1
|
Zare-Zardini H, Saberian E, Jenča A, Ghanipour-Meybodi R, Jenča A, Petrášová A, Jenčová J. From defense to offense: antimicrobial peptides as promising therapeutics for cancer. Front Oncol 2024; 14:1463088. [PMID: 39445062 PMCID: PMC11496142 DOI: 10.3389/fonc.2024.1463088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/09/2024] [Indexed: 10/25/2024] Open
Abstract
Antimicrobial peptides (AMPs), naturally occurring components of innate immunity, are emerging as a promising new class of anticancer agents. This review explores the potential of AMPs as a novel class of anticancer agents. AMPs, naturally occurring peptides with broad-spectrum antimicrobial activity, exhibit several characteristics that make them attractive candidates for cancer therapy, including selectivity for cancer cells, broad-spectrum activity, and immunomodulatory effects. Analysis of a dataset of AMPs with anticancer activity reveals that their effectiveness is influenced by various structural properties, including net charge, length, Boman index, and hydrophobicity. These properties contribute to their ability to target and disrupt cancer cell membranes, interfere with intracellular processes, and modulate the immune response. The review highlights the promising potential of AMPs as a new frontier in cancer treatment, offering hope for more effective and less toxic therapies. AMPs demonstrate promising potential in cancer therapy through multiple mechanisms, including direct cytotoxicity, immune response modulation, and targeting of the tumor microenvironment, as evidenced by extensive preclinical studies in animal models showing tumor regression, metastasis inhibition, and improved survival rates. AMPs show significant potential as cancer therapeutics through their direct cytotoxicity, immune response modulation, and tumor microenvironment targeting, with promising results from preclinical studies and early-phase clinical trials. Future research should focus on optimizing AMP properties, developing novel delivery strategies, and exploring synergistic combination therapies to fully realize their potential as effective cancer treatments, while addressing challenges related to stability, delivery, and potential toxicity.
Collapse
Affiliation(s)
- Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | - Elham Saberian
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | | | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavel Jozef Šafárik University (UPJS LF), Kosice, Slovakia
| |
Collapse
|
2
|
Chen X, Yang J, Qu C, Zhang Q, Sun S, Liu L. Anti- Staphylococcus aureus effects of natural antimicrobial peptides and the underlying mechanisms. Future Microbiol 2024; 19:355-372. [PMID: 38440873 DOI: 10.2217/fmb-2023-0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/13/2023] [Indexed: 03/06/2024] Open
Abstract
Staphylococcus aureus can cause localized infections such as abscesses and pneumonia, as well as systemic infections such as bacteremia and sepsis. Especially, methicillin-resistant S. aureus often presents multidrug resistance, which becomes a major clinical challenge. One of the most common reasons for methicillin-resistant S. aureus antibiotic resistance is the presence of biofilms. Natural antimicrobial peptides derived from different species have shown effectiveness in combating S. aureus biofilms. In this review, we summarize the inhibitory activity of antimicrobial peptides against S. aureus planktonic cells and biofilms. We also summarize the possible inhibitory mechanisms, involving cell adhesion inhibition, membrane fracture, biofilm disruption and DNA disruption. We believe this can provide the basis for further research against S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jiuli Yang
- Department of Clinical Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Shandong Engineering & Technology Research Center for Pediatric Drug Development, Shandong Medicine & Health Key Laboratory of Clinical Pharmacy, Jinan, 250014, People's Republic of China
| | - Chang Qu
- Department of Pharmacy, Beijing Daxing District Hospital of Integrated Chinese & Western Medicine. Beijing, 102600, People's Republic of China
| | - Qian Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Shujuan Sun
- Department of Pharmacy, Shandong Second Provincial General Hospital. Jinan, 250022, People's Republic of China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| |
Collapse
|
3
|
