chitosan (TMPCS), N-(4-N', N', N'-triphenylphosphonium chloride) benzoyl chitosan (TPPCS), and N-(4-N', N', N'-trimethylmethanaminium chloride) benzoyl chitosan (TMACS) were synthesized. The structures of the products were characterized by Fourier transform infrared spectroscopy, Nuclear magnetic resonance spectroscopy and ultraviolet-visible spectroscopy. Their antibacterial activities against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were investigated in vitro using the antibacterial rate, minimal inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the antibiofilm activity was investigated by crystal violet assay. The antibacterial assessment revealed that the chitosan quaternary phosphonium salts of similar structure had superior antibacterial activity than chitosan quaternary ammonium salt. The antibacterial rate of CS, TMPCS, TPPCS and TMACS against E. coli at 0.5 mg/mL was 10.4 %, 42.0 %, 58.5 % and 21.6 % respectively. At the same concentration, the antibacterial rate of TMPCS, TPPCS and TMACS against S.aureus was all up to 100 %. The biofilm inhibition rate of CS, TMPCS, TPPCS and TMACS at a half of MIC against E.coli was 28.4 %, 33.9 %, 56.6 % and 57.6 % respectively, and against S.aureus was 30.8 %, 53.8 %, 62.2 % and 58.5 % respectively. The biofilm removal rate of CS, TMPCS, TPPCS, TMACS against E.coli at 2.5 mg/mL was 20.6 %, 46.4 %, 48.9 % and 41.6 % respectively, and against S.aureus at 2.5 mg/mL was 41.5 %, 60.4 %, 69.9 % and 59.01 % respectively.
Collapse
Affiliation(s)
- Lin Wang
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Meihua Xin
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Mingchun Li
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China.
| | - Wenfeng Liu
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Yangfan Mao
- The Instrumental Analysis Center, Huaqiao University, Xiamen 361021, PR China
| |
Collapse
|
6
|
Efficiency of Neat and Quaternized-Cellulose Nanofibril Fillers in Chitosan Membranes for Direct Ethanol Fuel Cells. Polymers (Basel) 2023; 15:polym15051146. [PMID: 36904390 PMCID: PMC10007147 DOI: 10.3390/polym15051146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/06/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
In this work, fully polysaccharide based membranes were presented as self-standing, solid polyelectrolytes for application in anion exchange membrane fuel cells (AEMFCs). For this purpose, cellulose nanofibrils (CNFs) were modified successfully with an organosilane reagent, resulting in quaternized CNFs (CNF (D)), as shown by Fourier Transform Infrared Spectroscopy (FTIR), Carbon-13 (C13) nuclear magnetic resonance (13C NMR), Thermogravimetric Analysis (TGA)/Differential Scanning Calorimetry (DSC), and ζ-potential measurements. Both the neat (CNF) and CNF(D) particles were incorporated in situ into the chitosan (CS) membrane during the solvent casting process, resulting in composite membranes that were studied extensively for morphology, potassium hydroxide (KOH) uptake and swelling ratio, ethanol (EtOH) permeability, mechanical properties, ionic conductivity, and cell performance. The results showed higher Young's modulus (119%), tensile strength (91%), ion exchange capacity (177%), and ionic conductivity (33%) of the CS-based membranes compared to the commercial Fumatech membrane. The addition of CNF filler improved the thermal stability of the CS membranes and reduced the overall mass loss. The CNF (D) filler provided the lowest (4.23 × 10-5 cm2 s-1) EtOH permeability of the respective membrane, which is in the same range as that of the commercial membrane (3.47 × 10-5 cm2s-1). The most significant improvement (~78%) in power density at 80 °C was observed for the CS membrane with neat CNF compared to the commercial Fumatech membrane (62.4 mW cm-2 vs. 35.1 mW cm-2). Fuel cell tests showed that all CS-based anion exchange membranes (AEMs) exhibited higher maximum power densities than the commercial AEMs at 25 °C and 60 °C with humidified or non-humidified oxygen, demonstrating their potential for low-temperature direct ethanol fuel cell (DEFC) applications.
