1
|
Wang S, Li C, Zhang C, Liu G, Zheng A, Qiu K, Chang W, Chen Z. Effects of Sihuang Zhili Granules on the Diarrhea Symptoms, Immunity, and Antioxidant Capacity of Poultry Challenged with Lipopolysaccharide (LPS). Antioxidants (Basel) 2023; 12:1372. [PMID: 37507912 PMCID: PMC10376454 DOI: 10.3390/antiox12071372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
A growing interest has been focused on Chinese herbs as alternatives to antimicrobial growth promoters, which are characterized by non-toxic side effects and drug resistance. The purpose of this study was to evaluate the effects of the Sihuang Zhili granule (abbreviated as Sihuang) on diarrhea, immunity, and antioxidation in poultry. Thirty male Leghorn chickens, aged 21 days, were randomly assigned to one of three groups with ten animals each. The control group (CON) received intraperitoneal saline injections, while the LPS-challenged group (LPS) and Sihuang intervention group (SH) received intraperitoneal injections of LPS (0.5 mg/kg of BW) and Sihuang (5 g/kg) at d 31, d 33, d 35, respectively. The control and LPS groups were fed a basal diet, while the SH group was fed a diet supplemented with Sihuang from d 21 to d 35. Analysis of the diarrhea index showed that the addition of Sihuang inhibited the increase in the diarrhea grade and the fecal water content caused by LPS, effectively alleviating poultry diarrhea symptoms. The results of the immune and antioxidant indexes showed that Sihuang significantly reduced the contents of the pro-inflammatory factors TNF- α and IL-1 β, as well as the oxidative stress markers ROS and MDA. Conversely, it increased the contents of the anti-inflammatory factors IL-4 and IL-10, along with the activities of antioxidant enzymes GSH-Px and CAT, thereby enhancing the immune and antioxidant abilities of chickens. Furthermore, Sihuang protected the chicken's ileum, liver, and immune organs from LPS invasion and maintained their normal development. In conclusion, this study confirmed the antidiarrheal effect of Sihuang in poultry farming and demonstrated its ability to improve poultry immunity and antioxidant capacity by modulating antioxidant enzyme activity and inflammatory cytokine levels.
Collapse
Affiliation(s)
- Shaolong Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Chong Li
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
- Precision Livestock and Nutrition Laboratory, Teaching and Research Centre (TERRA), Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - Chaosheng Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Aijuan Zheng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Kai Qiu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Zhimin Chen
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Purwaningsih I, Maksum IP, Sumiarsa D, Sriwidodo S. A Review of Fibraurea tinctoria and Its Component, Berberine, as an Antidiabetic and Antioxidant. Molecules 2023; 28:1294. [PMID: 36770960 PMCID: PMC9919506 DOI: 10.3390/molecules28031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Diabetes mellitus is a group of metabolic disorders characterized by hyperglycemia caused by resistance to insulin action, inadequate insulin secretion, or excessive glucagon production. Numerous studies have linked diabetes mellitus and oxidative stress. People with diabetes usually exhibit high oxidative stress due to persistent and chronic hyperglycemia, which impairs the activity of the antioxidant defense system and promotes the formation of free radicals. Recently, several studies have focused on exploring natural antioxidants to improve diabetes mellitus. Fibraurea tinctoria has long been known as the native Borneo used in traditional medicine to treat diabetes. Taxonomically, this plant is part of the Menispermaceae family, widely known for producing various alkaloids. Among them are protoberberine alkaloids such as berberine. Berberine is an isoquinoline alkaloid with many pharmacological activities. Berberine is receiving considerable interest because of its antidiabetic and antioxidant activities, which are based on many biochemical pathways. Therefore, this review explores the pharmacological effects of Fibraurea tinctoria and its active constituent, berberine, against oxidative stress and diabetes, emphasizing its mechanistic aspects. This review also summarizes the pharmacokinetics and toxicity of berberine and in silico studies of berberine in several diseases and its protein targets.