Jayakumar D, Mini M, Kumar P, Vaikkathillam P, Mohan A, Khan S. Synergistic Effect of Thymol-Ciprofloxacin Combination on Planktonic Cells and Biofilm of Pseudomonas aeruginosa. Curr Microbiol 2023; 81:23. [PMID: 38019310 DOI: 10.1007/s00284-023-03546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 10/31/2023] [Indexed: 11/30/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic bacteria causing severe and life-threatening infections in individuals with weakened immune systems. P. aeruginosa forms antibiotic-resistant biofilms, rendering it challenging to treat; hence, alternate therapies are required to eliminate it. Treatment of infections using a combination of drugs is gaining momentum to combat drug-resistant pathogens, including P. aeruginosa. This study explores the synergistic effects of Thymol in combination with Ciprofloxacin, Amikacin and Colistin against planktonic cells and biofilm of P. aeruginosa. Thymol in combination with Ciprofloxacin yields the fractional inhibitory concentration index values 0.156 and 0.375 in P. aeruginosa strains, GC14 and ATCC 9027, respectively, highlighting a robust synergistic effect on both the planktonic and biofilm of P. aeruginosa. The results showed that Thymol (512 μg/mL) and Ciprofloxacin (0.125 μg/mL) were the most effective combination with 95 and 93.5% total biofilm inhibition in GC14 and PA27, respectively, compared to the Thymol (512 μg/mL) and Ciprofloxacin (0.125 μg/mL) alone. Our findings suggest that the combinations of Thymol and Ciprofloxacin may be a potential therapeutic strategy to address the issue of infections caused by P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Devi Jayakumar
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Minsa Mini
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Praveen Kumar
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India.
| | - Parvathi Vaikkathillam
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Aparna Mohan
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| | - Sajeeb Khan
- Department of Zoology, Govt College for Women, Thiruvananthapuram, Kerala, 695014, India
| |
Collapse
|
4
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
5
|
Jafari A, Babajani A, Sarrami Forooshani R, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside. Front Oncol 2022; 12:819563. [PMID: 35280755 PMCID: PMC8904739 DOI: 10.3389/fonc.2022.819563] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/21/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multifaceted global health issue and one of the leading causes of death worldwide. In recent years, medical science has achieved great advances in the diagnosis and treatment of cancer. Despite the numerous advantages of conventional cancer therapies, there are major drawbacks including severe side effects, toxicities, and drug resistance. Therefore, the urgency of developing new drugs with low cytotoxicity and treatment resistance is increasing. Antimicrobial peptides (AMPs) have attracted attention as a novel therapeutic strategy for the treatment of various cancers, targeting tumor cells with less toxicity to normal tissues. In this review, we present the structure, biological function, and underlying mechanisms of AMPs. The recent experimental studies and clinical trials on anticancer peptides in different cancer types as well as the challenges of their clinical application have also been discussed.
Collapse
Affiliation(s)
- Ameneh Jafari
- Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Amirhesam Babajani
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Sarrami Forooshani
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
| | - Mohsen Yazdani
- Laboratory of Bioinformatics and Drug Design, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Coelho GR, da Silva DL, Beraldo-Neto E, Vigerelli H, de Oliveira LA, Sciani JM, Pimenta DC. Neglected Venomous Animals and Toxins: Underrated Biotechnological Tools in Drug Development. Toxins (Basel) 2021; 13:toxins13120851. [PMID: 34941689 PMCID: PMC8708286 DOI: 10.3390/toxins13120851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Among the vast repertoire of animal toxins and venoms selected by nature and evolution, mankind opted to devote its scientific attention—during the last century—to a restricted group of animals, leaving a myriad of toxic creatures aside. There are several underlying and justifiable reasons for this, which include dealing with the public health problems caused by envenoming by such animals. However, these studies became saturated and gave rise to a whole group of animals that become neglected regarding their venoms and secretions. This repertoire of unexplored toxins and venoms bears biotechnological potential, including the development of new technologies, therapeutic agents and diagnostic tools and must, therefore, be assessed. In this review, we will approach such topics through an interconnected historical and scientific perspective that will bring up the major discoveries and innovations in toxinology, achieved by researchers from the Butantan Institute and others, and describe some of the major research outcomes from the study of these neglected animals.