Collapse
|
7
|
Liu C, Wu K, Li J, Mu X, Gao H, Xu X. Nanoparticle-mediated therapeutic management in cholangiocarcinoma drug targeting: Current progress and future prospects. Biomed Pharmacother 2023; 158:114135. [PMID: 36535198 DOI: 10.1016/j.biopha.2022.114135] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Patients with cholangiocarcinoma (CCA) often have an unfavorable prognosis because of its insidious nature, low resectability rate, and poor response to anticancer drugs and radiotherapy, which makes early detection and treatment difficult. At present, CCA has a five-year overall survival rate (OS) of only 5%, despite advances in therapies. New an increasing number of evidence suggests that nanoplatforms may play a crucial role in enhancing the pharmacological effects and in reducing both short- and long-term side effects of cancer treatment. This document reviews the advantages and shortcomings of nanoparticles such as liposomes, polymeric nanoparticle,inorganic nanoparticle, nano-metals and nano-alloys, carbon dots, nano-micelles, dendrimer, nano-capsule, bio-Nanomaterials in the diagnosis and treatment of CCA and discuss the current challenges in of nanoplatforms for CCA.
Collapse
Affiliation(s)
- Chunkang Liu
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Kunzhe Wu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jianyang Li
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xupeng Mu
- Department of Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huan Gao
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Guo Y, Wang M, Liu Q, Liu G, Wang S, Li J. Recent advances in the medical applications of hemostatic materials. Theranostics 2023; 13:161-196. [PMID: 36593953 PMCID: PMC9800728 DOI: 10.7150/thno.79639] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
Bleeding caused by trauma or surgery is a serious health problem, and uncontrollable bleeding can result in death. Therefore, developing safe, effective, and convenient hemostatic materials is important. Active hemostatic agents currently used to investigate the field of hemostasis are divided into four broad categories: natural polymers, synthetic polymers, inorganic materials, and metal-containing materials. Hemostatic materials are prepared in various forms for wound care applications based on the active ingredients used. These materials include nanofibers, gels, sponges, and nanoparticles. Hemostatic materials find their applications in the field of wound care, and they are also used for hemostasis during malignant tumor surgery. Prompt and effective hemostasis can reduce the possibility of the spread of tumor cells with blood. This review discusses the outcomes of current research conducted in the field and the problems persisting in the field of developing hemostatic materials. The review also presents a platform for the further development of hemostatic materials. Bleeding caused by trauma or surgery is a serious health problem, and uncontrollable bleeding can result in death. Therefore, developing safe, effective, and convenient hemostatic materials is important. Active hemostatic agents currently used to investigate the field of hemostasis are divided into four broad categories: natural polymers, synthetic polymers, inorganic materials, and metal-containing materials. Hemostatic materials are prepared in various forms for wound care applications based on the active ingredients used. These materials include nanofibers, gels, sponges, and nanoparticles. Hemostatic materials find their applications in the field of wound care, and they are also used for hemostasis during malignant tumor surgery. Prompt and effective hemostasis can reduce the possibility of the spread of tumor cells with blood. This review discusses the outcomes of current research conducted in the field and the problems persisting in the field of developing hemostatic materials. The review also presents a platform for the further development of hemostatic materials.