Collapse
Affiliation(s)
- Indah Purwaningsih
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
- Department of Medical Laboratory Technology, Poltekkes Kemenkes Pontianak, Pontianak 78124, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Dadan Sumiarsa
- Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
3
|
Gao Y, Li JT, Li X, Li X, Yang SW, Chen NH, Li L, Zhang L. Tetrahydroxy stilbene glycoside attenuates acetaminophen-induced hepatotoxicity by UHPLC-Q-TOF/MS-based metabolomics and multivariate data analysis. J Cell Physiol 2021; 236:3832-3862. [PMID: 33111343 DOI: 10.1002/jcp.30127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/26/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022]
Abstract
Tetrahydroxy stilbene glycoside (TSG) is a main active compound in Polygonum multiflorum. Acetaminophen (APAP) is a well-known analgesic and antipyretic drug. It is considered to be safe within a therapeutic range, in case of acute intoxication hepatotoxicity occurs. This present study aims to observe TSG-provided alleviation on APAP-induced hepatoxicity in C57BL/6 mice. APAP performs extensive necrosis and dissolves nucleus suggesting liver damage from hepatic histopathology. Serum alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and alkaline phosphatase analysis and liver histological evaluation showed that TSG reduced the hepatotoxicity induced by a toxic dose of APAP. Moreover, TSG alone had no hepatotoxicity. TSG eliminated hepatic glutathione depletion and cysteine adducts formation. It also reduced the expression of interleukin-10 and lowered the production of reactive oxygen species in liver tissues. Luminex was used to detect cytokine production in different groups. Herein, we used an untargeted metabolomics approach by performing ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry on treated mice to identify metabolic disruptions under APAP and TSG. Major alterations were observed for purine metabolism, amino acid metabolism, and fatty acid metabolism. These data provide metabolic evidence and biomarkers in the liver that the ABC transporters, Glycine serine and threonine metabolism, and Choline metabolism in cancer changed the most. These targets of metabolites have the potential to improve our understanding of homeostatic. Meanwhile, these metabolites revealed that TSG can alleviate inflammation caused by APAP and promote the activity of intrinsic antioxidants. In summary, TSG can regulate lipid metabolism, promote the production of antioxidant enzymes, and decrease the inflammatory response.
Collapse
Affiliation(s)
- Yan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun-Tong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Xun Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Song-Wei Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Rolle J, Asante DO, Kok-Fong LL, Boucetta H, Seidu TA, Tai LLK, Alolga RN. Jatrorrhizine: a review of its pharmacological effects. J Pharm Pharmacol 2021; 73:709-719. [PMID: 33822109 DOI: 10.1093/jpp/rgaa065] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Jatrorrhizine is an isoquinoline alkaloid found in medicinal plants. It is the main bioactive compound of the Chinese herbs, Coptis chinensis, Rhizoma coptidis, and Phellodendron chinense Schneid, plants that are predominantly used in traditional Chinese medicine (TCM) for the treatment of metabolic disorders, gastritis, stomachache among a host of others. This manuscript aims to provide a comprehensive review of the pharmacological effects of jatrorrhizine, proffer suggestions on research areas that need redress and potentially serve as a reference for future studies. KEY FINDINGS Published scientific literature was therefore retrieved from all credible sources including Pubmed, Elsevier, Research Gate, Web of Science, Google Scholar, Science Direct, Europe PMC and Wiley Online library using key words such as 'jatrorrhizine', 'botanical sources', 'pharmacology', 'toxicology', 'pharmacokinetics' or their combinations. A cursory examination of relevant scientific literature using the aforementioned key words produced more than 400 publications. CONCLUSIONS Using an inclusion/exclusion criteria the subject matter of this review was adequately addressed. It is our hope that this review will provide a good platform for further research on fully harnessing the potential of this bioactive compound.
Collapse
Affiliation(s)
- Janiqua Rolle
- School of Engineering, China Pharmaceutical University, Nanjing, China
| | - Dorothy O Asante
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Linsey L Kok-Fong
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hamza Boucetta
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Theodora A Seidu
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lesieli L K Tai
- School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Raphael N Alolga
- Department of Pharmacognosy, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
5
|
The pharmacological activity of berberine, a review for liver protection. Eur J Pharmacol 2020; 890:173655. [PMID: 33068590 DOI: 10.1016/j.ejphar.2020.173655] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022]
Abstract
Liver plays an important role in bile synthesis, metabolic function, degradation of toxins, new substances synthesis in body. However, hepatopathy morbidity and mortality are increasing year by year around the world, which become a major public health problem. Traditional Chinese medicine (TCM) has a prominent role in the treatment of liver diseases due to its definite curative effect and small side effects. The hepatoprotective effect of berberine has been extensively studied, so we comprehensively summarize the pharmacological activities of lipid metabolism regulation, bile acid adjustment, anti-inflammation, oxidation resistance, anti-fibrosis and anti-cancer and so on. Besides, the metabolism and toxicity of berberine and its new formulations to improve its effectiveness are expounded, providing a reference for the safe and effective clinical use of berberine.