Collapse
Affiliation(s)
- Guilherme Rabelo Coelho
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Daiane Laise da Silva
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Emidio Beraldo-Neto
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
| | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Laudiceia Alves de Oliveira
- Laboratório de Moléstias Infecciosas—Faculdade de Medicina de Botucatu, São Paulo State University (UNESP), São Paulo 01049-010, Brazil;
| | - Juliana Mozer Sciani
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, Bragança Paulista 12916-900, Brazil;
| | - Daniel Carvalho Pimenta
- Laboratório de Bioquímica, Instituto Butantan, São Paulo 05503-900, Brazil; (G.R.C.); (D.L.d.S.); (E.B.-N.)
- Correspondence:
| |
Collapse
|
7
|
Modification Strategy of D-leucine Residue Addition on a Novel Peptide from Odorrana schmackeri, with Enhanced Bioactivity and In Vivo Efficacy. Toxins (Basel) 2021; 13:toxins13090611. [PMID: 34564615 PMCID: PMC8473181 DOI: 10.3390/toxins13090611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 11/25/2022] Open
Abstract
Brevinins are a well-characterised, frog-skin-derived, antimicrobial peptide (AMP) family, but their applications are limited by high cytotoxicity. In this study, a wild-type des-Leu2 brevinin peptide, named brevinin-1OS (B1OS), was identified from Odorrana schmackeri. To explore the significant role of the leucine residue at the second position, two variants, B1OS-L and B1OS-D-L, were designed by adding L-leucine and D-leucine residues at this site, respectively. The antibacterial and anticancer activities of B1OS-L and B1OS-D-L were around ten times stronger than the parent peptide. The activity of B1OS against the growth of Gram-positive bacteria was markedly enhanced after modification. Moreover, the leucine-modified products exerted in vivo therapeutic potential in an methicillin-resistant Staphylococcus aureus (MRSA)-infected waxworm model. Notably, the single substitution of D-leucine significantly increased the killing speed on lung cancer cells, where no viable H838 cells survived after 2 h of treatment with B1OS-D-L at 10 μM with low cytotoxicity on normal cells. Overall, our study suggested that the conserved leucine residue at the second position from the N-terminus is vital for optimising the dual antibacterial and anticancer activities of B1OS and proposed B1OS-D-L as an appealing therapeutic candidate for development.
Collapse
|
8
|
Purification and cDNA Cloning of Antimicrobial Peptides from the Skin Secretion of the Chinese Frog Rana chensinensis. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-020-10074-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Liu Y, Shi D, Wang J, Chen X, Zhou M, Xi X, Cheng J, Ma C, Chen T, Shaw C, Wang L. A Novel Amphibian Antimicrobial Peptide, Phylloseptin-PV1, Exhibits Effective Anti- staphylococcal Activity Without Inducing Either Hepatic or Renal Toxicity in Mice. Front Microbiol 2020; 11:565158. [PMID: 33193152 PMCID: PMC7649123 DOI: 10.3389/fmicb.2020.565158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 10/08/2020] [Indexed: 01/26/2023] Open
Abstract
In order to part address the problem of drug-resistant pathogens, antimicrobial peptides (AMPs) have been proposed as alternatives to traditional antibiotics. Herein, a novel phylloseptin peptide, named phylloseptin-PV1 (PPV1), is described from the defensive skin secretion of the Neotropical white-lined leaf frog, Phyllomedusa vaillantii. The peptide was synthesized by solid phase peptide synthesis (SPPS) and purified by RP-HPLC, prior to assessment of its biological activities. PPV1 not only demonstrated potent antimicrobial activity against planktonic ESKAPE microorganisms and the yeast, Candida albicans, but also inhibited and eradicated Staphylococcus aureus and MRSA biofilms. The antimicrobial mechanism was shown to include permeabilization of target cell membranes. The in vivo antimicrobial activity of the peptide was then evaluated using mice. PPV1 also exhibited antiproliferative activity against the cancer cell lines, H157, MCF-7, and U251MG, but had a lower potency against the normal cell line, HMEC-1. Although, the peptide possessed a moderate hemolytic action on mammalian red blood cells in vitro, it did not induce significant hepatic or renal toxicity in injected infected mice. These studies have thus found PPV1 to be a potent phylloseptin group AMP, which can effectively inhibit staphylococci, both in vitro and in vivo, without eliciting toxicity. These data thus provide support for further evaluation of PPV1 as a novel antimicrobial agent with therapeutic potential.