Collapse
Affiliation(s)
- Yu Guo
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Min Wang
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Qi Liu
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Guoliang Liu
- Department of Operating Theater and Anesthesiology, Jilin University Second Hospital, Changchun, China
| | - Shuang Wang
- Department of the Dermatology, Jilin University Second Hospital, Changchun, China.,✉ Corresponding authors: Shuang Wang, E-mail: , Department of the Dermatology, Jilin University Second Hospital, Changchun, China. Jiannan Li, E-mail: , Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| | - Jiannan Li
- Department of the General Surgery, Jilin University Second Hospital, Changchun, China.,✉ Corresponding authors: Shuang Wang, E-mail: , Department of the Dermatology, Jilin University Second Hospital, Changchun, China. Jiannan Li, E-mail: , Department of the General Surgery, Jilin University Second Hospital, Changchun, China
| |
Collapse
|
9
|
Synthesis, characterization, and biological activities of new conjugates of Guanosine grafted on polyvinyl alcohol, carbohydrate chitosan, and cellulose. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractGuanosine (GU) is a purine nucleoside that has different biological applications. This study aimed to synthesize, characterize, and enhance the biological activities of GU through its covalently grafting on polyvinyl alcohol (PVA), chitosan (CS), and cellulose (CL). In this regard, the conjugation was constructed by different linkers such as chloroacetyl chloride, 2-bromopropionyl bromide, and epichlorohydrin (EPCH). The resulted novel conjugates were characterized by FT-IR, 1H-NMR, GPC, and TGA techniques. FT-IR spectra revealed the main characteristic groups, O–H, N–H, C=O and C=N of GU moieties. Furthermore, 1H-NMR spectra showed the aromatic C–H, O–H, and N–H protons of the grafted GU moieties. Two decomposition stages of grated polymers with high thermal stability are illustrated by TGA. GU showed no antifungal activity against Aspergillus fumigatus and Candida albicans. However, its conjugates: P-1A, P-1B, P-2A, P-2B, P-3A, and P-3B displayed significant antifungal effect with inhibitory zones in the range 8–11 mm. As compared to GU group, most of GU-polymer conjugates showed significant in vivo antitumor activity against EAC-bearing mice via the reduction in total tumor volume. In summary, these conjugates are biologically active macromolecules and may act as candidate carrier systems for other applications such as drug delivery.
Collapse
|
10
|
Chemical modification, electrospinning and biological activities of pluronic F68. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Novel Chitosan Derivatives and Their Multifaceted Biological Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chitosan is a rather attractive material, especially because of its bio-origins as well as generation from exoskeletal waste. As the mantle has been effectively transferred from chitin to chitosan, so has it been extrapolated to in-house synthesized novel chitosan derivatives. This review comprehensively lists the available novel chitosan derivatives (ChDs) and summarizes their biological applications. The fact that chitosan derivatives do comprise multifaceted biological applications is attested by the voluminous reports on their varied contributions. However, this review points out to the fact that there has been selective focus on bio functions such as antifungal, antioxidant, antibacterial, whereas other biomedical applications and antiviral applications remain relatively less explored. With their current functionality record, there is definitely no doubt that the plethora of synthesized ChDs will have a profound impact on the unexplored biological aspects. This review points out this lacuna as room for future exploration.
Collapse
|
12
|
Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture. Polymers (Basel) 2022; 14:polym14050958. [PMID: 35267781 PMCID: PMC8912330 DOI: 10.3390/polym14050958] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chitosan is a biodegradable natural polymer derived from the exoskeleton of crustaceans. Because of its biocompatibility and non-biotoxicity, chitosan is widely used in the fields of medicine and agriculture. With the latest technology and technological progress, different active functional groups can be connected by modification, surface modification, or other configurations with various physical, chemical, and biological properties. These changes can significantly expand the application range and efficacy of chitosan polymers. This paper reviews the different uses of chitosan, such as catheter bridging to repair nerve broken ends, making wound auxiliaries, as tissue engineering repair materials for bone or cartilage, or as carriers for a variety of drugs to expand the volume or slow-release and even show potential in the fight against COVID-19. In addition, it is also discussed that chitosan in agriculture can improve the growth of crops and can be used as an antioxidant coating because its natural antibacterial properties are used alone or in conjunction with a variety of endophytic bacteria and metal ions. Generally speaking, chitosan is a kind of polymer material with excellent development prospects in medicine and agriculture.