Collapse
|
6
|
Ning H, Lu W, Jia Q, Wang J, Yao T, Lv S, Li Y, Wen H. Discovery of oxyepiberberine as a novel tubulin polymerization inhibitor and an anti-colon cancer agent against LS-1034 cells. Invest New Drugs 2020; 39:386-393. [PMID: 32997210 DOI: 10.1007/s10637-020-01006-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
Coptis chinensis Franch. has been extensively used in traditional Chinese medicine. The chemical structure of oxyepiberberine, as an alkaloid isolated from Coptis chinensis Franch., has been previously studied. However, anti-cancer effects and underlying mechanisms of oxyepiberberine need to be explored. This study aimed to investigate the anti-cancer effects and underlying mechanisms of oxyepiberberine on LS-1034 human colon cancer cells. The anti-proliferative effects of six derivatives of oxyepiberberine on colon cancer cells were assessed. Among six derivatives, oxyepiberberine showed the greatest anti-proliferative effect on LS-1034 cells with an IC50 value of 1.36 μM. Oxyepiberberine also induced apoptosis and inhibited migration of LS-1034 cells in a concentration-dependent manner. Importantly, oxyepiberberine was identified as a potent tubulin polymerization inhibitor. The tubulin polymerization inhibitory effects of oxyepiberberine in a concentration-dependent manner with an IC50 value of 1.26 μM were observed. A xenograft mouse model of colon cancer showed that oxyepiberberine could suppress tumor growth without an obvious toxicity. Conclusion Oxyepiberberine was found as a novel tubulin polymerization inhibitor, and it could be a promising agent to treat colon cancer.
Collapse
Affiliation(s)
- Hanbing Ning
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Wenquan Lu
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qiaoyu Jia
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jingyun Wang
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tingting Yao
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shuai Lv
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yingxia Li
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongtao Wen
- Department of Digestive Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
7
|
Wang X, Rezeng C, Wang Y, Li J, Zhang L, Chen J, Li Z. Toxicological Risks of Renqingchangjue in Rats Evaluated by 1H NMR-Based Serum and Urine Metabolomics Analysis. ACS OMEGA 2020; 5:2169-2179. [PMID: 32064377 PMCID: PMC7016918 DOI: 10.1021/acsomega.9b03084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/17/2020] [Indexed: 05/09/2023]
Abstract
Renqingchangjue (RQCJ), a kind of Traditional Tibetan Medicine, has been widely utilized to treat various gastroenteritis diseases. However, the biosafety and toxicity of RQCJ was still indefinite because of toxic components in RQCJ, which included a variety of heavy metals. Thus, this study was aimed to evaluate the toxicity and expound the toxicological mechanism of RQCJ. In this study, rats were intragastrically administered with different doses of RQCJ for 15 days, and then, the restorative observation period lasted for 15 days. Liver and kidney tissues were collected for histopathological examination, and simultaneously serum and urine samples were collected for 1H nuclear magnetic resonance (1H NMR) spectroscopy analysis and biochemical analysis combined with inductively coupled plasma mass spectrometry (ICP-MS) measurement. The 1H NMR-based metabolomics analysis revealed that the administration of RQCJ significantly altered the concentrations of 14 serum metabolites and 14 urine metabolites, which implied disturbances in energy metabolism, amino acid metabolism, intestinal flora environment, and membrane damage. Besides, the biochemical analysis of serum samples was consistent with the histopathological results, which indicated slight hepatotoxicity and nephrotoxicity. The quantification of As and Hg in urine and serum samples by ICP-MS provided more evidence about the toxicity of RQCJ. This work provided an effective method to systematically and dynamically evaluate the toxicity of RQCJ and suggested that precautions should be taken in the clinic to monitor the potential toxicity of RQCJ.