Collapse
Affiliation(s)
- Yue Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Daning Shi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom.,School of Government, Peking University, Beijing, China
| | - Jin Wang
- Department of Chinese Medicine, Pizhou People's Hospital, Pizhou, China
| | - Xiaoling Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Xinping Xi
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Jianming Cheng
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chengbang Ma
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
10
|
|
11
|
Zandsalimi F, Talaei S, Noormohammad Ahari M, Aghamiri S, Raee P, Roshanzamiri S, Yarian F, Bandehpour M, Zohrab Zadeh Z. Antimicrobial peptides: a promising strategy for lung cancer drug discovery? Expert Opin Drug Discov 2020; 15:1343-1354. [PMID: 32749935 DOI: 10.1080/17460441.2020.1791080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Antimicrobial peptides (AMPs), also called host defense peptides (HDPs), are identified in almost any form of life, which play an important role in innate immune systems. They have a broad spectrum of antifungal, antiviral, antibacterial, and anticancer activities. Lung cancer remains the leading cause of global cancer-related death. Unfortunately, lung cancer chemotherapy is accompanied by serious side effects, nonspecific toxicity, and multidrug resistance. Hence, to overcome these drawbacks, anticancer peptides (ACPs) derived from AMPs may represent a potential promising synergistic treatment strategy for lung cancer. AREAS COVERED In this review, the authors provide the recent advancements in the use of AMPs for the treatment of lung cancer. Furthermore, the anti-lung cancer modes of action of these peptides have been fully reviewed. Importantly, various strategies for increasing the efficiency and safety of AMPs have been discussed. EXPERT OPINION The combination of AMPs and other cancer treatment approaches such as chemotherapy, nanoparticle-based delivery systems, and photodynamic therapy can be used as a promising revolutionary strategy for the treatment of lung cancer. The most significant limitations of this strategy that need to be focused on are low efficiency and off-target events.
Collapse
Affiliation(s)
- Farshid Zandsalimi
- Students' Scientific Research Center, Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences , Tehran, Iran
| | - Sam Talaei
- School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mehdi Noormohammad Ahari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Pourya Raee
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Soheil Roshanzamiri
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Fatemeh Yarian
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences , Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences , Tehran, Iran
| | - Zeinab Zohrab Zadeh
- Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences , Ahvaz, Iran
| |
Collapse
|
12
|
Maystrenko A, Feng Y, Akhtar N, Li J. The Addition of a Synthetic LPS-Targeting Domain Improves Serum Stability While Maintaining Antimicrobial, Antibiofilm, and Cell Stimulating Properties of an Antimicrobial Peptide. Biomolecules 2020; 10:E1014. [PMID: 32650576 PMCID: PMC7407491 DOI: 10.3390/biom10071014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Multi-drug resistant (MDR) bacteria and their biofilms are a concern in veterinary and human medicine. Protegrin-1 (PG-1), a potent antimicrobial peptide (AMP) with antimicrobial and immunomodulatory properties, is considered a potential alternative for conventional antibiotics. AMPs are less stable and lose activity in the presence of physiological fluids, such as serum. To improve stability of PG-1, a hybrid peptide, SynPG-1, was designed. The antimicrobial and antibiofilm properties of PG-1 and the PG-1 hybrid against MDR pathogens was analyzed, and activity after incubation with physiological fluids was compared. The effects of these peptides on the IPEC-J2 cell line was also investigated. While PG-1 maintained some activity in 25% serum for 2 h, SynPG-1 was able to retain activity in the same condition for up to 24 h, representing a 12-fold increase in stability. Both peptides had some antibiofilm activity against Escherichia coli and Salmonella typhimurium. While both peptides prevented biofilm formation of methicillin-resistant Staphylococcus aureus (MRSA), neither could destroy MRSA's pre-formed biofilms. Both peptides maintained activity after incubation with trypsin and porcine gastric fluid, but not intestinal fluid, and stimulated IPEC-J2 cell migration. These findings suggest that SynPG-1 has much better serum stability while maintaining the same antimicrobial potency as PG-1.