Collapse
|
13
|
El‐Naggar SA, El‐Barbary AA, Salama WM, Elkholy HM. Synthesis, characterization, and biological activities of folic acid conjugates with polyvinyl alcohol, chitosan, and cellulose. J Appl Polym Sci 2022. [DOI: 10.1002/app.52250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - Wesam M. Salama
- Zoology Department, Faculty of Science Tanta University Tanta Egypt
| | - Hazem M. Elkholy
- Chemistry Department, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
14
|
Khan A, Alamry KA. Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydr Res 2021; 506:108368. [PMID: 34111686 DOI: 10.1016/j.carres.2021.108368] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 05/29/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is the most abundant natural biopolymer, after cellulose. It is mainly derived from the fungi, shrimp's shells, and exoskeleton of crustaceans, through the deacetylation of chitin. The ecological sustainability associated with its exercise and the flexibility of chitosan owing to its active functional hydroxyl and amino groups makes it a promising candidate for a wide range of applications through a variety of modifications. The biodegradability and biocompatibility of chitosan and its derivatives along with their various chemical functionalities make them promising carriers for pharmaceutical, nutritional, medicinal, environmental, agriculture, drug delivery, and biotechnology applications. The present work aims to provide a detailed and organized description of modified chitosan and its derivatives-based nanomaterials for biomedical applications. We addressed the biological and physicochemical benefits of nanocomposite materials made up of chitosan and its derivatives in various formulations, including improved physicochemical stability and cells/tissue interaction, controlled drug release, and increased bioavailability and efficacy in clinical practice. Moreover, several modification techniques and their effective utilization are also reviewed and collected in this review.
Collapse
Affiliation(s)
- Ajahar Khan
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Khalid A Alamry
- Faculty of Science, Department of Chemistry, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
15
|
de Almeida WS, da Silva DA. Does polysaccharide quaternization improve biological activity? Int J Biol Macromol 2021; 182:1419-1436. [PMID: 33965482 DOI: 10.1016/j.ijbiomac.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 12/19/2022]
Abstract
The natural polysaccharides, due to their structural diversity, commonly present very distinct solubility and physical chemical properties and additionally have intrinsic biological activities that, gene-rally, reveal themselves in a light way. The chemical modification of the molecular structure can improve these parameters. In this review, original articles that approached the quaternization of polysaccharides for purposes of biological application were selected, without limitation of year of publication, in the databases Scopus, Web of Science and PubMed. The results obtained from the bibliographic survey indicate that the increase in positive charges caused by quaternization improves the interaction between modified polysaccharides and structures that have negative charges on their surface, such as the cell wall of microorganisms and some cells in the human body, such as the DNA. This greater interaction is reflected as an increase in the biological activity of all polysaccharides broached in this study. Another important data obtained was the fact that the chemical changes did not affect or irrelevantly affect the toxicity of almost all of the polysaccharides that were quaternized. Therefore, polysaccharide quaternization is a safe and effective way to obtain improvements in the biological behavior of these macromolecules.
Collapse
Affiliation(s)
- Wanessa Sales de Almeida
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil.
| | - Durcilene Alves da Silva
- Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade Federal do Piauí, Campus Ministro Petrônio Portela, 64049-550 Teresina, PI, Brazil; Núcleo de Pesquisa em Biotecnologia e Biodiversidade, Universidade Federal do Delta do Parnaíba, Brazil.