Collapse
Affiliation(s)
- Xia Wang
- Department
of Chemistry, Capital Normal University, No. 105, Xisanhuanbeilu, Haidian District, Beijing 100048, PR China
| | - Caidan Rezeng
- College
of Pharmacy, Qinghai Nationalities University, No. 3 Bayizhong Road, Xining 810000, PR China
| | - Yingfeng Wang
- Department
of Chemistry, Capital Normal University, No. 105, Xisanhuanbeilu, Haidian District, Beijing 100048, PR China
| | - Jian Li
- Beijing
University of Chinese Medicine, No. 11 Beisanhuandonglu, Chaoyang District, Beijing 100029, PR China
| | - Lan Zhang
- Department
of Chemistry, Capital Normal University, No. 105, Xisanhuanbeilu, Haidian District, Beijing 100048, PR China
| | - Jianxin Chen
- Beijing
University of Chinese Medicine, No. 11 Beisanhuandonglu, Chaoyang District, Beijing 100029, PR China
| | - Zhongfeng Li
- Department
of Chemistry, Capital Normal University, No. 105, Xisanhuanbeilu, Haidian District, Beijing 100048, PR China
| |
Collapse
|
8
|
Li J, Fan G, He Y. Predicting the current and future distribution of three Coptis herbs in China under climate change conditions, using the MaxEnt model and chemical analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134141. [PMID: 31505366 DOI: 10.1016/j.scitotenv.2019.134141] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 05/21/2023]
Abstract
The rhizomes of Coptis chinensis Franch., Coptis deltoidea C. Y. Cheng et Hsiao and Coptis teeta Wall, are sources of renowned traditional Chinese medicines. Recently, human activities and climate change has caused degeneration of the natural habitats of these pharmacological plants. Analyzing the impact of climate change on the possible distribution of Coptis herbs is essential for their future conservation and domestication. The purpose of this study was to predict the potential distribution of these valuable plants and identify the potential effects of climate change on three Coptis species, using of species distribution modeling (SDM). In this study, we first predict the distribution size variations of the three plant species, under present and future conditions. Secondly, we carried out field sampling of these three species and analyzed the chemical composition by high performance liquid chromatography (HPLC). Results show that the predicted distributions of all three Coptis herbs were not limit to the reported regions, but also cover other potential areas. Among the environmental variables, annual precipitation range (Bio2) induced the largest impact on SDMs for C. chinensis (72.2%) and C. deltoidea (37.9%), while C. teeta was more significantly affected by isothermally (Bio3, 39.2%). When comparing the possible future distribution to the present distribution of these species, a decreasing tendency was observed in the highly suitable areas of C. chinensis and the generally suitable areas of C. teeta, indicating that the environmental changes would affect the distribution of these two species. In addition, the average alkaloid content was found to be the highest in highly suitable areas, while it was decreased in moderately and generally suitable areas, indicating that alkaloid content may be related to environmental factors. In summary, these findings improve our understanding of the ecological impact of climate on the distribution of three Coptis species.
Collapse
Affiliation(s)
- Junjun Li
- College of Medical Technology, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Gang Fan
- College of Medical Technology, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang He
- College of Medical Technology, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
9
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
10
|
Su G, Wang H, Bai J, Chen G, Pei Y. A Metabonomics Approach to Drug Toxicology in Liver Disease and its Application in Traditional Chinese Medicine. Curr Drug Metab 2019; 20:292-300. [PMID: 30599107 DOI: 10.2174/1389200220666181231124439] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND The progression of liver disease causes metabolic transformation in vivo and thus affects corresponding endogenous small molecular compounds. Metabonomics is a powerful technology which is able to assess global low-molecular-weight endogenous metabolites in a biological system. This review is intended to provide an overview of a metabonomics approach to the drug toxicology of diseases of the liver. METHODS The regulation of, and relationship between, endogenous metabolites and diseases of the liver is discussed in detail. Furthermore, the metabolic pathways involved in drug interventions of liver diseases are reviewed. Evaluation of the protective mechanisms of traditional Chinese medicine in liver diseases using metabonomics is also reviewed. Examples of applications of metabolite profiling concerning biomarker discovery are highlighted. In addition, new developments and future prospects are described. RESULTS Metabonomics can measure changes in metabolism relating to different stages of liver disease, so metabolic differences can provide a basis for the diagnosis, treatment and prognosis of various diseases. CONCLUSION Metabonomics has great advantages in all aspects of the therapy of liver diseases, with good prospects for clinical application.