Collapse
Affiliation(s)
| | | | | | - Julang Li
- Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (A.M.); (Y.F.); (N.A.)
| |
Collapse
|
13
|
Kunda NK. Antimicrobial peptides as novel therapeutics for non-small cell lung cancer. Drug Discov Today 2020; 25:238-247. [DOI: 10.1016/j.drudis.2019.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/07/2019] [Accepted: 11/24/2019] [Indexed: 01/02/2023]
|
14
|
Liu Y, Du Q, Ma C, Xi X, Wang L, Zhou M, Burrows JF, Chen T, Wang H. Structure-activity relationship of an antimicrobial peptide, Phylloseptin-PHa: balance of hydrophobicity and charge determines the selectivity of bioactivities. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:447-458. [PMID: 30774309 PMCID: PMC6350648 DOI: 10.2147/dddt.s191072] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Antimicrobial peptides (AMPs) from the skin secretions of amphibians are now considered as a potential alternative to conventional antibiotics. Phylloseptins are a family of AMPs identified in the skin secretions of Phyllomedusinae tree frogs which exhibit highly conserved structural characteristics. This study examines the structure–activity relationship of the newly discovered phylloseptin, Phylloseptin-PHa (PSPHa) from Pithecopus hypochondrialis. Materials and methods PSPHa and modified analogs were produced by solid phase synthesis and purified by reverse-phase HPLC. Rationally designed modified analogs incorporating changes in significant physicochemical parameters such as hydrophobicity, hydrophobic moment and net charge were investigated to determine their influence on secondary structure, antimicrobial activity, membrane permeabilization and cytotoxicity. Results Overall, we found that when rationally designing AMPs by altering their primary structure it is important to keep a balance between hydrophobicity and charge. Conclusion This study provides new insights which will help in the future development of AMPs as alternatives to conventional antibiotics for the treatment of Staphylococcus aureus and methicillin-resistant S. aureus infections.
Collapse
Affiliation(s)
- Yuzhang Liu
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China, .,Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Qiang Du
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China,
| | - Chengbang Ma
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Xinping Xi
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Lei Wang
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Mei Zhou
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - James F Burrows
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Tianbao Chen
- Faculty of Medicine, Health and Life Sciences, School of Pharmacy, Queen's University Belfast, Belfast BT9 7BL, Northern Ireland, UK,
| | - Hui Wang
- School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China,
| |
Collapse
|
15
|
Wu Y, Wang L, Zhou M, Chen T, Shaw C. Phylloseptin-PBa1, -PBa2, -PBa3: Three novel antimicrobial peptides from the skin secretion of Burmeister's leaf frog (Phyllomedusa burmeisteri). Biochem Biophys Res Commun 2019; 509:664-673. [PMID: 30612735 DOI: 10.1016/j.bbrc.2018.12.156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 12/22/2018] [Indexed: 11/16/2022]
Abstract
Skin secretions are known as a highly-complex mixture of abundant and diverse bioactive molecules and its study has attracted increasing attention over recent years. Phylloseptin is a unique family of antimicrobial peptides which have been only isolated from frogs of the Phyllomedusinae subfamily. Here, three novel peptide precursors were successfully cloned from a cDNA library, which was constructed from the skin secretion of Phyllomedusa burmeisteri, as pair of primers (one nested universal primer and a designed degenerate sense primer) were employed for "shotgun" cloning. The encoded mature peptides were validated by MS/MS sequencing, and subsequently termed as Phylloseptin-PBa1, -PBa2 and -PBa3. Phylloseptin-PBa1 and -PBa2 were demonstrated to possess potent antimicrobial activities against Gram-positive bacteria and yeast, as well as broad-spectrum anticancer activities, while they possess varying haemolytic activity at the effective concentration. In contrast, Phylloseptin-PBa3 was found to exhibit a strong haemolytic activity even though it was only found to possess a weak antimicrobial activity and inconspicuous anticancer activity.