| |
Collapse
|
16
|
Jessima SJHM, S S, Berisha A, Oral A, Srikandan SS. Corrosion mitigation performance of disodium EDTA functionalized chitosan biomacromolecule - Experimental and theoretical approach. Int J Biol Macromol 2021; 178:477-491. [PMID: 33636273 DOI: 10.1016/j.ijbiomac.2021.02.166] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 11/29/2022]
Abstract
Disodium ethylenediaminetetraacetate salt is known for its excellent coordinating properties with the metal ions. The present study deals with the investigation of the prepared Disodium EDTA functionalized chitosan in corrosion inhibition for mild steel in 1 M HCl. The modified chitosan was characterized by spectral studies, thermal analysis, and Zeta potential studies. The corrosion inhibition efficiency (%) was evaluated using the gravimetric method and electrochemical studies. The electrochemical studies included potentiodynamic polarization, linear polarization resistance, and electrochemical impedance methods. The modified chitosan polymer showed an inhibition efficiency of 96.63% for 500 ppm at 303 K. Adsorption process obeyed Langmuir isotherm. Experimental results and theoretical calculations endorsed initial physisorption followed by a chemisorption process. Surface characterization studies supported the formation of a protective film that enabled the inhibition process. Density functional theory, Monte Carlo studies, and molecular dynamics simulation studies show a good agreement with the experimental results. Two-way Analysis of Variance was performed to test the influence of immersion period and inhibitor concentration on the corrosion rate using the statistical software IBM SPSS 20.0. A quartic model was generated as the best fit with the highest R2 value of 0.973. Design Expert software was employed for statistical modeling fit.
Collapse
Affiliation(s)
- S J Hepziba Magie Jessima
- Department of Chemistry, CHRIST (Deemed to be University), Bengaluru-560029, India; Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women (Deemed to be University), Coimbatore-641043, India.
| | - Subhashini S
- Department of Chemistry, Avinashilingam Institute for Home Science and Higher Education for Women (Deemed to be University), Coimbatore-641043, India
| | - Avni Berisha
- Chemistry Department of Natural Sciences Faculty, University of Prishtina, rr. "NënaTereze" nr.5, 10000, Prishtina, Kosovo; Materials Science - Nanochemistry Research Group, NanoAlb - Unit of Albanian Nanoscience and Nanotechnology, Tirana, Albania
| | - Ayhan Oral
- Department of Chemistry, Faculty of Sciences and Arts, CanakkaleOnsekiz Mart University, 17020, Canakkale, Turkey
| | | |
Collapse
|
17
|
Muthukrishnan L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr Polym 2021; 260:117774. [PMID: 33712131 DOI: 10.1016/j.carbpol.2021.117774] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/16/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
3D printing, one of its kinds has been a recent technological trend to fabricate complex and patterned biomaterial with controlled precision. With the conventional kick-start of printing metals and plastics, advancements in printing viable cells, polysaccharides or microbes themselves have been achieved. The additive antimicrobial properties in bioinks sourced from organic and inorganic materials have profound implications in tissue engineering. Cellulose, alginate, exopolysaccharides, ceramics and synthetic polymers are integrated as a viable component in inks and used for bio-printing. To date, bacterial infection and immunogenicity pose a potential health risk during a tissue implant or bone substitution. In order to mitigate microbial infection, antimicrobial bioinks with significant antimicrobial potential have been the much sought after strategies. This approach could be an effective frontline defense against microbial interference in tissue engineering and biomedical applications. An overview on the antimicrobial potential of polysaccharides as bioinks for 3D bioprinting has been critically reviewed.
Collapse
Affiliation(s)
- Lakshmipathy Muthukrishnan
- Department of Conservative Dentistry & Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai, Tamil Nadu, 600 077, India.