Collapse
Affiliation(s)
- Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Haifeng Wang
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Bai
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Chen
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuehu Pei
- Department of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
11
|
Wang Y, Zhou S, Ma H, Shi JS, Lu YF. Investigation of the differential transport mechanism of cinnabar and mercury containing compounds. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 66:83-90. [PMID: 30639899 DOI: 10.1016/j.etap.2018.12.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 12/01/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Cinnabar has a long history of uses in Chinese traditional medicines as an ingredient in various remedies. However, the detailed mechanism of cinnabar in medication remains unclear, and the toxicity of cinnabar has been a debate due to its containing mercury sulfide. This study was designed to investigate the differential transport mechanism of cinnabar and other Hg-containing compounds HgCl2, MeHg and HgS, and to determine if organic anion transporters OAT1 and OAT3 were involved in the differential transport mechanism. MATERIALS AND METHODS The 293T cells were employed to investigate and compare the differential transport mechanism of cinnabar and HgCl2, MeHg and HgS. Cells were incubated with a low dose (5 μM HgCl2 and MeHg, 200 μM HgS and cinnabar), medium dose (10 μM HgCl2 and MeHg, 400 μM HgS and cinnabar), and high dose (20 μM HgCl2 and MeHg, 800 μM HgS and cinnabar) of HgCl2, MeHg, HgS and cinnabar for 24 h. Following treatment, the cells were collected and the cell viability was determined by MTT assay. The intracellular mercury content was measured at 1, 4, and 24 h after treatment with 10 μM of the tested agents by an atomic fluorescence spectrophotometer. The effect of these tested agents on mitochondrial respiration was determined in a high-resolution oxygraphyat 24 h following treatment. Furthermore, the effect of modulation of expression of transporters OAT1 and OAT3 on the transport and cytotoxicity of the tested agents was evaluated. The up and down regulation of OAT1 and OAT3 were achieved by overexpression and siRNA transfection, respectively. RESULTS Compared with HgCl2 and MeHg, the cytotoxicity of cinnabar and HgS was lower, with cell viability at the high dose cinnabar and HgS being about 65%, while MeHg and HgCl2 were 40% and 20%, respectively. The intracellular mercury accumulation was time-dependent. At 24 h the intracellular concentrations of HgCl2 and MeHg were about 7 and 5 times higher, respectively, than that of cinnabar. No significant difference was found in the intracellular mercury content in cells treated with cinnabar compared to HgS. The knockdown and overexpression of the transporter OAT1 resulted in significant reduction and increase, respectively, in mercury accumulation in HgCl2 -treated cells in relative to control cells, while no significant changes were observed in cells treated with cinnabar, MeHg, and HgS. In addition, the knockdown and overexpression of the transporter OAT3 caused significant reduction and increase, respectively, in mercury accumulation in both HgCl2 and MeHg-treated cells in relative to control cells, while no significant changes were observed in cells treated with cinnabar and HgS. Furthermore, it was found that cells transfected with siOAT1 caused significant resistance to the cytotoxicity induced by HgCl2, while no noticeable changes in cell viability were observed in cells treated with other tested agents. Additionally, cells transfected with OAT3 did not change cell sensitivity to cytotoxicity induced by all of the four tested agents. CONCLUSION This study demonstrates that differential transport and accumulation of mercury in 293T cells exists among cinnabar and the three mercury-containing compounds HgCl2, MeHg and HgS, leading to distinct sensitivity to mercury induced cytotoxicity. The kidney organic anion transporters OAT1 and OAT3 are partially involved in the regulation of the transport of HgCl2 and MeHg, but not in the regulation of the transport of cinnabar.
Collapse
Affiliation(s)
- Yang Wang
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Shaoyu Zhou
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China; Department of Environmental Health, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Honghong Ma
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Jing-Shan Shi
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China
| | - Yuan-Fu Lu
- Joint International Research Laboratory of Ethnomedicine, Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical College, Guizhou, China.