Collapse
Affiliation(s)
- Youjia Wu
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, School of Pharmacy, Fujian Medical University, No.1 North Xuefu Road, 350108, Fuzhou, Fujian, China; Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, No.1 North Xuefu Road, 350108, Fuzhou, Fujian, China.
| | - Lei Wang
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Mei Zhou
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| | - Chris Shaw
- Natural Drug Discovery Group, School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, BT9 7BL, Belfast, Northern Ireland, UK
| |
Collapse
|
16
|
Cardoso MH, Cândido ES, Chan LY, Der Torossian Torres M, Oshiro KGN, Rezende SB, Porto WF, Lu TK, de la Fuente-Nunez C, Craik DJ, Franco OL. A Computationally Designed Peptide Derived from Escherichia coli as a Potential Drug Template for Antibacterial and Antibiofilm Therapies. ACS Infect Dis 2018; 4:1727-1736. [PMID: 30346140 DOI: 10.1021/acsinfecdis.8b00219] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Computer-aided screening of antimicrobial peptides (AMPs) is a promising approach for discovering novel therapies against multidrug-resistant bacterial infections. Here, we functionally and structurally characterized an Escherichia coli-derived AMP (EcDBS1R5) previously designed through pattern identification [α-helical set (KK[ILV](3)[AILV])], followed by sequence optimization. EcDBS1R5 inhibited the growth of Gram-negative and Gram-positive, susceptible and resistant bacterial strains at low doses (2-32 μM), with no cytotoxicity observed against non-cancerous and cancerous cell lines in the concentration range analyzed (<100 μM). Furthermore, EcDBS1R5 (16 μM) acted on Pseudomonas aeruginosa pre-formed biofilms by compromising the viability of biofilm-constituting cells. The in vivo antibacterial potential of EcDBS1R5 was confirmed as the peptide reduced bacterial counts by two-logs 2 days post-infection using a skin scarification mouse model. Structurally, circular dichroism analysis revealed that EcDBS1R5 is unstructured in hydrophilic environments, but has strong helicity in 2,2,2-trifluoroethanol (TFE)/water mixtures (v/v) and sodium dodecyl sulfate (SDS) micelles. The TFE-induced nuclear magnetic resonance structure of EcDBS1R5 was determined and showed an amphipathic helical segment with flexible termini. Moreover, we observed that the amide protons for residues Met2-Ala8, Arg10, Ala13-Ala16, and Trp19 in EcDBS1R5 are protected from the solvent, as their temperature coefficients values are more positive than -4.6 ppb·K-1. In summary, this study reports a novel dual-antibacterial/antibiofilm α-helical peptide with therapeutic potential in vitro and in vivo against clinically relevant bacterial strains.