| |
Collapse
|
18
|
An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers (Basel) 2020; 12:polym12122878. [PMID: 33266285 PMCID: PMC7759937 DOI: 10.3390/polym12122878] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Chitosan, a chitin-derivative polysaccharide, known for its non-toxicity, biocompatibility and biodegradability, presents limited applications due to its low solubility in neutral or basic pH medium. Quaternization stands out as an alternative to modify this natural polymer, aiming to improve its solubility over a wide pH range and, consequently, expand its range of applications. Quaternization occurs by introducing a quaternary ammonium moiety onto or outside the chitosan backbone, via chemical reactions with primary amino and hydroxyl groups, under vast experimental conditions. The oldest and most common forms of quaternized chitosan involve N,N,N-trimethyl chitosan (TMC) and N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) and, more recently, quaternized chitosan by insertion of pyridinium or phosphonium salts. By modifying chitosan through the insertion of a quaternary moiety, permanent cationic charges on the polysaccharide backbone are achieved and properties such as water solubility, antimicrobial activity, mucoadhesiveness and permeability are significantly improved, enabling the application mainly in the biomedical and pharmaceutical areas. In this review, the main quaternized chitosan compounds are addressed in terms of their structure, properties, synthesis routes and applications. In addition, other less explored compounds are also presented, involving the main findings and future prospects regarding the field of quaternized chitosans.
Collapse
|
19
|
Maity J, Chowdhury AH, Islam SM, Bala T. A facile route to transfer Cu nanoparticles to organic medium for better stabilization and improved photocatalytic activity towards N-formylation reaction. NANOTECHNOLOGY 2020; 31:395605. [PMID: 32438351 DOI: 10.1088/1361-6528/ab9574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cu nanoparticles were prepared in an aqueous phase by means of a simple reduction-route using sodium borohydride as the reducing agent in the presence of ascorbic acid and polyvinylpyrrolidone (PVP). The hydrosol of the Cu nanoparticles deteriorated within a day. It compelled to initiate a scheme to stabilize the nanoparticles for a long period of time. Phase transfer to organic solvents using Benzyldimethylstearylammonium chloride (BDSAC) as a phase transfer agent was found to be an effective path in this respect. BDSAC performed the dual role of dragging the Cu nanoparticles from water to organic solvent and also acted as a capping agent along with PVP for better stabilization of Cu nanoparticles. The organosol of the Cu nanoparticles exhibited excellent stability and promising catalytic activity towards N-formylation reactions on a number of amine substrates in presence of visible green LED light. The yield and reusability of the catalyst were promising. All the samples were thoroughly characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, energy dispersive analysis of x-rays, x-ray photoelectron spectroscopy and thermo gravimetric analysis.
Collapse
Affiliation(s)
- Jayeta Maity
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | | | | | | |
Collapse
|
20
|
Advancement on modification of chitosan biopolymer and its potential applications. Int J Biol Macromol 2020; 152:681-702. [DOI: 10.1016/j.ijbiomac.2020.02.196] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 01/22/2023]
|
21
|
Xie YL, Jiang W, Li F, Zhang Y, Liang XY, Wang M, Zhou X, Wu SY, Zhang CH. Controlled Release of Spirotetramat Using Starch-Chitosan-Alginate-Encapsulation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 104:149-155. [PMID: 31784766 DOI: 10.1007/s00128-019-02752-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
This study was intended to develop an environment-friendly controlled release system for spirotetramat in an alginate matrix. Four formulations, starch-chitosan-calcium alginate (SCCA), starch-calcium alginate (SCA), chitosan-calcium alginate (CCA), and calcium alginate (CA) complex gel beads, were prepared by the extrusion-exogenous gelation method. The properties of the formulations were studied. The results showed that the release behaviors of the formulations in water could be well described by the logistic model, and the release occurred through Fickian diffusion. Among the four formulations, SCCA showed the highest entrapment efficiency, drug loading and the slowest release rate. Degradation studies revealed that the SCCA formulation exhibited an obvious slower degradation rate of spirotetramat in soils than the commercially available formulation. The estimated half-life of the SCCA formulation was 2.31, 3.25, and 4.51 days in waterloggogenic paddy soil, purplish soil, and montmorillonite, respectively, when the soils were moistened to 60% of its dry weight. This study provided a possible approach to prolong the duration of spirotetramat and to reduce environmental contamination.