| |
Collapse
|
12
|
Wei S, Qian L, Niu M, Liu H, Yang Y, Wang Y, Zhang L, Zhou X, Li H, Wang R, Li K, Zhao Y. The Modulatory Properties of Li-Ru-Kang Treatment on Hyperplasia of Mammary Glands Using an Integrated Approach. Front Pharmacol 2018; 9:651. [PMID: 29971006 PMCID: PMC6018463 DOI: 10.3389/fphar.2018.00651] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Li-Ru-Kang (LRK) has been used in the treatment of hyperplasia of mammary glands (HMG) for several decades and can effectively improve clinical symptoms. This study aims to investigate the mechanism by which LRK intervenes in HMG based on an integrated approach that combines metabolomics and network pharmacology analyses. Methods: The effects of LRK on HMG induced by estrogen-progesterone in rats were evaluated by analyzing the morphological and pathological characteristics of breast tissues. Moreover, UPLC-QTOF/MS was performed to explore specific metabolites potentially affecting the pathological process of HMG and the effects of LRK. Pathway analysis was conducted with a combination of metabolomics and network pharmacology analyses to illustrate the pathways and network of LRK-treated HMG. Results: Li-Ru-Kang significantly improved the morphological and pathological characteristics of breast tissues. Metabolomics analyses showed that the therapeutic effect of LRK was mainly associated with the regulation of 10 metabolites, including prostaglandin E2, phosphatidylcholine, leukotriene B4, and phosphatidylserine. Pathway analysis indicated that the metabolites were related to arachidonic acid metabolism, glycerophospholipid metabolism and linoleic acid metabolism. Moreover, principal component analysis showed that the metabolites in the model group were clearly classified, whereas the metabolites in the LRK group were between those in the normal and model groups but closer to those in the normal group. This finding indicated that these metabolites may be responsible for the effects of LRK. The therapeutic effect of LRK on HMG was possibly related to the regulation of 10 specific metabolites. In addition, we further verified the expression of protein kinase C alpha (PKCα), a key target predicted by network pharmacology analysis, and showed that LRK could significantly improve the expression of PKCα. Conclusion: Our study successfully explained the modulatory properties of LRK treatment on HMG using metabolomics and network pharmacology analyses. This systematic method can provide methodological support for further understanding the complex mechanism underlying HMG and possible traditional Chinese medicine (TCM) active ingredients for the treatment of HMG.
Collapse
Affiliation(s)
- Shizhang Wei
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Liqi Qian
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- China Military Institute of Chinese Medicine, 302 Hospital of People's Liberation Army, Beijing, China
| | - Honghong Liu
- Department of Integrative Medical Center, 302 Hospital of People's Liberation Army, Beijing, China
| | - Yuxue Yang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Yingying Wang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Lu Zhang
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Xuelin Zhou
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Haotian Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Ruilin Wang
- Department of Traditional Chinese Medicine, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Kun Li
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| | - Yanling Zhao
- Department of Pharmacy, 302 Hospital of People's Liberation Army, Beijing, China
| |
Collapse
|
13
|
Xu W, Pei Y, Xu S, Wang H, Jin P. Metabolic Profiling Analysis of the Alleviation Effect of the Fractions of Niuhuang Jiedu Tablet on Realgar Induced Toxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:2154603. [PMID: 29599804 PMCID: PMC5828372 DOI: 10.1155/2018/2154603] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Accepted: 12/20/2017] [Indexed: 02/08/2023]
Abstract
Niuhuang Jiedu Tablet (NJT) is a classical formula in treating acute tonsillitis, pharyngitis, and so on. In the formula, significant level of Realgar as a potentially toxic element is contained. Our previous experiments revealed that it was less toxic for combined Realgar in NJT. However, the active fraction of this prescription with toxicity alleviation effect on Realgar was still obscure. NJT was divided into five different polar fractions (NJT-PET, NJT-25, NJT-50, NJT-75, and NJT-95), and we explored the toxicity alleviation effect on Realgar. Based on 1H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. With pattern recognition analysis of metabolites in urine and serum, Realgar group showed a clear separation from control group, while the metabolic profiles of NJT-PET, NJT-25, NJT-50, and NJT-95 groups were similar to Realgar group, and the metabolic profiles of NJT and NJT-75 groups were very close to control group. Statistics results were confirmed by the histopathological examination and biochemical assay. The present work indicated that 75% EtOH fraction of NJT was the most valid fraction with the toxicity alleviation effect on Realgar.
Collapse
Affiliation(s)
- Wenfeng Xu
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| | - Yuehu Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shuo Xu
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pengfei Jin
- Department of Pharmacy, National Center of Gerontology, Beijing Hospital, Beijing 100730, China
| |
Collapse
|