Collapse
Affiliation(s)
- Marlon H. Cardoso
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Elizabete S. Cândido
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - Lai Y. Chan
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Marcelo Der Torossian Torres
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP 09210170, Brazil
| | - Karen G. N. Oshiro
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - Samilla B. Rezende
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| | - William F. Porto
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
- Porto Reports, Brasília, DF 70790160, Brazil
| | - Timothy K. Lu
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - Cesar de la Fuente-Nunez
- Synthetic Biology Group, MIT Synthetic Biology Center; The Center for Microbiome Informatics and Therapeutics; Research Laboratory of Electronics, Department of Biological Engineering, and Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, United States
| | - David J. Craik
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, Brisbane, QLD 4072, Australia
| | - Octávio L. Franco
- Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Campus Darcy Ribeiro, Asa Norte, Brasília, DF 70910900, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, SGAN 916 Módulo B, Asa Norte, Brasília, DF 70790160, Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Avenida Tamandaré 6000, Campo Grande, MS 79117900, Brazil
| |
Collapse
|
17
|
Yang CH, Chen YC, Peng SY, Tsai APY, Lee TJF, Yen JH, Liou JW. An engineered arginine-rich α-helical antimicrobial peptide exhibits broad-spectrum bactericidal activity against pathogenic bacteria and reduces bacterial infections in mice. Sci Rep 2018; 8:14602. [PMID: 30279591 PMCID: PMC6168480 DOI: 10.1038/s41598-018-32981-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/20/2018] [Indexed: 12/05/2022] Open
Abstract
The increase in the prevalence of antibiotic-resistant bacteria has become a major public health concern. Antimicrobial peptides (AMPs) are emerging as promising candidates addressing this issue. In this study, we designed several AMPs by increasing α-helical contents and positive charges and optimizing hydrophobicity and amphipathicity in the Sushi 1 peptide from horseshoe crabs. A neural network–based bioinformatic prediction tool was used for the first stage evaluations of peptide properties. Among the peptides designed, Sushi-replacement peptide (SRP)-2, an arginine-rich and highly α-helical peptide, showed broad-spectrum bactericidal activity against both Gram-positive and Gram-negative bacteria, including methicillin-resistant Staphylococcus aureus and multidrug-resistant Acinetobacter baumannii; nevertheless, it showed little hemolytic and cytotoxic activity against mammalian cells. Atomic force microscopy results indicated that SRP-2 should interact directly with cell membrane components, resulting in bacterial cell death. SRP-2 also neutralized LPS-induced macrophage activation. Moreover, in an intraperitoneal multidrug-resistant A. baumannii infection mouse model, SRP-2 successfully reduced the bacterial number in ascitic fluid and tumor necrosis factor-α production. Our study findings demonstrate that bioinformatic calculations can be powerful tools to help design potent AMPs and that arginine is superior to lysine for providing positive charges for AMPs to exhibit better bactericidal activity and selectivity against bacterial cells.
Collapse
Affiliation(s)
- Chin-Hao Yang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
| | - Yi-Cheng Chen
- Department of Medicine, Mackay Medical College, New Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Andy Po-Yi Tsai
- Ph.D. Program in Translational Medicine, Tzu Chi University/Academia Sinica, Taipei, Taiwan
| | - Tony Jer-Fu Lee
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan.,Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien, Taiwan
| | - Je-Wen Liou
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan. .,Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
18
|
The Road from Host-Defense Peptides to a New Generation of Antimicrobial Drugs. Molecules 2018; 23:molecules23020311. [PMID: 29389911 PMCID: PMC6017364 DOI: 10.3390/molecules23020311] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/23/2018] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Host-defense peptides, also called antimicrobial peptides (AMPs), whose protective action has been used by animals for millions of years, fulfill many requirements of the pharmaceutical industry, such as: (1) broad spectrum of activity; (2) unlike classic antibiotics, they induce very little resistance; (3) they act synergically with conventional antibiotics; (4) they neutralize endotoxins and are active in animal models. However, it is considered that many natural peptides are not suitable for drug development due to stability and biodisponibility problems, or high production costs. This review describes the efforts to overcome these problems and develop new antimicrobial drugs from these peptides or inspired by them. The discovery process of natural AMPs is discussed, as well as the development of synthetic analogs with improved pharmacological properties. The production of these compounds at acceptable costs, using different chemical and biotechnological methods, is also commented. Once these challenges are overcome, a new generation of versatile, potent and long-lasting antimicrobial drugs is expected.
Collapse
|