Collapse
Affiliation(s)
- Yan-Li Xie
- College of Ecology and Environment, Hainan University, Haikou, 570228, China
- Analysis and Testing Center, Hainan University, Haikou, 570228, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
| | - Wayne Jiang
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA
| | - Fen Li
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Yu Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Xiao-Yu Liang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Meng Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
- College of Plant Protection, Hainan University, Haikou, 570228, China
| | - Xueqing Zhou
- Analysis and Testing Center, Hainan University, Haikou, 570228, China
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China
| | - Shao-Ying Wu
- College of Plant Protection, Hainan University, Haikou, 570228, China.
| | - Cheng-Hui Zhang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products (Haikou), Ministry of Agriculture, Haikou, 571101, China.
| |
Collapse
|
22
|
Wei L, Tan W, Wang G, Li Q, Dong F, Guo Z. The antioxidant and antifungal activity of chitosan derivatives bearing Schiff bases and quaternary ammonium salts. Carbohydr Polym 2019; 226:115256. [PMID: 31582056 DOI: 10.1016/j.carbpol.2019.115256] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 06/01/2019] [Accepted: 08/26/2019] [Indexed: 12/18/2022]
Abstract
In order to improve the antioxidant and antifungal activity of chitosan, eight chitosan derivatives containing Schiff bases and quaternary ammonium salts were synthesized via an intermediate 6-O-chloroacetyl-2-N,N,N-trimethyl quaternary ammonium salt chitosan. Detailed structural characterization was carried out using FTIR and 1H NMR spectroscopy, and elemental analysis. The antifungal activity against F. oxysporum f. sp. cucumerium, B. cinerea, and F. oxysporum f. sp. niveum was evaluated using a mycelium growth rate test. The results indicated that the chitosan derivatives exhibited enhanced antifungal activity when compared to chitosan, especially at 1.0 mg/mL. 6-[4-(2,3-dihydroxyl-benzimide) pyridine] acetyl-2-N,N,N-trimethyl-chitosan chloride (2.3HBPATC), 6-[4-(2,3,4-trihydroxyl-benzimide) pyridine] acetyl-2-N,N,N-trimethyl-chitosan chloride (2.3.4HBPATC), 6-[4-(2-fluorine-benzimide) pyridine] acetyl-2-N,N,N-trimethyl-chitosan chloride (FBPATC), 6-[4-(2-chlorine-benzimide) pyridine] acetyl-2-N,N,N-trimethyl-chitosan chloride (CBPATC), 6-[4-(2-bromine-benzimide) pyridine] acetyl-2-N,N,N-trimethyl-chitosan chloride (BBPATC), and 6-[4-(2-hydroxyl-4-chlorine-benzimide) pyridine] acetyl-2-N,N,N-trimethyl-chitosan chloride (HCBPATC) showed inhibitory indices >90.0% at 1.0 mg/mL against F. oxysporum f. sp. cucumerium and B. cinerea. Furthermore, the chitosan derivatives showed stronger antioxidant activity than chitosan, especially 2.3HBPATC and 2.3.4HBPATC with inhibitory indices of 100.0% at 1.6 mg/mL against DPPH and superoxide radicals. Based on these data, it is reasonable to suggest that the introduction of phenolic hydroxyl and halogen groups enhances the antifungal and antioxidant activity of chitosan.
