1
|
Huang C, Yi P, Li J, Xie L, Huang F, Huang M, Gan T, Sun J, Li L. Exogenous Methyl Jasmonate Alleviates Mechanical Damage in Banana Fruit by Regulating Membrane Lipid Metabolism. Foods 2024; 13:3132. [PMID: 39410165 PMCID: PMC11475893 DOI: 10.3390/foods13193132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/13/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Bananas are economically important fruits, but they are vulnerable to mechanical damage during harvesting and transport. This study examined the effects of methyl jasmonate (MeJA) on the cell membrane integrity and membrane lipid metabolism of wounded banana fruits after harvest. The results showed that 10 and 50 μM MeJA treatments on mechanically wounded bananas significantly delayed ripening and senescence in comparison with the control. At the end of storage, MeJA-treated groups showed a significant reduction in electrolyte leakage and malondialdehyde content, indicating that MeJA protected cell membrane integrity. MeJA also led to a significant decrease in the activity of antioxidant enzymes, including lipoxygenase, diacylglycerol kinase, and lipid phosphate phosphatase. Furthermore, MeJA reduced phospholipase (C and D), phosphatidic acid, and diacylglycerol levels, as well as slowed down the decrease in phosphatidylcholine and phosphatidylinositol contents. Compared to the control, MeJA significantly downregulated the expression of MaPLDγ, MaPLDα, and MaPLDζ. Therefore, MeJA treatment could be a reliable method to delay the senescence of harvested banana fruits subjected to mechanical wounding.
Collapse
Affiliation(s)
- Chunxia Huang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; (C.H.); (J.L.)
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
| | - Ping Yi
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
| | - Jing Li
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China; (C.H.); (J.L.)
| | - Lihong Xie
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
| | - Fang Huang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Min Huang
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Ting Gan
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Jian Sun
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
- Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Li Li
- Agro-Food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (P.Y.); (L.X.); (F.H.); (M.H.); (T.G.)
- Guangxi Key Laboratory of Fruits and Vegetables Storage-Processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| |
Collapse
|
2
|
Liu Q, Lei M, Zhao W, Li X, Zeng X, Bai W. Formation of Lipid-Derived Flavors in Dry-Cured Mackerel ( Scomberomorus niphonius) via Simulation of Autoxidation and Lipoxygenase-Induced Fatty Acid Oxidation. Foods 2023; 12:2504. [PMID: 37444242 DOI: 10.3390/foods12132504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, lipoxygenase (LOX) extracted from dry-cured mackerel was purified, resulting in a 4.1-fold purification factor with a specific activity of 493.60 U/min·g. LOX enzymatic properties were assessed, referring to its optimal storage time (1-2 days), temperature (30 °C), and pH value (7.0). The autoxidation and LOX-induced oxidation of palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:2n9c), linoleic acid (C18:2n6c), arachidonic acid (C20:4), EPA (C20:5), and DHA (C22:6n3) were simulated to explore the main metabolic pathways of key flavors in dry-cured mackerel. The results showed that the highest LOX activity was observed when arachidonic acid was used as a substrate. Aldehydes obtained from LOX-treated C18:1n9c and C18:2n6c oxidation, which are important precursors of flavors, were the most abundant. The key flavors in dry-cured mackerel were found in the oxidative products of C16:0, C18:0, C18:1n9c, C18:2n6c, and C20:4. Heptanaldehyde could be produced from autoxidation or LOX-induced oxidation of C18:0 and C18:1n9c, while nonal could be produced from C18:1n9c and C18:2n6c oxidation. Metabolic pathway analysis revealed that C18:1n9c, C18:2n6c, EPA, and DHA made great contributions to the overall flavor of dry-cured mackerel. This study may provide a relevant theoretical basis for the scientific control of the overall taste and flavor of dry-cured mackerel and further standardize its production.
Collapse
Affiliation(s)
- Qiaoyu Liu
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Menglin Lei
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiangluan Li
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Guangdong Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Guangzhou 510225, China
| |
Collapse
|
3
|
Holková I, Rauová D, Mergová M, Bezáková L, Mikuš P. Purification and Product Characterization of Lipoxygenase from Opium Poppy Cultures ( Papaver somniferum L.). Molecules 2019; 24:molecules24234268. [PMID: 31771143 PMCID: PMC6930461 DOI: 10.3390/molecules24234268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/31/2023] Open
Abstract
Opium poppy (Papaver somniferum L.) is an ancient medicinal plant producing pharmaceutically important benzylisoquinoline alkaloids. In the present work we focused on the study of enzyme lipoxygenase (LOX, EC 1.13.11.12) from opium poppy cultures. LOX is involved in lipid peroxidation and lipoxygenase oxidation products of polyunsaturated fatty acids have a significant role in regulation of growth, development and plant defense responses to biotic or abiotic stress. The purpose of this study was to isolate and characterize LOX enzyme from opium poppy callus cultures. LOX was purified by ammonium sulfate precipitation and then followed by hydrophobic chromatography using Phenyl-Sepharose CL-4B and hydroxyapatite chromatography using HA Ultrogel sorbent. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis and immunoblotting revealed that LOX from opium poppy cultures was a single monomeric protein showing the relative molecular weight of 83 kDa. To investigate the positional specificity of the LOX reaction, purified LOX was incubated with linoleic acid and the products were analyzed by high-performance liquid chromatography in two steps, firstly with reverse phase (120-5 Nucleosil C18 column) and secondly with normal phase (Zorbax Rx-SIL column). LOX converted linoleic acid primarily to 13-hydroperoxy-(9Z,11E)-octadecadienoic acids (78%) and to a lesser extent 9-hydroperoxy-(10E,12Z)-octadecadienoic acids (22%). Characterization of LOX from opium poppy cultures provided valuable information in understanding LOX involvement in regulation of signaling pathways leading to biosynthesis of secondary metabolites with significant biological activity.
Collapse
Affiliation(s)
- Ivana Holková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
- Correspondence: ; Tel.: +421-250-117-313
| | - Drahomíra Rauová
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (D.R.); (P.M.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| | - Michaela Mergová
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
| | - Lýdia Bezáková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Kalinčiakova 8, 832 32 Bratislava, Slovakia; (M.M.); (L.B.)
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia; (D.R.); (P.M.)
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|