Collapse
Affiliation(s)
- Lijie Wei
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenqiang Tan
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Gang Wang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Fang Dong
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Zhanyong Guo
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
23
|
Safari S, Alam MS, von Gunten K, Samborsky S, Alessi DS. Inhibition of naphthalene leaching from municipal carbonaceous waste by a magnetic organophilic clay. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:578-583. [PMID: 30711706 DOI: 10.1016/j.jhazmat.2019.01.088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/23/2019] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Municipal solid waste conversion into biofuels via gasification is one of the latest technologies to divert waste from landfills. The byproduct of the process is a carbonaceous material, which is often tainted with polycyclic aromatic hydrocarbons (PAH) such as naphthalene that can leach into the environment and have toxic effects on aquatic organisms. In this paper, we present a novel method to address the issue of leachable naphthalene in a carbonaceous waste produced from a gasification process, using a magnetic sorbent. The sorbent was fabricated by the coprecipitation of iron oxide nanoparticles on an organophilic clay under atmospheric conditions. The characterization results show that the intercalated nanoparticles are predominantly magnetite with a diameter of 15-20 nm, and increase the clay specific surface area from 0.4 to 17 m2 g-1. Toxicity characteristic leaching procedure results indicate that the magnetic composite has a high naphthalene inhibition efficiency comparable to that of the original clay. As opposed to the clay alone, the magnetic hybrid can be separated from the carbonaceous waste with a magnet, regenerated by heat treatment, and reused without compromising its naphthalene removal efficiency. Thus, these composites may provide a cost-effective method to curtail leaching of PAH from contaminated carbonaceous waste.
Collapse
Affiliation(s)
- Salman Safari
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada.
| | - Md Samrat Alam
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | - Konstantin von Gunten
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| | | | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta T6G 2E3, Canada
| |
Collapse
|
24
|
Zhang W, Li Q, Mao Q, He G. Cross-linked chitosan microspheres: An efficient and eco-friendly adsorbent for iodide removal from waste water. Carbohydr Polym 2019; 209:215-222. [DOI: 10.1016/j.carbpol.2019.01.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/04/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
|
25
|
Evaluation of the potential application of cactus (Opuntia ficus-indica) as a bio-coagulant for pre-treatment of oil sands process-affected water. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.09.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Lin Y, Zhong W, Dong C, Zhang C, Feng X, Zhang A. Synthesis and Antifungal Activities of Amphiphilic PDMS-b-QPDMAEMA Copolymers on Rhizoctonia solani. ACS APPLIED BIO MATERIALS 2018; 1:2062-2072. [DOI: 10.1021/acsabm.8b00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yaling Lin
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 Guangdong, China
| | - Weiqiang Zhong
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Chenyun Dong
- College of Materials and Energy, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 Guangdong, China
| | - Chang Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Xixiang Feng
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| | - Anqiang Zhang
- School of Materials Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510641 Guangdong, China
| |
Collapse
|
27
|
Lin L, Zhu Y, Li C, Liu L, Surendhiran D, Cui H. Antibacterial activity of PEO nanofibers incorporating polysaccharide from dandelion and its derivative. Carbohydr Polym 2018; 198:225-232. [PMID: 30092994 DOI: 10.1016/j.carbpol.2018.06.092] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 02/02/2023]
Abstract
A water-soluble antibacterial polysaccharide from dandelions (PD) was chemically modified to obtain its carboxymethylated derivative (CPD). The degree of substitution of CPD was 0.455. Fourier transform infrared (FTIR) spectra analysis, zeta potential, particle size and rheological test verified the carboxymethylation of PD, accompanying with the change of physicochemical properties. Moreover, Listeria monocytogenes treated with 10 mg/mL PD and CPD achieved 1.96 and 3.29 log CFU/mL reduction in population, respectively. Subsequently, PD and CPD were incorporated into polyethylene oxide (PEO) nanofiber matrix to fabricate antimicrobial nanofibers. The prepared nanofibers were characterized by scanning electron microscope, atomic force microscope and FTIR. Finally, both PD/PEO and CPD/PEO nanofibers exhibited favourable antibacterial effect on L. monocytogenes, with an improved antibacterial activity of CPD/PEO nanofibers than PD/PEO nanofibers. In conclusion, this study demonstrated PD and CPD could be applied to the fabrication of antibacterial food packaging.
Collapse
Affiliation(s)
- Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yulin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changzhu Li
- Department of Bioresource, Hunan Academy of Forestry, Changsha 410007, China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China
| | | | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|